Influence of Dynamic Strain Sweep on the Degradation Behavior of FeMnSi–Ag Shape Memory Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural (SEM) and Chemical (EDS and XRD) Analysis
3.2. Differential Scanning Calorimetry (DSC) Analysis
3.3. Dynamic Mechanical Analysis (DMA)—Strain Sweep (SS) and Atomic Force Microscopy (AFM)
3.4. Evaluation of In Vitro Corrosion Behavior and pH Monitoring
3.5. Fourier Transform Infrared Spectroscopy (FTIR) and Nano-FTIR Analysis
4. Conclusions
- -
- the levitation furnace is a proper solution for manufacturing FeMnSi–Ag alloys with different amounts of Ag added (1, 2 wt %).
- -
- the materials exhibit excellent structural and chemical homogeneity, with Ag spreading within the structure (γ-austenite and ε-martensite phases were identified by XRD).
- -
- the DSC results validate the possibility of medical use of a functional FeMnSi-based material with an A50 temperature between 0 and 50 °C.
- -
- Preceding the start of the in vitro degradation process, DMA_SS was used to vibrate the material for daily use as implant material.
- -
- AFM studies have shown that the alloy has undergone a structural change due to stress-sweeping effects, which has also led to an increase in the amount of ε-martensite plates, a phase less resistant to corrosion than the γ-austenite phase.
- -
- nano-FTIR spectroscopy and imaging can currently provide spectral statistics of externally corroded metal with a spatial resolution of 20 nm.
- -
- Nano-scale compounds were identified on the metallic surface after material immersion, confirming that the corrosion process evolves from nano to macro scale.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Guo, C.; Fitzpatrick, V.; Ibrahim, A.; Zwierstra, M.J.; Hanna, P.; Lechtig, A.; Nazarian, A.; Lin, S.J.; Kaplan, D.L. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 2019, 51, 61–81. [Google Scholar] [CrossRef]
- Istrate, B.; Munteanu, C.; Antoniac, I.-V.; Lupescu, Ș.-C. Current Research Studies of Mg–Ca–Zn Biodegradable Alloys Used as Orthopedic Implants—Review. Crystals 2022, 12, 1468. [Google Scholar] [CrossRef]
- Li, G.; Yang, H.; Zheng, Y.; Chen, X.H.; Yang, J.A.; Zhu, D.; Ruan, L.; Takashima, K. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. Acta Biomater. 2019, 97, 23–45. [Google Scholar] [CrossRef]
- Gorejová, R.; Haverová, L.; Oriňaková, R.; Oriňak, A.; Oriňak, M. Recent advancements in Fe-based biodegradable materials for bone repair. J. Mater. Sci. 2019, 54, 1913–1947. [Google Scholar] [CrossRef]
- Nie, Y.; Chen, G.; Peng, H.; Tang, S.; Zhou, Z.; Pei, F.; Shen, B. In vitro and 48 weeks in vivo performances of 3D printed porous Fe-30Mn biodegradable scaffolds. Acta Biomater. 2021, 121, 724–740. [Google Scholar] [CrossRef] [PubMed]
- Gąsior, G.; Szczepański, J.; Radtke, A. Biodegradable Iron-Based Materials—What Was Done and What More Can Be Done? Materials 2021, 14, 3381. [Google Scholar] [CrossRef] [PubMed]
- Spandana, D.; Desai, H.; Chakravarty, D.; Vijay, R.; Hembram, K. Fabrication of a biodegradable Fe-Mn-Si alloy by field assisted sintering. Adv. Powder Technol. 2020, 31, 4577–4584. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Peroni, G.; Infantino, V.; Gasparri, C.; Iannello, G.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A. Essentiality of Manganese for Bone Health: An Overview and Update. Nat. Prod. Commun. 2021, 16, 1934578X211016649. [Google Scholar] [CrossRef]
- Boguszewska-Czubara, A.; Pasternak, K. Silicon in medicine and therapy. J. Elem. 2011, 16, 489–497. [Google Scholar] [CrossRef]
- Francis, A.; Yang, Y.; Virtanen, S.; Boccaccini, A.R. Iron and iron-based alloys for temporary cardiovascular applications. J. Mater. Sci. Mater. Med. 2015, 26, 138–153. [Google Scholar] [CrossRef]
- Hufenbach, J.; Wendrock, H.; Kochta, F.; Kuhn, U.; Gebert, A. Novel biodegradable Fe-Mn-C-S alloy with superior mechanical and corrosion properties. Mater. Lett. 2017, 186, 330–333. [Google Scholar] [CrossRef]
- Kaya, M.; Çakmak, Ö. Shape Memory behavior of porous NiTi alloy. Metall. Mater. Trans. A 2016, 47, 1499–1503. [Google Scholar] [CrossRef]
- Kraus, T.; Moszner, F.; Fischerauer, S.; Fiedler, M.; Martinelli, E.; Eichler, J.; Witte, F.; Willbold, E.; Schinhammer, M.; Meischel, M. Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks. Acta Biomater. 2014, 10, 3346–3353. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zheng, Y.; Qin, L. Progress of biodegradable metals. Prog. Nat. Sci Mater. Int. 2014, 24, 414–422. [Google Scholar] [CrossRef] [Green Version]
- Matassi, F.; Botti, A.; Sirleo, L.; Carulli, C.; Innocenti, M. Porous metal for orthopedics implants. Clin. Cases Miner. Bone Metab. 2013, 10, 111–115. [Google Scholar]
- Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Duerig, T.; Pelton, A.; Stockel, D. An overview of nitinol medical applications. Mater. Sci. Eng. 1999, 273–275, 149–160. [Google Scholar] [CrossRef]
- Han, H.S.; Loffredo, S.; Jun, I.; Edwards, J.; Kim, Y.C.; Seok, H.K.; Witte, F.; Mantovani, D.; Glyn-Jones, S. Current status and outlook on the clinical translation of biodegradable metals. Mater. Today 2019, 23, 57–71. [Google Scholar] [CrossRef]
- Luckachan, G.E.; Pillai, C.K.S. Biodegradable polymers—A review on recent trends and emerging perspectives. J. Polym. Environ. 2011, 19, 637–676. [Google Scholar] [CrossRef]
- Cocean, I.; Cocean, A.; Postolachi, C.; Pohoata, V.; Cimpoesu, N.; Bulai, G.; Iacomi, F.; Gurlui, S. Alpha keratin amino acids BEHVIOR under high FLUENCE laser interaction. Medical applications. Appl. Surf. Sci. 2019, 488, 418–426. [Google Scholar] [CrossRef]
- Morgan, N.B. Medical shape memory alloy applications-the market and its products. Mater. Sci. Eng. 2004, 378, 16–23. [Google Scholar] [CrossRef]
- Wada, M.; Naoi, H.; Yasuda, H.; Maruyama, T. Shape recovery characteristics of biaxially prestrained Fe–Mn–Si-based shape memory alloy. Mater. Sci. Eng. A 2008, 481–482, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Venezuela, J.; Dargusch, M. Biodegradable shape memory alloys: Progress and prospects. Biomaterials 2021, 279, 121215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Chen, H.; Shen, F. Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J. Mater. Sci. Mater. Med. 2010, 21, 2151–2163. [Google Scholar] [CrossRef]
- Schinhammer, M.; Hänzi, A.C.; Löffler, J.F.; Uggowitzer, P.J. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 2010, 6, 1705–1713. [Google Scholar] [CrossRef]
- Venezuela, J.; Dargusch, M.S. Addressing the slow corrosion rate of biodegradable Fe-Mn: Current approaches and future trends. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100822. [Google Scholar] [CrossRef]
- Feng, Y.P.; Blanquer, A.; Fornell, J.; Zhang, H.; Solsona, P.; Baró, M.D.; Suriñach, S.; Ibáñez, E.; García-Lecina, E.; Wei, X.; et al. Novel Fe–Mn–Si–Pd alloys: Insights into mechanical, magnetic, corrosion resistance and biocompatibility performances. J. Mater. Chem. B 2016, 4, 6402–6412. [Google Scholar] [CrossRef] [Green Version]
- Cimpoesu, N.; Sandulache, F.; Istrate, B.; Cimpoesu, R.; Zegan, G. Electrochemical behavior of biodegradable FeMnSi–MgCa alloy. Metals 2018, 8, 541. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Cheng, J.; Zheng, Y.F. In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering. Mater. Sci. Eng. C 2014, 35, 43–53. [Google Scholar] [CrossRef]
- Capek, J.; Stehlíkova, K.; Michalcova, A.; Msallamova, S.; Vojtech, D. Microstructure, mechanical and corrosion properties of biodegradable powder metallurgical Fe- 2wt % X (X = Pd, Ag and C) alloys. Mater. Chem. Phys. 2016, 181, 501–511. [Google Scholar] [CrossRef]
- Huang, T.; Cheng, J.; Bian, D.; Zheng, Y. Fe-Au and Fe-Ag composites as candidates for biodegradable stent materials. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Cazzaniga, A.; Locatelli, L.; Maier, J.A.M. Silver Nanoparticles in Orthopedic Applications: New Insights on Their Effects on Osteogenic Cells. Nanomaterials 2017, 7, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lansdown, A.B. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv. Pharmacol. Pharm. Sci. 2010, 2010, 910686. [Google Scholar] [CrossRef] [Green Version]
- Lansdown, A.B. Silver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol. 2006, 33, 17–34. [Google Scholar] [PubMed] [Green Version]
- Nagase, T.; Terai, T.; Kakeshita, T.; Morita, K. Solidification Microstructure and Magnetic Properties of Ag-Rich Ag–Cu–La–Fe Immiscible Alloys. Mater. Trans. 2020, 61, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Niendorf, T.; Brenne, F.; Hoyer, P.; Schwarze, D.; Schaper, M.; Grothe, R.; Wiesener, M.; Grundmeier, G.; Maier, H.J. Processing of New Materials by Additive Manufacturing: Iron-Based Alloys Containing Silver for Biomedical Applications. Metall. Mater. Trans. A 2015, 46, 2829–2833. [Google Scholar] [CrossRef]
- Liu, R.Y.; He, R.G.; Xu, L.Q.; Guo, S.F. Design of Fe–Mn–Ag alloys as potential candidates for biodegradable metals. Acta Metall. Sin. Engl. Lett. 2018, 31, 584–590. [Google Scholar] [CrossRef] [Green Version]
- Tonna, C.; Wang, C.; Mei, D.; Lamaka, S.V.; Zheludkevich, M.L.; Buhagiar, J. Biodegradation behaviour of Fe-based alloys in Hanks’ Balanced Salt Solutions: Part I. material characterisation and corrosion testing. Bioact. Mater. 2022, 7, 426–440. [Google Scholar] [CrossRef]
- Wang, C.; Tonna, C.; Mei, D.; Buhagiar, J.; Zheludkevich, M.L.; Lamaka, S.V. Biodegradation behaviour of Fe-based alloys in Hanks’ Balanced Salt Solutions: Part II. The evolution of local pH and dissolved oxygen concentration at metal interface. Bioact. Mater. 2022, 7, 412–425. [Google Scholar] [CrossRef]
- Sotoudeh Bagha, P.; Khakbiz, M.; Sheibani, S.; Hermawan, H. Design and characterization of nano and bimodal structured biodegradable Fe-Mn-Ag alloy with accelerated corrosion rate. J. Alloys Compd. 2018, 767, 955–965. [Google Scholar] [CrossRef]
- Sotoudeh Bagha, P.; Sheibani, S.; Khakbiz, M.; Ebrahimi-Barough, S.; Hermawan, H. Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying. Mater. Sci. Eng. C 2018, 88, 88–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babacan, N.; Kochta, F.; Hoffmann, V.; Gemming, T.; Kühn, U.; Giebeler, L.; Gebert, A.; Hufenbach, J. Effect of silver additions on the microstructure, mechanical properties and corrosion behavior of biodegradable Fe-30Mn-6Si. Mater. Today Commun. 2021, 28, 102689. [Google Scholar]
- Zarebidaki, A.; Mofidi, S.H.H.; Nodezh, A.S. Corrosion mechanism of titanium dioxide nanotubes in Ringer’s solution. Mat. Today Comm. 2021, 29, 102943. [Google Scholar]
- Chelliah, N.M.; Padaikathan, P.; Kumar, R. Evaluation of electrochemical impedance and biocorrosion characteristics of as-cast and T4 heat treated AZ91 Mg-alloys in Ringer’s solution. J. Magn. All. 2019, 7, 134–143. [Google Scholar] [CrossRef]
- Pourbaix, M. Electrochemical corrosion of metallic biomaterials. Biomaterials 1984, 5, 122–134. [Google Scholar] [CrossRef]
- Hanawa, T. In vivo metallic biomaterials and surface modification. Mater. Sci. Eng. A 1999, 267, 260–266. [Google Scholar] [CrossRef]
- Sharma, P.; Jain, K.G.; Pandey, P.M.; Mohanty, S. In vitro degradation behaviour, cytocompatibility and hemocompatibility of topologically ordered porous iron scaffold prepared using 3D printing and pressureless microwave sintering. Mater. Sci. Eng. C 2020, 106, 110247. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.; Chen, X.-H.; Yang, J.-A.; Pan, H.; Chen, D.; Wang, L.; Zhang, J.; Zhu, D.; Wu, S.; et al. Fundamental theory of biodegradable metals—Definition, criteria, and design. Adv. Funct. Mater. 2019, 29, 1805402. [Google Scholar] [CrossRef]
- Schinhammer, M.; Steiger, P.; Moszner, F.; Löffler, J.F.; Uggowitzer, P.J. Degradation performance of biodegradable Fe-Mn-C(-Pd) alloys. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 1882–1893. [Google Scholar] [CrossRef]
- Dargusch, M.S.; Dehghan-Manshadi, A.; Shahbazi, M.; Venezuela, J.; Tran, X.; Song, J.; Liu, N.; Xu, C.; Ye, Q.; Wen, C. Exploring the Role of Manganese on the Microstructure, Mechanical Properties, Biodegradability, and Biocompatibility of Porous Iron-Based Scaffolds. ACS Biomater. Sci. Eng. 2019, 5, 1686–1702. [Google Scholar] [CrossRef]
- Revie, W.R.; Uhlig, H.H. Corrosion and Corrosion Control. In An Introduction to Corrosion Science and Engineering, 4th ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hermawan, H.; Purnama, A.; Dube, D.; Couet, J.; Mantovani, D. Fe–Mn alloys for metallic biodegradable stents: Degradation and cell viability studies. Acta Biomater. 2010, 6, 1852–1860. [Google Scholar] [CrossRef] [PubMed]
- Istrate, B.; Munteanu, C.; Baltatu, M.S.; Cimpoesu, R.; Ioanid, N. Microstructural and Electrochemical Influence of Zn in MgCaZn Biodegradable Alloys. Materials 2023, 16, 2487. [Google Scholar] [CrossRef] [PubMed]
- Bartkowska, A.; Careta, O.; Turner, A.B.; Blanquer, A.; Ibañez, E.; Trobos, M.; Nogués, C.; Pellicer, E.; Sort, J. Biodegradable porous FeMn (–x Ag) alloys: Assessment of cytocompatibility, mechanical, magnetic and antibiofilm properties. Mater. Adv. 2023, 4, 616–630. [Google Scholar] [CrossRef]
- Krüger, J.T.; Hoyer, K.P.; Huang, J.; Filor, V.; Mateus-Vargas, R.H.; Oltmanns, H.; Meißner, J.; Grundmeier, G.; Schaper, M. FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability. J. Funct. Biomater. 2022, 13, 185. [Google Scholar] [CrossRef] [PubMed]
- Saliba, L.; Sammut, K.; Tonna, C.; Pavli, F.; Valdramidis, V.; Gatt, R.; Giordmaina, R.; Camilleri, L.; Atanasio, W.; Buhagiar, J.; et al. FeMn and FeMnag Biodegradable Alloys: An In Vitro And In Vivo Investigation. Available online: https://ssrn.com/abstract=4325636 (accessed on 25 March 2023). [CrossRef]
- Hermawan, H.; Dube, D.; Mantovani, D. Degradable metallic biomaterials: Design and development of Fe-Mn alloys for stents. J. Biomed. Mater. Res. A 2010, 93, 1–11. [Google Scholar] [CrossRef]
- Gavriljuk, V.G.; Bliznuk, V.V.; Shanina, B.D.; Kolesnik, S.P. Effect of silicon on atomic distribution and shape memory in Fe–Mn base alloys. Mater. Sci. Eng. A 2005, 406, 1–10. [Google Scholar] [CrossRef]
- Takeda, M.; Onishi, T.; Nakakubo, S.; Fujimoto, S. Physical Properties of Iron-Oxide Scales on Si-Containing Steels at High Temperature. Mat. Trans. 2009, 50, 2242–2246. [Google Scholar] [CrossRef] [Green Version]
- Drevet, R.; Zhukova, Y.; Malikova, P.; Dubinskiy, S.; Korotitskiy, A.; Pustov, Y.; Prokoshkin, S. Martensitic transformations and mechanical and corrosion properties of Fe-Mn-Si alloys for biodegradable medical implants. Metall. Mater. Trans. A. 2018, 49, 1006–1013. [Google Scholar] [CrossRef]
- Bulbuc, V.; Pricop, B.; Maxim, F.; Popa, M.; Cimpoeşu, N.; Bujoreanu, L.G. Influence of Dynamic Three Point Bending on the Work Hardening Capacity of T105Mn120 Manganese Steel. J. Mater. Eng. Perform. 2018, 27, 6127–6134. [Google Scholar] [CrossRef]
- Pricop, B.; Mihalache, E.; Stoian, G.; Borza, F.; Özkal, B.; Bujoreanu, L.G. Thermo-mechanical effects caused by martensite formation in powder metallurgy FeMnSiCrNi shape memory alloys. Powder Metall. 2018, 61, 348–356. [Google Scholar] [CrossRef]
- Rabeeh, V.M.; Hanas, T. Progress in manufacturing and processing of degradable Fe-based implants: A review. Prog. Biomater. 2022, 11, 163–191. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jahr, H.; Lietaert, K.; Pavanram, P.; Yilmaz, A.; Fockaert, L.I.; Leeflang, M.A.; Pouran, B.; Gonzalez-Garcia, Y.; Weinans, H.; et al. Additively manufactured biodegradable porous iron. Acta Biomater. 2018, 77, 380–393. [Google Scholar] [CrossRef] [PubMed]
- Hermawan, H. Updates on the research and development of absorbable metals for biomedical applications. Prog. Biomater. 2018, 7, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zheng, Y.F. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on bio-degradability and in vitro biocompatibility of pure iron. Acta Biomater. 2011, 7, 1407–1420. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, A.; Asami, K.; Hashimoto, K. Effect of manganese on the corrosion behaviour of chromium-bearing amorphous metal-metalloid alloys. Sci. Rep. Res. Inst. Tohoku Univ. Phys. Chem. Metall. 1981, 29, 276–283. [Google Scholar]
- Salama, M.; Vaz, M.F.; Colaço, R.; Santos, C.; Carmezim, M. Biodegradable Iron and Porous Iron: Mechanical Properties, Degradation Behaviour, Manufacturing Routes and Biomedical Applications. J. Funct. Biomater. 2022, 13, 72. [Google Scholar] [CrossRef]
- Lin, H.C.; Lin, K.M.; Lin, C.S.; Ouyang, T.M. The corrosion behavior of Fe-based shape memory alloys. Corros. Sci. 2002, 44, 2013–2026. [Google Scholar] [CrossRef]
- Jones, D.A. Principles and Prevention of Corrosion, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- El Fawkhry, M.K. The effect of solution treatment temperature on SIEM and shape recovery of FeeMneSi shape memory alloy. J. Mater. Res. Technol. 2021, 15, 1069–1075. [Google Scholar] [CrossRef]
- Zhao, W.; Chang, T.; Leygraf, C.; Johnson, C.M. Corrosion inhibition of copper with octadecylphosphonic acid (ODPA) in a simulated indoor atmospheric environment. Corros. Sci. 2021, 192, 109777. [Google Scholar] [CrossRef]
- Johnson, C.M.; Böhmler, M. Nano-FTIR microscopy and spectroscopy studies of atmospheric corrosion with a spatial resolution of 20 nm. Corros. Sci. 2016, 108, 60–65. [Google Scholar] [CrossRef]
- Pretsch, E.; Buhlmann, P.; Badertscher, M. Structure Determination of Organic Compounds. In Tables of Spectral Data, 4th ed.; Revised and Enlarged Edition; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Shamkhi, H.K.; Baryshnikova, K.V.; Sayanskiy, A.; Kapitanova, P.; Terekhov, P.D.; Belov, P.; Karabchevsky, A.; Evlyukhin, A.B.; Kivshar, Y.; Shalin, A.S. Transverse scattering and generalized kerker effects in all-dielectric mie-resonant metaoptics. Phys. Rev. Lett. 2019, 122, 193905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, F.A.; Wilkins, C.H. Infrared Spectra and Characteristic Frequencies of Inorganic Ions. Anal. Chem. 1952, 24, 1253–1294. [Google Scholar] [CrossRef]
- Du, L.; An, S.W.; Ding, J.; Jiang, D.; Hong, W.; Jin, Y.D.; Liu, L.; Wang, R.B.; Zhang, D.; Xia, C.Q. Adsorption and desorption of uranium(VI) by Fe-Mn binary oxide in aqueous solutions. J. Radioanal. Nucl. Chem. 2016, 308, 545–554. [Google Scholar] [CrossRef]
- Song, Z.G.; Lian, F.; Yu, Z.H.; Zhu, L.Y.; Xing, B.S.; Qiu, W.W. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chem. Eng. J. 2014, 242, 36–42. [Google Scholar] [CrossRef]
- Xu, W.; Wang, H.J.; Liu, R.P.; Zhao, X.; Qu, J.H. The mechanism of antimony(III) removal and its reactions on the surfaces of Fe-Mn Binary Oxide. J. Colloid Interface Sci. 2011, 363, 320–326. [Google Scholar] [CrossRef]
- Knoll, B.; Keilmann, F. Near-Field Probing of Vibrational Absorption for Chemical Microscopy. Nature 1999, 399, 7–10. [Google Scholar] [CrossRef]
- Huth, F.; Govyadinov, A.; Amarie, S.; Nuansing, W.; Keilmann, F.; Hillenbrand, R. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 2012, 12, 3973–3978. [Google Scholar] [CrossRef]
- Veneranda, M.; Aramendia, J.; Bellot-Gurlet, L.; Colomban, P.; Castro, K.; Madariaga, J.M. FTIR spectroscopic semi-quantification of iron phases: A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems. Corros. Sci. 2018, 133, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Su, J.F.; Huang, Z.; Yuan, X.Y.; Wang, X.Y.; Li, M. Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydr. Polym. 2010, 79, 145–153. [Google Scholar] [CrossRef]
- Le Losq, C.; Cody, G.D.; Mysen, B.O. Complex IR spectra of OH− groups in silicate glasses: Implications for the use of the 4500 cm−1 IR peak as a marker of OH− groups concentration. Am. Mineral. 2015, 100, 945–950. [Google Scholar] [CrossRef]
- Cocean, A.; Cocean, G.; Diaconu, M.; Garofalide, S.; Husanu, F.; Munteanu, B.S.; Cimpoesu, N.; Motrescu, I.; Puiu, I.; Postolachi, C.; et al. Nano-Biocomposite Materials Obtained from Laser Ablation of Hemp Stalks for Medical Applications and Potential Component in New Solar Cells. Int. J. Mol. Sci. 2023, 24, 3892. [Google Scholar] [CrossRef] [PubMed]
Alloy | Fe | Mn | Si | Ag | ||||
---|---|---|---|---|---|---|---|---|
Wt % | At % | Wt % | At % | Wt % | At % | Wt % | At % | |
FeMnSi–1Ag | 64.1 | 61.48 | 30.84 | 30.08 | 4.19 | 7.99 | 0.9 | 0.45 |
FeMnSi–2Ag | 63.32 | 60.82 | 30.27 | 29.56 | 4.56 | 8.71 | 1.86 | 0.92 |
Point 1 | 69.45 | 67.00 | 27.29 | 26.76 | 3.26 | 6.24 | 0.01 | 0.04 |
Point 2 | 37.16 | 38.15 | 36.78 | 38.39 | 6.37 | 13.00 | 19.68 | 10.46 |
Point 3 | 55.57 | 58.17 | 24.75 | 26.25 | 3.28 | 6.82 | 16.22 | 8.76 |
Detector err. % | 1.45 | 0.75 | 0.25 | 0.6 |
Sample | Dimension | Average before DMA-SS (nm) | St. dev.% | Average after DMA-SS (nm) | St. dev. % |
---|---|---|---|---|---|
FeMnSi–1Ag (1Hz) | l | 334.8 | 86.9 | 41.8 | 6.5 |
h | 204.8 | 40.1 | 30.4 | 5.5 | |
FeMnSi–2Ag(I) (1Hz) | l | 107.8 | 16.1 | 59.6 | 25.1 |
h | 85 | 9.5 | 45.6 | 18.03 | |
FeMnSi–2Ag(II) (5Hz) | l | 92 | 20.2 | 58 | 13.1 |
h | 105.4 | 56.8 | 44.6 | 9.3 | |
FeMnSi–2Ag(III) (20Hz) | l | 81.2 | 16.6 | 54.8 | 4.9 |
h | 71.4 | 8.9 | 50.4 | 8.2 |
Hot-Rolled Sample | FeMnSi–2Ag without DMA-SS | FeMnSi–2Ag (20 Hz) with DMA-SS |
---|---|---|
Initial mass (mg) | 796.7 | 725.3 |
Mass after immersion (mg) | 797.7 (+1.0) | 725.5 (+0.2) |
Mass after ultrasound (mg) | 794.4 (−2.3) | 722.5 (−2.8) |
Corrosion rate (μm/year) | 134.15 | 175.87 |
Chemical Elements/Sample | Fe | Mn | Si | Ag | O | C | Na | Cl | Ca | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wt % | At % | Wt % | At % | Wt % | At % | Wt % | At % | Wt % | At % | Wt % | At % | Wt % | At % | Wt % | At % | Wt % | At % | |
FeMnSi–1Ag | 36.76 | 16.5 | 9.35 | 4.27 | 9.16 | 8.18 | 2.17 | 0.5 | 34.67 | 54.32 | 7.69 | 16.04 | 0.12 | 0.13 | 0.09 | 0.06 | - | - |
FeMnSi–2Ag | 42.92 | 21.6 | 16.06 | 8.22 | 5.56 | 5.56 | 0.61 | 0.16 | 26.43 | 46.43 | 7.2 | 16.86 | 0.46 | 0.56 | 0.76 | 0.6 | - | - |
FeMnSi–1Ag (1 Hz) | 42.34 | 20.54 | 14.63 | 7.21 | 4.05 | 3.9 | 0.57 | 0.14 | 30.7 | 51.97 | 6.88 | 15.52 | 0.14 | 0.16 | 0.6 | 0.46 | 0.02 | 0.01 |
FeMnSi–2Ag(1 Hz) | 40.6 | 19.8 | 14.83 | 7.35 | 3.94 | 3.82 | 1.68 | 0.42 | 32.58 | 55.45 | 5.38 | 12.19 | 0.40 | 0.48 | 0.42 | 0.32 | 0.05 | 0.03 |
FeMnSi–2Ag(5 Hz) | 44.97 | 24.02 | 19.17 | 10.41 | 5.62 | 5.97 | 0.36 | 0.1 | 21.02 | 39.19 | 7.6 | 18.87 | 0.83 | 1.08 | 0.21 | 0.18 | - | - |
FeMnSi–2Ag (20 Hz) | 43.35 | 22.1 | 15.75 | 8.16 | 5.86 | 5.95 | 0.89 | 0.24 | 26.96 | 47.98 | 6.21 | 14.72 | 0.09 | 0.12 | 0.63 | 0.51 | 0.1 | 0.1 |
EDS err. % | 0.9 | 0.1 | 0.1 | 0.05 | 1.9 | 0.7 | 0.2 | 0.2 | 0.1 |
Sample | Samples without DMA-SS | Samples with DMA-SS | ||||
---|---|---|---|---|---|---|
FeMnSi–1Ag | FeMnSi–2Ag | FeMnSi–1Ag (1 Hz) | FeMnSi–2Ag (1 Hz) | FeMnSi–2Ag (5 Hz) | FeMnSi–2Ag (20 Hz) | |
Initial mass (mg) | 882.5 | 826.4 | 692.9 | 644.7 | 711.7 | 748.1 |
Mass after immersion (mg) | 876.7 (−5.8) | 843.1 (+16,7) | 699.4 (+6.5) | 646.2 (+1.5) | 708 (−3.7) | 760.3 (+12.2) |
Mass after ultrasound (mg) | 876 (−6.5) | 818.5 (−7.9) | 686.8 (−6.1) | 636.3 (−8.4) | 704.2 (−7.5) | 737.7 (−10.4) |
Corrosion rate (μm/y) | 64 | 79 | 82 | 113 | 101 | 140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, A.-M.; Cimpoeșu, R.; Pricop, B.; Lohan, N.-M.; Cazacu, M.M.; Bujoreanu, L.-G.; Panaghie, C.; Zegan, G.; Cimpoeșu, N.; Murariu, A.M. Influence of Dynamic Strain Sweep on the Degradation Behavior of FeMnSi–Ag Shape Memory Alloys. J. Funct. Biomater. 2023, 14, 377. https://doi.org/10.3390/jfb14070377
Roman A-M, Cimpoeșu R, Pricop B, Lohan N-M, Cazacu MM, Bujoreanu L-G, Panaghie C, Zegan G, Cimpoeșu N, Murariu AM. Influence of Dynamic Strain Sweep on the Degradation Behavior of FeMnSi–Ag Shape Memory Alloys. Journal of Functional Biomaterials. 2023; 14(7):377. https://doi.org/10.3390/jfb14070377
Chicago/Turabian StyleRoman, Ana-Maria, Ramona Cimpoeșu, Bogdan Pricop, Nicoleta-Monica Lohan, Marius Mihai Cazacu, Leandru-Gheorghe Bujoreanu, Cătălin Panaghie, Georgeta Zegan, Nicanor Cimpoeșu, and Alice Mirela Murariu. 2023. "Influence of Dynamic Strain Sweep on the Degradation Behavior of FeMnSi–Ag Shape Memory Alloys" Journal of Functional Biomaterials 14, no. 7: 377. https://doi.org/10.3390/jfb14070377
APA StyleRoman, A.-M., Cimpoeșu, R., Pricop, B., Lohan, N.-M., Cazacu, M. M., Bujoreanu, L.-G., Panaghie, C., Zegan, G., Cimpoeșu, N., & Murariu, A. M. (2023). Influence of Dynamic Strain Sweep on the Degradation Behavior of FeMnSi–Ag Shape Memory Alloys. Journal of Functional Biomaterials, 14(7), 377. https://doi.org/10.3390/jfb14070377