Remineralizing Ability of Resin Modified Glass Ionomers (RMGICs): A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Inclusion and Exclusion Criteria
2.3. Search Strategy
2.4. Data Extraction
2.5. Quality Assessment
3. Results
3.1. Study Selection and Flow Chart
3.2. Quality Assessment
3.3. Studied Materials
3.4. Study Methodology and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bertassoni, L.E.; Habelitz, S.; Kinney, J.H.; Marshall, S.J.; Marshall, G.W.J. Biomechanical Perspective on the Remineralization of Dentin. Caries Res. 2009, 43, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Abou Neel, E.A.; Aljabo, A.; Strange, A.; Ibrahim, S.; Coathup, M.; Young, A.M.; Bozec, L.; Mudera, V. Demineralization-Remineralization Dynamics in Teeth and Bone. Int. J. Nanomed. 2016, 11, 4743–4763. [Google Scholar] [CrossRef] [PubMed]
- Weerakoon, A.T.; Condon, N.; Cox, T.R.; Sexton, C.; Cooper, C.; Meyers, I.A.; Thomson, D.; Ford, P.J.; Roy, S.; Symons, A.L. Dynamic Dentin: A Quantitative Microscopic Assessment of Age and Spatial Changes to Matrix Architecture, Peritubular Dentin, and Collagens Types I and III. J. Struct. Biol. 2022, 214, 107899. [Google Scholar] [CrossRef] [PubMed]
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstran, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Primers 2017, 3, 17030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simón-Soro, A.; Belda-Ferre, P.; Cabrera-Rubio, R.; Alcaraz, L.D.; Mira, A. A tissue-dependent hypothesis of dental caries. Caries Res. 2013, 47, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Páez, A.; Belda-Ferre, P.; Simón-Soro, A.; Mira, A. Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genom. 2014, 15, 311. [Google Scholar] [CrossRef] [PubMed]
- González-Cabezas, C. The chemistry of caries: Remineralization and demineralization events with direct clinical relevance. Dent. Clin. N. Am. 2010, 54, 469–478. [Google Scholar] [CrossRef]
- Keeper, J.H.; Kibbe, L.J.; Thakkar-Samtani, M.; Heaton, L.J.; Desrosiers, C.; Vela, K.; Amaechi, B.T.; Jablonski-Momeni, A.; Young, D.A.; MacLean, J.; et al. Systematic review and meta-analysis on the effect of self-assembling peptide P11-4 on arrest, cavitation, and progression of initial caries lesions. J. Am. Dent. Assoc. 2023, 154, 580–591.e11. [Google Scholar] [CrossRef]
- Gao, W.; Smales, R.J.; Yip, H.K. Demineralisation and remineralisation of dentine caries, and the role of glass-ionomer cements. Int. Dent. J. 2000, 50, 51–56. [Google Scholar] [CrossRef]
- He, L.; Hao, Y.; Zhen, L.; Liu, H.; Shao, M.; Xu, X.; Liang, K.; Gao, Y.; Yuan, H.; Li, J.; et al. Biomineralization of dentin. J. Struct. Biol. 2019, 207, 115–122. [Google Scholar] [CrossRef]
- van Dijken, J.W.V.; Pallesen, U.; Benetti, A. A randomized controlled evaluation of posterior resin restorations of an altered resin modified glass-ionomer cement with claimed bioactivity. Dent. Mater. 2019, 35, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Opdam, N.J.; van de Sande, F.H.; Bronkhorst, E.; Cenci, M.S.; Bottenberg, P.; Pallesen, U.; Gaengler, P.; Lindberg, A.; Huysmans, M.C.; van Dijken, J.W. Longevity of posterior composite restorations: A systematic review and meta-analysis. J. Dent. Res. 2014, 93, 943–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidhu, S.K. Glass-ionomer cement restorative materials: A sticky subject? Aust. Dent. J. 2011, 56 (Suppl. S1), 23–30. [Google Scholar] [CrossRef] [PubMed]
- Duncan, H.F.; Galler, K.M.; Tomson, P.L.; Simon, S.; El-Karim, I.; Kundzina, R.; Krastl, G.; Dammaschke, T.; Fransson, H.; Markvart, M.; et al. European Society of Endodontology Position Statement: Management of Deep Caries and the Exposed Pulp. Int. Endod. J. 2019, 52, 923–934. [Google Scholar] [PubMed] [Green Version]
- Kunert, M.; Lukomska-Szymanska, M. Bio-Inductive Materials in Direct and Indirect Pulp Capping-A Review Article. Materials 2020, 13, 1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidhu, S.K.; Nicholson, J.W. A Review of Glass-Ionomer Cements for Clinical Dentistry. J. Funct. Biomater. 2016, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoji, M.; Kurokawa, H.; Takahashi, N.; Sugimura, R.; Takamizawa, T.; Iwase, K.; Katsuki, S.; Miyazaki, M. Evaluation of the Effect of a Glass Ionomer Cement Containing Fluoro-Zinc-Silicate Glass on Dentin Remineralization Using the Ultrasonic Pulse-Echo Method. Dent. Mater. J. 2022, 41, 560–566. [Google Scholar] [CrossRef]
- Nicholson, J.W.; Czarnecka, B.; Limanowska-Shaw, H. The Long-Term Interaction of Dental Cements with Lactic Acid Solutions. J. Mater. Sci. Mater. Med. 1999, 10, 449–452. [Google Scholar] [CrossRef]
- Hasan, A.M.H.R.; Sidhu, S.K.; Nicholson, J.W. Fluoride release and uptake in enhanced bioactivity glass ionomer cement (“glass carbomer™”) compared with conventional and resin-modified glass ionomer cements. J. Appl. Oral Sci. 2019, 27, e20180230. [Google Scholar] [CrossRef]
- Choi, K.; Oshida, Y.; Platt, J.A.; Cochran, M.A.; Matis, B.A.; Yi, K. Microtensile Bond Strength of Glass Ionomer Cements to Artificially Created Carious Dentin. Oper. Dent. 2006, 31, 590–597. [Google Scholar] [CrossRef]
- Gunay, A.; Celenk, S.; Adiguzel, O.; Cangul, S.; Ozcan, N.; Eroglu Cakmakoglu, E. Comparison of Antibacterial Activity, Cytotoxicity, and Fluoride Release of Glass Ionomer Restorative Dental Cements in Dentistry. Med. Sci. Monit. 2023, 29, e939065. [Google Scholar] [CrossRef] [PubMed]
- Berzins, D.W.; Abey, S.; Costache, M.C.; Wilkie, C.A.; Roberts, H.W. Resin-Modified Glass-Ionomer Setting Reaction Competition. J. Dent. Res. 2010, 89, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Palmer, G.; Anstice, H.M.; Pearson, G.J. The Effect of Curing Regime on the Release of Hydroxyethyl Methacrylate (HEMA) from Resin-Modified Glass-Ionomer Cements. J. Dent. 1999, 27, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, A.; Kharaziha, M.; Khoroushi, M. Dentin Extracellular Matrix Loaded Bioactive Glass/GelMA Support Rapid Bone Mineralization for Potential Pulp Regeneration. Int. J. Biol. Macromol. 2023, 234, 123771. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Faggion, C.M. Guidelines for Reporting Pre-Clinical In Vitro Studies on Dental Materials. J. Evid. Based Dent. Pract. 2012, 12, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Zhao, J.; Weng, Y.; Park, J.-G.; Jiang, H.; Platt, J.A. Bioactive Glass-Ionomer Cement with Potential Therapeutic Function to Dentin Capping Mineralization. Eur. J. Oral Sci. 2008, 116, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Moraes, J.F.; de Moraes, T.G.; Sampaio Nunes, F.R.; Carvalho, E.M.; Nunes, G.S.; Carvalho, C.N.; Ardenghi, D.M.; Bauer, J. Formation of Hydroxyapatite Nanoprecursors by the Addition of Bioactive Particles in Resin-Modified Glass Ionomer Cements. Int. J. Adhes. Adhes. 2021, 110, 102933. [Google Scholar] [CrossRef]
- Prabhakar, A.R.; Paul, M.J.; Basappa, N. Comparative Evaluation of the Remineralizing Effects and Surface Micro Hardness of Glass Ionomer Cements Containing Bioactive Glass (S53P4): An In Vitro Study. Int. J. Clin. Pediatr. Dent. 2010, 3, 69–77. [Google Scholar] [CrossRef]
- Yang, B.; Flaim, G.; Dickens, S.H. Remineralization of Human Natural Caries and Artificial Caries-like Lesions with an Experimental Whisker-Reinforced ART Composite. Acta Biomater. 2011, 7, 2303–2309. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Campbell, S.D.; Dickens, S.H.; Yang, B. Remineralization of Natural Human Carious Dentin Lesions with an Experimental Whisker-Reinforced Atraumatic Restorative Treatment Composite. J. Prosthodont. 2019, 28, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Zhao, I.S.; Mei, M.L.; Zhou, Z.L.; Burrow, M.F.; Lo, E.C.-M.; Chu, C.-H. Shear Bond Strength and Remineralisation Effect of a Casein Phosphopeptide-Amorphous Calcium Phosphate-Modified Glass Ionomer Cement on Artificial “Caries-Affected” Dentine. Int. J. Mol. Sci. 2017, 18, 1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yli-Urpo, H.; Vallittu, P.K.; Närhi, T.O.; Forsback, A.-P.; Väkiparta, M. Release of Silica, Calcium, Phosphorus, and Fluoride from Glass Ionomer Cement Containing Bioactive Glass. J. Biomater. Appl. 2004, 19, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Aguilera, F.S.; Osorio, E.; Cabello, I.; Toledano-Osorio, M.; Osorio, R. Efficacy and Micro-Characterization of Pathophysiological Events on Caries-Affected Dentin Treated with Glass-Ionomer Cements. Int. J. Adhes. Adhes. 2016, 69, 91–109. [Google Scholar] [CrossRef] [Green Version]
- Bjørndal, L.; Simon, S.; Tomson, P.L.; Duncan, H.F. Management of Deep Caries and the Exposed Pulp. Int. Endod. J. 2019, 52, 949–973. [Google Scholar] [CrossRef] [PubMed]
- Savas, S.; Kavrìk, F.; Kucukyìlmaz, E. Evaluation of the Remineralization Capacity of CPP-ACP Containing Fluoride Varnish by Different Quantitative Methods. J. Appl. Oral Sci. 2016, 24, 198–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, J.W.; Czarnecka, B. The biocompatibility of resin-modified glass-ionomer cements for dentistry. Dent. Mater. 2008, 24, 1702–1708. [Google Scholar] [CrossRef]
- Mickenautsch, S.; Yengopal, V. Demineralization of Hard Tooth Tissue Adjacent to Resin-Modified Glass-Ionomers and Composite Resins: A Quantitative Systematic Review. J. Oral Sci. 2010, 52, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Ge, K.X.; Quock, R.; Chu, C.-H.; Yu, O.Y. The Preventive Effect of Glass Ionomer Restorations on New Caries Formation: A Systematic Review and Meta-Analysis. J. Dent. 2022, 125, 104272. [Google Scholar] [CrossRef]
- Yengopal, V.; Mickenautsch, S. Caries-Preventive Effect of Resin-Modified Glass-Ionomer Cement (RM-GIC) versus Composite Resin: A Quantitative Systematic Review. Eur. Arch. Paediatr. Dent. 2011, 12, 5–14. [Google Scholar] [CrossRef]
- Kotsanos, N.; Arizos, S. Evaluation of a resin modified glass ionomer serving both as indirect pulp therapy and as restorative material for primary molars. Eur. Arch. Paediatr. Dent. 2011, 12, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Baraka, M.; Tekeya, M.; Bakry, N.S.; Fontana, M. Twelve-month randomized controlled trial of 38% silver diamine fluoride with or without potassium iodide in indirect pulp capping of young permanent molars. J. Am. Dent. Assoc. 2022, 153, 1121–1133.e1. [Google Scholar] [CrossRef] [PubMed]
- Mocquot, C.; Attik, N.; Pradelle-Plasse, N.; Grosgogeat, B.; Colon, P. Bioactivity Assessment of Bioactive Glasses for Dental Applications: A Critical Review. Dent. Mater. 2020, 36, 1116–1143. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Mei, M.L.; Wu, X.; Shi, S.; Xu, Y.; Chu, C.H.; Chen, Y. Remineralising Effect of 45S5 Bioactive Glass on Artificial Caries in Dentine. BMC Oral Health 2020, 20, 49. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Chen, Y.; Jiang, Q.; Liu, X.; Chen, Y. Novel Bioactive Glass-Modified Hybrid Composite Resin: Mechanical Properties, Biocompatibility, and Antibacterial and Remineralizing Activity. Front. Bioeng. Biotechnol. 2021, 9, 661734. [Google Scholar] [CrossRef] [PubMed]
- Jena, D.; Manas, A.; Venkateswararao, C.H.; Salama, M.T.; Ismail, P.M.S.; Basha, S.R. Comparative Evaluation of Efficacy of Bioactive Glass, Tricalcium Phosphate, and Ozone Remineralizing Agents on Artificial Carious Lesion. J. Pharm. Bioallied. Sci. 2022, 14 (Suppl. S1), S959–S961. [Google Scholar] [PubMed]
- Hattab, F.N.; Amin, W.M. Fluoride Release from Glass Ionomer Restorative Materials and the Effects of Surface Coating. Biomaterials 2001, 22, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Can-Karabulut, D.C.; Batmaz, I.; Solak, H.; Taştekin, M. Linear Regression Modeling to Compare Fluoride Release Profiles of Various Restorative Materials. Dent. Mater. 2007, 23, 1057–1065. [Google Scholar] [CrossRef]
- Ghilotti, J.; Fernández, I.; Sanz, J.L.; Melo, M.; Llena, C. Remineralization Potential of Three Restorative Glass Ionomer Cements: An In Vitro Study. J. Clin. Med. 2023, 12, 2434. [Google Scholar] [CrossRef]
- Daneshpoor, N.; Pishevar, L. Comparative evaluation of bioactive cements on biomimetic remineralization of dentin. J. Clin. Exp. Dent. 2020, 12, e291–e299. [Google Scholar] [CrossRef]
- Khaghani, M.; Doostmohammadi, A.; Golniya, Z.; Monshi, A.; Arefpour, A. Preparation, Physicochemical Characterization, and Bioactivity Evaluation of Strontium-Containing Glass Ionomer Cement. ISRN Ceram. 2013, 2013, 583989. [Google Scholar] [CrossRef] [Green Version]
- Soares, L.E.; Soares, A.L.; De Oliveira, R.; Nahórny, S. The effects of acid erosion and remineralization on enamel and three different dental materials: FT-Raman spectroscopy and scanning electron microscopy analysis. Microsc. Res. Technol. 2016, 79, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Ge, X.; Bian, M.; Xu, T.; Li, N.; Lu, J.; Yu, J. Remineralization of dentin slices using casein phosphopeptide-amorphous calcium phosphate combined with sodium tripolyphosphate. Biomed. Eng. Online 2020, 19, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayyedan, F.S.; Fathi, M.; Edris, H.; Doostmohammadi, A.; Mortazavi, V.; Shirani, F. Fluoride release and bioactivity evaluation of glass ionomer: Forsterite nanocomposite. Dent. Res. J. 2013, 10, 452–459. [Google Scholar]
- Correa, D.; Almirall, A.; García-Carrodeguas, R.; dos Santos, L.A.; De Aza, A.H.; Parra, J.; Delgado, J.Á. β-Dicalcium silicate-based cement: Synthesis, characterization and in vitro bioactivity and biocompatibility studies. J. Biomed. Mater. Res. A 2014, 102, 3693–3703. [Google Scholar] [CrossRef] [PubMed]
- Vilkinis, V.; Hörsted-Bindslev, P.; Baelum, V. Two-year evaluation of class II resin-modified glass ionomer cement/composite open sandwich and composite restorations. Clin. Oral Investig. 2000, 4, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Simmer, J.P.; Hardy, N.C.; Chinoy, A.F.; Bartlett, J.D.; Hu, J.C. How Fluoride Protects Dental Enamel from Demineralization. J. Int. Soc. Prev. Community Dent. 2020, 10, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Brenes-Alvarado, A.; Cury, J.A. Fluoride Release from Glass Ionomer Cement and Resin-modified Glass Ionomer Cement Materials under Conditions Mimicking the Caries Process. Oper. Dent. 2021, 46, 457–466. [Google Scholar] [CrossRef]
Database | Search Strategy | Findings |
---|---|---|
Medline | n° 1 (resin-modified glass ionomer cement*) | 2003 |
n° 2 (bioactivity) OR (remineralization) | 154,091 | |
n° 3 (dentin) | 42,496 | |
n° 1 AND n° 2 AND n° 3 | 54 | |
Scopus | n° 1 (resin-modified glass ionomer cement*) | 2142 |
n° 2 (bioactivity) OR (remineralization) | 88,229 | |
n° 3 (dentin) | 44,380 | |
n° 1 AND n° 2 AND n° 3 | 32 | |
Web Of Science | n° 1 (resin-modified glass ionomer cement*) | 2376 |
n° 2 (bioactivity) OR (remineralization) | 94,721 | |
n° 3 (dentin) | 52,709 | |
n° 1 AND n° 2 AND n° 3 | 54 | |
Lilacs | n° 1 (resin-modified glass ionomer cement*) | 277 |
n° 2 (bioactivity) OR (remineralization) | 626 | |
n° 3 (dentin) | 8662 | |
n° 1 AND n° 2 AND n° 3 | 6 |
Studies | Modified CONSORT Checklist Proposed by Faggion [17] | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2a | 2b | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
Xie et al. [27] | * | * | * | * | * | * | * | ||||||||
Moraes et al. [28] | * | * | * | * | * | * | * | * | |||||||
Prabhakar et al. [29] | * | * | * | * | * | * | * | * | |||||||
Yang et al. [30] | * | * | * | * | * | * | * | * | |||||||
Zhang et al. [31] | * | * | * | * | * | * | * | * | |||||||
Zhao et al. [32] | * | * | * | * | * | * | * | * | * | ||||||
Yli-Urpo et al. [33] | * | * | * | * | * | * | * | ||||||||
Toledano et al. [34] | * | * | * | * | * | * | * |
Material | Abbreviation | Composition | Manufacturer | Times Studied |
---|---|---|---|---|
Vitro Fil LC | VFLC | Powder: Fluorine silicate, strontium, aluminum, charge, activators, and iron oxide. Liquid: 2-hydroxyethyl methacrylate, aqueous solution of polyacrylic and tartaric acids, benzoyl peroxide, and camphorquinone. | DFL Indústria e Comércio, Rio de Janeiro, Brazil | 1 |
Resiglass F | RF | Powder: Calcium fluorosilicate, barium, aluminum, polyacrylic acid, and inorganic fillers. Liquid: Dimethacrylate groups, deionized water, and catalysts. | Biodinâmica Química e Farmacêutica, Ibiporã, Paraná, Brazil | 1 |
Fuji II | FII | GC Corporation, Tokyo, Japan | 2 | |
Fuji II LC | FLC | Powder: Fluro alumino silicate glass. Liquid: Distilled water, polyacrylic acid, 2-hydroxyethyl methacrylate, urethane dimethacrylate, camphorquinone. | GC Corporation, Tokyo, Japan | 5 |
Ketac-Bond | KB | Powder: Calcium–aluminum–lanthanium–fluorosilica glass, pigments. Liquid: Polycarboxylic acid, tartaric acid, water, conservation agents. | 3M Deustchland GmbH, Neuss, Germany | 1 |
Vitrebond Plus | VP | Paste: HEMA, Bis-GMA, water, initiators, and radiopaque FAS (BL7AL). Liquid: Resin-modified polyalkenoic acid, HEMA, water, initiators. | 3M Deustchland GmbH, Neuss, Germany | 1 |
Experimental RMGIC | EXP | Powder: (Fluoro) alumino silicate glass. Liquid: light-curable star-shape poly(acrylic acid), water, 0.9% CQ, 1.8% DMAEMA, and 0.05% Hydroquinone. | 1 | |
Fuji VII | FVII | Powder: Fluro alumino silicate glass, Polyacrylic acid powder. Liquid: Polyacrylic acid, Polybasic carboxylic acid. | GC Corporation, Tokyo, Japan | 1 |
Fuji VIII | FVIII | Powder: alumino silicate glass. Liquid: 2-HEMA 25–50%; tartaric acid 5–10%; 7,7,9(or 7,9,9)-trimethyl-4,13-dioxo-3,14-dioxa-5,12-diazahexadecane-1,16-diyl bismethacrylate 1–5%; 2-Hydroxy-1,3 dimethacryloxypropane 1–5%. | GC Corporation, Tokyo, Japan | 1 |
Material | Abreviation | Composition | Manufacturer | Times Studied |
---|---|---|---|---|
45S5 | 45S5 | SiO2 = 45%, CaO = 24.5%, Na2O = 24.5%, P2O5 = 6% | Sylc, OSspray Ltd., London, United Kingdom | 1 |
Niobophosphate glass (experimental) | NbG | Nb2O5 = 41.8%, P2O5 = 32.5%, CaO = 18.8%, Al2O3 = 2.7%, Na2O = 1.2%, SrO = 0.04% | 1 | |
S53P4 bioactive glass Frit | S53P4 | SiO2 = 53%, Na2O = 23%, CaO = 20%, and P2O5 = 4% | MO-SCI® Health Care, Rolla, MO, USA | 1 |
Bioactive glass S53P4 | S53P4 | SiO2 = 53%, Na2O = 23%, CaO = 20%, and P2O5 = 4% | Vivoxid Ltd., Turku, Finland | 2 |
ART Composite (experimental) | AC | Pyromellitic dianhydride glycerol dimethacrylate, Ethoxylated bisphenol A dimethacrylate, TTCP, silicon carbide/DCPA, DCPA, sodium hexaflurosilicate, Benzoyl peroxide, tertiary amine, camphorquinone | 2 | |
Casein phosphopeptide-amorphous calcium phosphate | CPP-ACP | 1 |
Studies | Materials | Assay | Time | Results |
---|---|---|---|---|
Xie et al. [27] | EXP2.7 | SEM EDX | 14 days | SEM: C - < EXP2.7(10), EXP2.7(15), EXP2.5(15) EDX: no difference |
EXP2.5 | ||||
EXP2.7(10) | ||||
EXP2.7(15) | ||||
EXP2.7(20) | ||||
EXP2.5(10) | ||||
EXP2.5(15) | ||||
EXP2.5(20) | ||||
Moraes et al. [28] | VFLC | Ion release F− | 7 days | F−: VFLC + 5% 45S5 < VFLC < VFLC + 10% 45S5, VFLC + 20% 45S5, VFLC + 5% NbG, VFLC + 10% NbG, VFLC + 20% NbG *; RF + 5% 45S5, RF + 10% 45S5, RF + 20% 45S5, RF + 5% NbG, RF + 10% NbG < RF < RF + 20% NbG * |
VFLC + 5% 45S5 | ||||
VFLC + 10% 45S5 | ||||
VFLC + 20% 45S5 | ||||
VFLC + 5% NbG | Ion release Ca2+ | Ca2+: VFLC < VFLC + 5% 45S5, VFLC + 10% 45S5, VFLC + 20% 45S5, VFLC + 5% NbG, VFLC + 10% NbG, VFLC + 20% NbG *; RF + 5% 45S5, RF + 5% NbG < RF < RF + 10% 45S5, RF + 10% NbG, RF + 20% 45S5, RF + 20% NbG * | ||
VFLC + 10% NbG | ||||
VFLC + 20% NbG | ||||
RF | ||||
RF + 5% 45S5 | Ion release PO43− | PO43−: VFLC < VFLC + 5% 45S5, VFLC + 10% 45S5, VFLC + 20% 45S5, VFLC + 5% NbG, VFLC + 10% NbG, VFLC + 20% NbG *; RF + 5% 45S5, RF + 5% NbG < RF, RF + 10% 45S5, RF + 10% NbG < RF + 20% 45S5, RF + 20% NbG * | ||
RF + 10% 45S5 | ||||
RF + 20% 45S5 | ||||
RF + 5% NbG | ||||
RF + 10% NbG | SEM | 28 days | SEM: all VFLC < all RF | |
RF + 20% NbG | FTIR/ATR | FTIR/ATR: no difference | ||
Prabhakar et al. [29] | FII | PLM | 28 days | FII < FII + 10% S53P4, FLC < FLC + 10% S53P4 ** |
FII + 10% S53P4 | ||||
FLC | ||||
FLC + 10% S53P4 | ||||
Yang et al. [30] | FLC | TMR | 4 weeks | AC > FLC at 4 weeks * |
AC | 8 weeks | AC = FLC at 8 weeks | ||
Zhang et al. [31] | FLC | TMR | 4 weeks | AC > FLC at 4 and 8 weeks * |
AC | 8 weeks | |||
Zhao et al. [32] | FVII | Micro-CT | 28 days | FVII + CPP-ACP > FVII, FVIII *** |
FVII + CPP-ACP | ||||
FVIII | ||||
Yli-Urpo et al. [33] | FII | Ion release SiO44− | 1, 6, 24, 72, 168, 336 h | SiO44−: FLC + 30% S53P4 > FII + 30% S53P4, FLC + 10% S53P4 > FII, FII + 10% S53P4, FLC at 72 h, 168 h; FLC + 30% S53P4 > all at 336 h *** |
FII + 10% S53P4 | ||||
FII + 30% S53P4 | Ion release F− | F−: FLC + 30% S53P4 > all at 72 h; FII + 30% S53P4 > all at 336 h | ||
FLC | Ion release Ca2+ | Ca2+: FLC + 30% S53P4 > all at 168 h, 336 h | ||
FLC + 10% S53P4 | Ion release PO43− | PO43−: FII + 30% S53P4 < all at 336 h | ||
FLC + 30% S53P4 | ||||
SEM | 336 h | FLC + 30% S53P4 has CaP precipitation on surface | ||
Toledano et al. [34] | KB | SEM | 336 h | FLC + 30% S53P4 has CaP precipitation on surface |
VP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghilotti, J.; Mayorga, P.; Sanz, J.L.; Forner, L.; Llena, C. Remineralizing Ability of Resin Modified Glass Ionomers (RMGICs): A Systematic Review. J. Funct. Biomater. 2023, 14, 421. https://doi.org/10.3390/jfb14080421
Ghilotti J, Mayorga P, Sanz JL, Forner L, Llena C. Remineralizing Ability of Resin Modified Glass Ionomers (RMGICs): A Systematic Review. Journal of Functional Biomaterials. 2023; 14(8):421. https://doi.org/10.3390/jfb14080421
Chicago/Turabian StyleGhilotti, James, Paula Mayorga, José Luis Sanz, Leopoldo Forner, and Carmen Llena. 2023. "Remineralizing Ability of Resin Modified Glass Ionomers (RMGICs): A Systematic Review" Journal of Functional Biomaterials 14, no. 8: 421. https://doi.org/10.3390/jfb14080421
APA StyleGhilotti, J., Mayorga, P., Sanz, J. L., Forner, L., & Llena, C. (2023). Remineralizing Ability of Resin Modified Glass Ionomers (RMGICs): A Systematic Review. Journal of Functional Biomaterials, 14(8), 421. https://doi.org/10.3390/jfb14080421