Foreign Body Reaction (Immune Response) for Artificial Implants Can Be Avoided: An Example of Polyurethane in Mice for 1 Week
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Analysis of PIII-Treated Polyurethane Surface
3.2. Histology Analysis of the Tissue around the Polyurethane Implant
4. Discussion
5. Conclusions
- The capsule around the PIII-treated implant was significantly thinner (p < 0.01).
- The macrophage activity near the PIII-treated implants was significantly weaker (p < 0.001).
- The cell proliferation activity near the PIII-treated implants was significantly weaker (p < 0.001).
- The proinflammatory activity by the vWF test was much weaker near the PIII-treated implants (p < 0.001).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Higgins, D.M.; Basaraba, R.J.; Hohnbaum, A.C.; Lee, E.J.; Grainger, D.W.; Gonzalez-Juarrero, M. Localized Immunosuppressive Environment in the Foreign Body Response to Implanted Biomaterials. Am. J. Pathol. 2009, 175, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Franz, S.; Rammelt, S.; Scharnweber, D.; Simon, J.C. Immune responses to implants e A review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011, 32, 6692–6709. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.M.; Papadimitrakopoulos, F.; Burgess, D.J. Biomaterials/Tissue Interactions: Possible Solutions to Overcome Foreign Body Response. AAPS J. 2010, 12, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Kastellorizios, M.; Papadimitrakopoulos, F.; Burgess, D.J. Prevention of foreign body reaction in a pre-clinical large animal model. J. Control. Release 2015, 202, 101–107. [Google Scholar] [CrossRef]
- Puskas, J.E.; Luebbers, M.T. Breast implants: The good, the bad and the ugly. Can nanotechnology improve implants? WIREs Nanomed. Nanobiotechnol. 2011, 4, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Ward, W.K. A Review of the Foreign-body Response to Subcutaneously-implanted Devices: The Role of Macrophages and Cytokines in Biofouling and Fibrosis. J. Diabetes Sci. Technol. 2008, 2, 768–777. [Google Scholar] [CrossRef]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef]
- Begishev, V.; Gavrilov, N.; Klyachkin, Y.; Kondyurina, I.; Osargina, T.; Kondyurin, A. Modification of polyurethane endoprosthetics surface by pulse ion beam. In Proceedings of the 12th International Conference on High-Power Particle Beams, Haifa, Israel, 7–12 June 1998; Markovits, M., Shiloh, J., Eds.; Volume 2, pp. 997–1000. [Google Scholar]
- Mesyats, G.; Klyachkin, Y.; Gavrilov, N.; Kondyurin, A. Adhesion of Polytetrafluorethylene modified by an ion beam. Vacuum 1999, 52, 285–289. [Google Scholar] [CrossRef]
- Kondyurin, A.; Maitz, M.F. Surface Modification of ePTFE and Implants using the Same. U.S. Patent WO 2007/022174 A3, 15 February 2007. [Google Scholar]
- Kondyurina, I.V.; Chudinov, V.S.; Terpugov, V.N.; Kondyurin, A.V. Influence of the Young’s Modulus of Polyurethane Implants on the Organism’s Immune Response. Biomed. Eng. 2019, 52, 431–434. [Google Scholar] [CrossRef]
- Gan, B.K.; Bilek, M.M.M.; Kondyurin, A.; Mizuno, K.; McKenzie, D.R. Etching and structural changes in nitrogen plasma immersion ion implanted polystyrene films. Nucl. Instrum. Methods Phys. Res. B 2006, 247, 254–260. [Google Scholar] [CrossRef]
- Culling, C.F.A. Handbook of Histopathological and Histochemical Techniques: Including Museum; Butterworth-Heinemann: London, UK, 1974. [Google Scholar]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. 2000, 61, 14095. [Google Scholar] [CrossRef]
- Emanuel, N.; Buchachenko, A. Chemical Physics of Polymer Degradation and Stabilization; VNU Science Press: Utrecht, The Netherlands, 1987. [Google Scholar]
- Teo, A.J.T.; Mishra, A.; Park, I.; Kim, Y.-J.; Park, W.-T.; Yoon, Y.-J. Polymeric Biomaterials for Medical Implants and Devices, ACS Biomater. Sci. Eng. 2016, 2, 454–472. [Google Scholar]
- Yung LY, L.; Lim, F.; Khan, M.M.; Kunapuli, S.P.; Rick, L.; Colman, R.W.; Cooper, S.L. Neutrophil adhesion on surfaces preadsorbed with high molecular weight kininogen under well-defined flow conditions. Immunopharmacology 1996, 32, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Yung LY, L.; Colman, R.W.; Cooper, S.L. Neutrophil adhesion on polyurethanes preadsorbed with high molecular weight kininogen. Blood J. Am. Soc. Hematol. 1999, 94, 2716–2724. [Google Scholar] [CrossRef]
- Mazaheri, M.K.; Schultz, G.S.; Blalock, T.D.; Caffee, H.H.; Chin, G. ARole of connective tissue growth factor in breast implant elastomer capsular formation. Ann. Plast. Surg. 2003, 50, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Majumder, J.; Taratula, O.; Minko, T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev. 2019, 144, 148. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Q.; Shi, C.; Chen, M.; Ma, K.; Wan, J.; Liu, R. Dealing with the Foreign-Body Response to Implanted Biomaterials: Strategies and Applications of New Materials. Adv. Funct. Mater. 2020, 31, 2007226. [Google Scholar] [CrossRef]
- Miller, M.; JY, C.; McElwain, K.; McElwain, S.; JY, S.; Manni, M.; JS, B.; Broide, D.H. Corticosteroids prevent myo broblast 51. accumulation and airway remodeling in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 290, L162–L169. [Google Scholar] [CrossRef] [PubMed]
- Avula, M.N.; Rao, A.N.; McGill, L.D.; Grainger, D.W.; Solzbacher, F. Foreign body response to subcutaneous biomaterial implants in a mast cell-deficient Kitw-Sh murine model. Acta Biomater. 2014, 10, 1856–1863. [Google Scholar] [CrossRef]
- Hillgruber, C.; Steingraber, A.K.; Poppelmann, B.; Denis, C.V.; Ware, J.; Vestweber, D.; Nieswandt, B.; Schneider, S.W.; Goerge, T. Blocking Von Willebrand Factor for Treatment of Cutaneous Inflammation. J. Investig. Dermatol. 2014, 134, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Horvath, B.; Hegedus, D.; Szapary, L.; Marton, Z.; Alexy, T.; Koltai, K.; Czopf, L.; Wittmann, I.; Juricskay, I.; Toth, K.; et al. Measurement of von Willebrand factor as the marker of endothelial dysfunction in vascular diseases. Exp. Clin. Cardiol. 2004, 9, 31–34. [Google Scholar] [PubMed]
- Provchy, K.M. Von Willebrand Factor Expression in Vascular Endothelial Cells of Cage Control and Antiorthostatic Cage Suspension Golden Hamster Ovaries. Senior Honors Thesis, East Tennessee State University, Johnson City, TN, USA, 2010. [Google Scholar]
- Sheng, L.; Yu, Q.; Xie, F.; Li, Q. Foreign body response induced by tissue expander implantation. Mol. Med. Rep. 2014, 9, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.-J.; Eaton, J.W.; Ugarova, T.P.; Tang, L. Molecular basis of biomaterial-mediated foreign body reactions. Blood 2001, 98, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.A.; Chang, D.T.; Meyerson, H.; Colton, E.; Kwon, I.K.; Matsuda, T.; Anderson, J.M. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J. Biomed. Mater. Res. A. 2007, 83, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Melnig, V.; Apetroaei, N.; Dumitrascu, N.; Suzuki, Y.; Tura, V. Improvement of polyurethane surface biocompatibility by plasma and ion beam techniques. J. Optoelectron. Adv. Mater. 2005, 7, 2521–2528. [Google Scholar]
- Iwaki, M. Ion surface treatments on organic materials. Nucl. Instrum. Methods Phys. Res. B 2001, 175, 368–374. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, L.; Song, W.; Wu, Z.; Li, D. Biocompatible polymer materials: Role of protein–surface interactions. Prog. Polym. Sci. 2008, 33, 1059–1087. [Google Scholar] [CrossRef]
- Krishnan, A.; Liu, Y.-H.; Cha, P.; Allara, D.; Vogler, E.A. Interfacial energetics of globular–blood protein adsorption to a hydrophobic interface from aqueous-buffer solution. J. R. Soc. Interface 2006, 3, 283–301. [Google Scholar] [CrossRef]
- Bellion, M.; Santen, L.; Mantz, H.; Haehl, H.; Quinn, A.; Nagel, A.; Gilow, C.; Weitenberg, C.; Schmitt, Y.; Jacobs, K. Protein adsorption on tailored substrates: Long-range forces and conformational changes. J. Phys. Condens. Matter 2008, 20, 404226. [Google Scholar] [CrossRef]
- Mark, H.F. (Ed.) Encyclopedia of Polymer Science and Technology; Wiley: New York, NY, USA, 2004. [Google Scholar]
- Kondyurin, A.; Bilek, M. Ion Beam Treatment of Polymers. In Application Aspects from Medicine to Space, 2nd ed.; Elsevier: Oxford, UK, 2014. [Google Scholar]
- Kondyurin, A.; Nosworthy, N.J.; Bilek, M.M.M.; Jones, R.; Pigram, P.J. Surface Attachment of Horseradish Peroxidase to Nylon Modified by Plasma-Immersion Ion Implantation. J. Appl. Polym. Sci. 2011, 120, 2891–2903. [Google Scholar] [CrossRef]
- Kondyurin, A.; Nosworthy, N.J.; Bilek, M.M.M. Effect of Low Molecular Weight Additives on Immobilization Strength, Activity, and Conformation of Protein Immobilized on PVC and UHMWPE. Langmuir 2011, 27, 6138–6148. [Google Scholar] [CrossRef] [PubMed]
- Kondyurin, A.V.; Naseri, P.; Tilley, J.M.R.; Nosworthy, N.J.; Bilek, M.M.M.; McKenzie, D.R. Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene. Scientifica 2012, 2012, 1–28. [Google Scholar] [CrossRef]
- Kondyurin, A.; Nosworthy, N.J.; Bilek, M.M.M. Attachment of horseradish peroxidase to polytetrafluorethylene (teflon) after plasma immersion ion implantation. Acta Biomater. 2008, 4, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Kiaei, D.; Hoffman, A.S.; Horbett, T.A. Tight binding of albumin to glow discharge treated polymers. J. Biomater. Sci. Polym. Ed. 1992, 4, 35–44. [Google Scholar] [CrossRef]
- Khan, W.; Kapoor, M.; Kumar, N. Covalent attachment of proteins to functionalized polypyrrole-coated metallic surfaces for improved biocompatibility. Acta Biomater. 2007, 3, 541–549. [Google Scholar] [CrossRef]
- Mateo, C.; Grazu, V.; Palomo, J.M.; Lopez-Gallego, F.; Fernandez-Lafuente, R.; Guisan, J.M. Immobilization of enzymes on heterofunctional epoxy supports. Nat. Protoc. 2007, 2, 1023. [Google Scholar] [CrossRef]
- Hodneland, C.D.; Lee, Y.-S.; Min, D.-H.; Mrksich, M. Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc. Natl. Acad. Sci. USA 2002, 99, 5048–5052. [Google Scholar] [CrossRef] [PubMed]
- Gan, B.K.; Kondyurin, A.; Bilek, M.M.M. Comparison of Protein Surface Attachment on Untreated and Plasma Immersion Ion Implantation Treated Polystyrene: Protein Islands and Carpet. Langmuir 2007, 23, 2741–2746. [Google Scholar] [CrossRef]
- Hirsh, S.L.; McKenzie, D.R.; Nosworthy, N.J.; Denman, J.A.; Sezerman, O.U.; Bilek, M.M.M. The Vroman effect: Competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf. B Biointerfaces 2013, 103, 395–404. [Google Scholar] [CrossRef]
- Stein, S.E.; Brown, R.L. Chemical theory of raphite-like molecules. Carbon 1985, 23, 105–109. [Google Scholar] [CrossRef]
- Svorcik, V.; Hnatowicz, V.; Stopka, P.; Bacakova, L.; Heitze, J.; Ochsner, R.; Ryssel, H. Amino acids grafting of Ar+ ions modified PE. Radiat. Phys. Chem. 2001, 60, 89–93. [Google Scholar] [CrossRef]
- Davies, M.J. The oxidative environment and protein damage. Biochim. Biophys. Acta 2005, 1703, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Lord, M.S.; Yu, W.; Cheng, B.; Simmons, A.; Poole-Warren, L.; Whitelock, J.M. The modulation of platelet and endothelial cell adhesion to vascular graft materials by perlecan. Biomaterials 2009, 30, 4898–4906. [Google Scholar] [CrossRef]
- Pang, J.H.; Farhatnia, Y.; Godarzi, F.; Tan, A.; Rajadas, J.; Cousins, B.G.; Seifalian, A.M. In situ Endothelialization: Bioengineering Considerations to Translation. Small 2015, 11, 6248–6264. [Google Scholar] [CrossRef] [PubMed]
- Steele, J.G.; Savolainen, T.A.; Dalton, A.; Smith, L.; Smith, G.J. Adhesion to Laminin and Expression of Laminin in Clonally Related Transformed and Control Sublines from an Alveolar Epithelial Cell Strain. Cancer Res. 1990, 50, 3381–3389. [Google Scholar]
- Chudinov, V.S.; Kondyurina, I.V.; Shardakov, I.N.; Svistkov, A.L.; Osorgina, I.V.; Kondyurin, A.V. Polyurethane Modified with Plasma-Ion Implantation for Medical Applications. Biophysics 2018, 63, 330–339. [Google Scholar] [CrossRef]
- Lee, J.-S.; Kaibara, M.; Iwaki, M.; Sasabe, H.; Suzuki, Y.; Kusakabe, M. Selective adhesion and proliferation of cells on ion-implanted polymer domains. Biomaterials 1993, 14, 958. [Google Scholar] [CrossRef]
- Pignataro, B.; Conte, E.; Scandurra, A.; Marletta, G. Improved cell adhesion to ion beam-irradiated polymer surfaces. Biomoterials 1997, 18, 1461–1470. [Google Scholar] [CrossRef]
- Ozkucur, N.; Richter, E.; Wetzel, C.; Funk, R.H.W.; Monsees, T.K. Biological relevance of ion energy in performance of human endothelial cells on ion-implanted flexible polyurethane surfaces. J. Biomed. Mater. Res. 2010, 93, 258–268. [Google Scholar] [CrossRef]
- Alkawareek, M.Y.; Algwari, Q.T.; Laverty, G.; Gorman, S.P.; Graham, W.G.; O’Connell, D.; Gilmore, B.F. Eradication of Pseudomonas aeruginosa Biofilms by Atmospheric Pressure Non-Thermal Plasma. PLoS ONE 2012, 7, e44289. [Google Scholar] [CrossRef]
Untreated | 40 s | 80 s | 200 s | 400 s | 800 s | |
---|---|---|---|---|---|---|
Thickness, μm | 102 ± 21 | 46 ± 23 | 42 ± 22 | 38 ± 14 | 40 ± 6 | 37 ± 11 |
Untreated | 80 s | 200 s | 400 s | 800 s | |
---|---|---|---|---|---|
Area, % | 3.6 ± 1.0 | 1.6 ± 0.6 | 0.6 ± 0.3 | 1.3 ± 0.4 | 4.4 ± 1.1 |
Density, a.u. | 9.8 ± 2.7 | 4.0 ± 1.4 | 1.7 ± 0.8 | 3.4 ± 1.1 | 13.7 ± 4.0 |
Untreated | 40 s | 80 s | 200 s | 400 s | 800 s | |
---|---|---|---|---|---|---|
Area, % | 1.12 ± 0.37 | 0.88 ± 0.26 | 0.51 ± 0.30 | 0.47 ± 0.25 | 0.32 ± 0.11 | 0.37 ± 0.23 |
Density, a.u. | 4.4 ± 1.5 | 3.3 ± 0.7 | 1.9 ± 1.3 | 1.9 ± 0.9 | 1.2 ± 0.4 | 1.4 ± 0.8 |
Untreated | 40 s | 80 s | 200 s | 400 s | 800 s | |
---|---|---|---|---|---|---|
Area, % | 0.93 ± 0.12 | 0.79 ± 0.06 | 0.24 ± 0.10 | 0.35 ± 0.14 | 0.27 ± 0.11 | 0.27 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondyurina, I.; Kondyurin, A. Foreign Body Reaction (Immune Response) for Artificial Implants Can Be Avoided: An Example of Polyurethane in Mice for 1 Week. J. Funct. Biomater. 2023, 14, 432. https://doi.org/10.3390/jfb14080432
Kondyurina I, Kondyurin A. Foreign Body Reaction (Immune Response) for Artificial Implants Can Be Avoided: An Example of Polyurethane in Mice for 1 Week. Journal of Functional Biomaterials. 2023; 14(8):432. https://doi.org/10.3390/jfb14080432
Chicago/Turabian StyleKondyurina, Irina, and Alexey Kondyurin. 2023. "Foreign Body Reaction (Immune Response) for Artificial Implants Can Be Avoided: An Example of Polyurethane in Mice for 1 Week" Journal of Functional Biomaterials 14, no. 8: 432. https://doi.org/10.3390/jfb14080432
APA StyleKondyurina, I., & Kondyurin, A. (2023). Foreign Body Reaction (Immune Response) for Artificial Implants Can Be Avoided: An Example of Polyurethane in Mice for 1 Week. Journal of Functional Biomaterials, 14(8), 432. https://doi.org/10.3390/jfb14080432