Development of Nanosuspension of Artemisia absinthium Extract as Novel Drug Delivery System to Enhance Its Bioavailability and Hepatoprotective Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Extract Preparation
2.2. Formulation and Optimization of Nanosuspension
2.3. Stability of Nanosuspension
2.4. Characterization of Nanosuspension
2.5. Dissolution Investigation
2.6. Pharmacokinetic Study
HPLC Analysis
2.7. In Vitro Antioxidant Activity
2.8. In Vivo Hepatoprotective Potential
Experimental Design
- Group I: (normal control) received a normal diet during all the experiment.
- Group II: (positive control) rats were orally administrated with CCl4 at the dose 1 mL/kg body weight mixed with olive oil (1:1).
- Group III (CCl4 + AA NS): Rats were orally administered CCl4 to induce liver toxicity. Then these rats received nanosuspension at dose of 100 mg/kg for four consecutive days. Blood samples were collected daily after twenty-four hours of each treatment.
- Group IV (CCl4 + AA CE): These rats were orally administered carbon tetrachloride (1 mL/kg body weight) for two consecutive days to induce liver toxicity. After that, plant extract (150 mg/kg body weight) was given to these CCl4-intoxicated rats for four days. Blood samples were collected after twenty-four hours of each curative treatment.
2.9. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Nanosuspension
Effect of Formulation Variables
3.2. Stability Studies
3.3. Characterization of Nanosuspension
3.3.1. Atomic Force Microscopy
3.3.2. FT–IR Spectra
3.4. Dissolution Study
3.5. Pharmacokinetic Study
3.6. In Vitro Antioxidant Activity
3.7. In Vivo Hepatoprotective Activity
Antioxidant Enzymes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ananth, D.A.; Tietela, Z.; Aseervatham, G.S.B.; Garlapatic, D.; Sivasudhad, T. Phytochemical and pharmacological status of indigenous medicinal plant Pedalium murex L.—A review. Biomed. Pharmacother. 2018, 103, 1456–1463. [Google Scholar]
- Tlili, N.; Tir, M.; Feriani, A.; Yahia, Y.; Allagui, M.S.; Saadaoui, E.; Cafsi, M.E.; Nasri, N. Potential health advantages of Periploca laevigata: Preliminary phytochemical analysis and evaluation of in vitro antioxidant capacity and assessment of hepatoprotective, anti-inflammatory and analgesic effects. J. Funct. Foods 2018, 48, 234–242. [Google Scholar] [CrossRef]
- Junejo, J.A.; Gogoi, G.; Islam, J.; Rudrapal, M.; Mondal, P.; Hazarika, H.; Zaman, K. Exploration of antioxidant, antidiabetic and hepatoprotective activity of Diplazium esculentum—A wild edible plant from North Eastern India. Future J. Pharm. Sci. 2018, 4, 93–101. [Google Scholar] [CrossRef]
- Shazhni, J.R.A.; Renu, A.; Vijayaraghavan, P. Insights of antidiabetic, anti-inflammatory and hepatoprotective properties of antimicrobial secondary metabolites of corm extract from Caladium x hortulanum. Saudi J. Biol. Sci. 2018, 25, 1755–1761. [Google Scholar] [CrossRef]
- Moaca, E.; Pavel, I.Z.; Danciu, C.; Crainiceanu, Z.; Minda, D.; Ardelean, F.; Antal, D.S.; Ghiulai, R.; Cioca, A.; Derban, M.; et al. Romanian Wormwood (Artemisia absinthium L.): Physicochemical and nutraceutical screening. Molecules 2019, 24, 3087. [Google Scholar] [CrossRef]
- Msaada, K.; Salem, N.; Bachrouch, O.; Bousselmi, S.; Tammar, S.; Alfaify, A.; Sane, K.A.; Ammar, W.B.; Azeiz, S.; Brahim, A.H.; et al. Chemical composition and antioxidant and antimicrobial activities of wormwood (Artemisia absinthium L.) essential oils and phenolics. J. Chem. 2015, 2015, 804658. [Google Scholar] [CrossRef]
- Amat, N.; Upur, H.; Blazekovic, B. In vivo hepatoprotective activity of the aqueous extract of Artemisia absinthium L. against chemically and immunologically induced liver injuries in mice. J. Ethnopharmacol. 2010, 131, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Antonio, S.W.; Carmen, S.; Victor, V.T.; Jose, C.; Abhel, C.; Cinthya, A.; Cesar, G.; Segundo, R.; Juana, C. Hepatoprotective and nephroprotective activity of Artemisia absinthium L. on diclofenac-induced toxicity in rats. Pharmacogn J. 2020, 12, 1032–1041. [Google Scholar] [CrossRef]
- Aberham, A.; Cicek, S.S.; Schneider, P.; Stuppner, H. Analysis of sesquiterpene lactones, lignans, and flavonoids in wormwood (Artemisia absinthium L.) using High-Performance Liquid Chromatography (HPLC)-Mass Spectrometry, Reversed Phase HPLC, and HPLC-Solid Phase Extraction-Nuclear Magnetic Resonance. J. Agric. Food Chem. 2010, 58, 10817–10823. [Google Scholar] [CrossRef]
- Sahin, S.; Aybastier, O.; Isik, E. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chem. 2013, 141, 1361–1368. [Google Scholar] [CrossRef]
- Batiha, G.E.; Olatunde, A.; El-Mleeh, A.; Hetta, H.F.; Al-Rejaie, S.; Alghamdi, S.; Zahoor, M.; Beshbishy, A.M.; Murata, T.; Zaragoza-Bastida, A.; et al. Bioactive compounds, pharmacological actions, and pharmacokinetics of wormwood (Artemisia absinthium). Antibiotics 2020, 9, 353. [Google Scholar] [CrossRef] [PubMed]
- Raj, N.; Krishnakumar, K.; Dineshkumar, B. Green herbs nanosuspensions: A review. Pharm. Biol. 2016, 6, 82–85. [Google Scholar]
- Yin, T.; Zhang, Y.; Liu, Y.; Chen, Q.; Fu, Y.; Liang, J.; Zhou, J.; Tang, X.; Liu, J.; Huo, M. The efficiency and mechanism of N-octyl-O, N-carboxymethyl chitosan-based micelles to enhance the oral absorption of silybin. Int. J. Pharm. 2018, 536, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, H.; Bisht, S.; Yadav, M.; Singh, V. Bioavailability enhancement: A review. Int. J. Pharma Bio Sci. 2011, 2, 202–216. [Google Scholar]
- Ajazuddin; Saraf, S. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010, 81, 680–689. [Google Scholar] [CrossRef]
- Koradia, K.D.; Sheth, N.R.; Koradia, H.D.; Dabhi, M.R. Ziprasidone nanocrystals by wet media milling followed by spray drying and lyophilization: Formulation and process parameter optimization. J. Drug Deliv. Sci. Technol. 2018, 43, 73–84. [Google Scholar] [CrossRef]
- Zong, L.; Li, X.; Wang, H.; Cao, Y.; Yin, L.; Li, M.; Wei, Z.; Chen, D.; Pu, X.; Han, J. Formulation and characterization of biocompatible and stable I.V. itraconazole nanosuspensions stabilized by a new stabilizer polyethylene glycol-poly(β-Benzyl-L-aspartate) (PEG-PBLA). Int. J. Pharm. 2017, 531, 108–117. [Google Scholar] [CrossRef]
- Lai, F.; Pireddu, R.; Corrias, F.; Fadda, A.M.; Valenti, D.; Pini, E.; Sinico, C. Nanosuspension improves tretinoin photostability and delivery to the skin. Int. J. Pharm. 2013, 458, 104–109. [Google Scholar] [CrossRef]
- Thadkala, K.; Prema, K.N.; Bathini, R.; Chinta, S.; Jithan, A. Preparation and characterization of amorphous ezetimibe nanosuspensions intended for enhancement of oral bioavailability. Int. J. Pharm. Investig. 2014, 4, 131–137. [Google Scholar]
- Mishra, S.; Pandey, H.; Pandey, A.C. Nanosuspension of Phyllanthus amarus extract for improving oral bioavailability and prevention of paracetamol induced hepatotoxicity in Sprague–Dawley rats. Adv. Nat. Sci: Nanosci. 2013, 4, 035007. [Google Scholar] [CrossRef]
- Yu, P.; Lu, S.; Zhang, S.; Zhang, S.; Li, Y.; Liu, J. Enhanced oral bioavailability and diminished food effect of lurasidone hydrochloride nanosuspensions prepared by facile nanoprecipitation based on dilution. Powder Technol. 2017, 312, 11–20. [Google Scholar] [CrossRef]
- Zu, Y.; Wu, W.; Zhao, X.; Li, Y.; Wang, W.; Zhong, C.; Zhang, Y.; Zhao, X. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique. Int. J. Pharm. 2014, 471, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Gao, Y.; Pei, Y.; Guo, C.; Li, H.; Cao, F.; Yu, A.; Zhai, G. Development of nanosuspension formulation for oral delivery of quercetin. J. Biomed. Nanotechnol. 2010, 6, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Jahan, N.; Rahman, K.U.; Ali, S.; Bhatti, I. Antioxidant activity of gemmo therapeutically treated indigenous medicinal plants. Asian J. Chem. 2011, 23, 3461–3470. [Google Scholar]
- Abdous, B.; Sajjadi, S.M.; Mamani, L. β-Cyclodextrin modified mesoporous silica nanoparticles as a nano-carrier: Response surface methodology to investigate and optimize loading and release processes for curcumin delivery. J. Appl. Biomed. 2017, 15, 210–218. [Google Scholar] [CrossRef]
- Mishra, B.; Sahoob, J.; Dixit, P.K. Formulation and process optimization of naproxen nanosuspensions stabilized by hydroxy propyl methyl cellulose. Carbohydr. Polym. 2015, 127, 300–308. [Google Scholar] [CrossRef]
- Mishra, B.; Sahoo, J.; Dixit, P.K. Enhanced bioavailability of cinnarizine nanosuspensions by particle size engineering: Optimization and physicochemical investigations. Mater. Sci. Eng. 2016, 63, 62–69. [Google Scholar] [CrossRef]
- Steffi, P.F.; Srinivasan, M. Preparation, characterization, and stabilization of curcumin nanosuspension. Int. J. Pharm. Tech. Res. 2014, 6, 842–849. [Google Scholar]
- Santos, A.M.; Carvalho, F.C.; Teixeira, D.A.; Azevedo, D.L.; Barros, W.M.; Gremiao, M.P.D. Computational and experimental approaches for development of methotrexate nanosuspensions by bottom-up nanoprecipitation. Int. J. Pharm. 2017, 524, 330–338. [Google Scholar] [CrossRef]
- Humera, I.; Nazish, J.; Khalil-ur-Rahman; Saba, J. Formulation and characterization of Azadirachta indica nano biopesticides for ecofriendly control of wheat pest Tribolium castaneum and Rhyzopertha dominica. J. Microencapsul. 2022, 39, 638–653. [Google Scholar]
- Fritzen-Garcia, M.B.; Zanetti-Ramos, B.G.; Oliveira, C.S.D.; Soldi, V.; Pasa, A.A.; Creczynski-Pasa, T.B. Atomic force microscopy imaging of polyurethane nanoparticles onto different solid substrates. Mater. Sci. Eng. 2009, 29, 405–409. [Google Scholar] [CrossRef]
- Han, M.; Xiaoli, L.; Guo, Y.; Wang, Y.; Wang, X. Preparation, characterization, biodistribution and antitumor efficacy of hydroxycamptothecin nanosuspensions. Int. J. Pharm. 2013, 455, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, X.; Zu, Y.; Zhang, Y. Preparation and characterization of paclitaxel nanosuspension using novel emulsification method by combining high speed homogenizer and high pressure homogenization. Int. J. Pharm. 2015, 490, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.F.; Kharshoum, R.M. Nanoprecipitation technique for preparation of sterically stabilized risperidone nanosuspension: In vitro and in vivo study. Int. J. Pharm. Pharm. 2016, 8, 136–142. [Google Scholar]
- Zhang, J.; Huang, Y.; Liu, D.; Gao, Y.; Qian, S. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur. J. Pharm. Sci. 2013, 48, 740–747. [Google Scholar] [CrossRef]
- Singh, M.K.; Pooja, D.; Ravuri, H.G.; Gunukula, A.; Kulhari, H.; Sistla, R. Fabrication of surfactant-stabilized nanosuspension of naringenin to surpass its poor physicochemical properties and low oral bioavailability. Phytomedicine 2018, 40, 48–54. [Google Scholar] [CrossRef]
- Yang, H.; Teng, F.; Wang, P.; Tian, B.; Lin, X.; Hu, X.; Zhang, L.; Zhang, K.; Zhang, Y.; Tang, X. Investigation of a nanosuspension stabilized by Soluplus to improve bioavailability. Int. J. Pharm. 2014, 477, 88–95. [Google Scholar] [CrossRef]
- Miltonprabu, S.; Tmczyk, M.; Wozniak, K.S.; Rastrelli, L.; Daglia, M.; Nabavi, S.F.; Alavian, S.M.; Nabbavi, S.M. Hepatoprotective effect of quercetin: From chemistry to medicine. Food Chem. Toxicol. 2016, 108, 365–374. [Google Scholar] [CrossRef]
- Kalantari, H.; Foruozandeh, H.; Khodayar, M.J.; Sianpoosh, A.; Saki, N.; Kheradamand, P. Antioxidant and hepatoprotective effects of Capparis spinosa L. fractions and quercetin on tert-butyl hydroperoxide-induced acute liver damage in mice. J. Tradit. Complement. Med. 2018, 8, 120–127. [Google Scholar] [CrossRef]
- Peralta, M.A.; Ortega, M.G.; Cabrera, J.L.; Paraje, M.G. The antioxidant activity of a prenyl flavonoid alters its antifungal toxicity on Candida albicans biofilms. Food Chem. Toxicol. 2018, 114, 285–291. [Google Scholar] [CrossRef]
- Tang, X.; Olatunji, O.J.; Zhou, Y.; Hou, X. Allium tuberosum: Antidiabetic and hepatoprotective activities. Food Res. Int. 2017, 102, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Vahid, Z.; Jalal, M.; Mostafa, M.; Mohammad, M.; Ali, V. Antioxidant and hepatoprotective effects of Artemisia dracunculus against CCl4-induced hepatotoxicity in rats. Avicenna J. Phytomed. 2018, 8, 51–62. [Google Scholar]
- Hao, J.; Gao, Y.; Zhao, J.; Zhang, J.; Li, Q.; Zhao, Z.; Liu, J. Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using boxbehnken design. AAPS Pharm. Sci. Tech. 2015, 16, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Hazafa, A.; Nazish, J.; Anjum, Z.; Rahman, K.-U.; Muhammad, S.; Naeem, M. Evaluation and optimization of nanosuspensions of Chrysanthemum coronarium and Azadirachta indica using Response Surface Methodology for pest management. Chemosphere 2022, 292, 133411. [Google Scholar] [CrossRef] [PubMed]
- Irum, T.S.; Nazish, J.; Nadeem, A.; Ali, A. Formulation and Process Optimization of Rauvolfia serpentina Nanosuspension by HPMC and In Vitro Evaluation of A CE Inhibitory Potential. J. Funct. Biomater. 2022, 13, 268. [Google Scholar]
Formulation Code | Stabilizer-to-Plant Extract Ratio (w/w) | AS/S Ratio (v/v) | Stirring Time (Hours) | Particle Size (nm) | PDI | Zeta Potential (−mV) |
---|---|---|---|---|---|---|
A1 | 0.40 | 15.00 | 2.00 | 481.60 | 0.453 | 14.60 |
A2 | 0.70 | 18.41 | 4.00 | 277.00 | 0.295 | 11.40 |
A3 | 0.40 | 5.00 | 6.00 | 540.00 | 0.671 | 11.80 |
A4 | 0.70 | 10.00 | 0.64 | 578.00 | 0.682 | 9.70 |
A5 | 0.70 | 10.00 | 7.36 | 337.80 | 0.451 | 10.10 |
A6 | 1.00 | 15.00 | 6.00 | 250.00 | 0.285 | 13.10 |
A7 | 0.70 | 10.00 | 4.00 | 348.70 | 0.493 | 9.60 |
A8 | 0.20 | 10.00 | 4.00 | 572.20 | 0.536 | 16.50 |
A9 | 1.00 | 5.00 | 2.00 | 374.30 | 0.526 | 10.60 |
A10 | 1.00 | 15.00 | 2.00 | 417.60 | 0.503 | 9.70 |
A11 | 0.40 | 15.00 | 6.00 | 328.20 | 0.513 | 13.90 |
A12 | 0.70 | 10.00 | 4.00 | 352.00 | 0.481 | 12.50 |
A13 | 0.70 | 1.59 | 4.00 | 452.00 | 0.483 | 10.40 |
A14 | 0.40 | 5.00 | 2.00 | 656.20 | 0.718 | 14.20 |
A15 | 0.70 | 10.00 | 4.00 | 332.50 | 0.424 | 9.80 |
A16 | 0.70 | 10.00 | 4.00 | 358.00 | 0.416 | 10.30 |
A17 | 1.20 | 10.00 | 4.00 | 280.20 | 0.352 | 11.70 |
A18 | 0.70 | 10.00 | 4.00 | 342.00 | 0.468 | 11.40 |
A19 | 0.70 | 10.00 | 4.00 | 360.30 | 0.523 | 10.90 |
A20 | 1.00 | 5.00 | 6.00 | 271.00 | 0.242 | 9.80 |
Storage Temperatures | Particle Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
25 °C | 271.0 ± 0.02 | 0.706 ± 0.001 | −10.6 ± 0.03 |
4 °C | 286.6 ± 0.01 | 0.434±0.003 | −9.22 ± 0.04 |
Treatments | IC50 Value (µg/mL) |
---|---|
A. absinthium nanosuspension | 196.93 ± 0.13 |
A. absinthium extract | 248.32 ± 0.21 |
Ascorbic acid | 125.94 ± 021 |
Hepatic Biomarkers | Normal Control G-I | Positive Control (CCl4) G-II | CCl4 + AA NS (100 mg/Kg) | CCl4 + AA CE (150 mg/Kg) |
---|---|---|---|---|
AST (IU/L) | 56.00 ± 0.27 | 108.17 ± 0.67 # | 56.31 ± 0.46 * | 56.45 ± 0.20 * |
ALT (IU/L) | 29.43 ± 0.18 | 98.23 ± 0.45 # | 29.27 ± 0.21 * | 29.18 ± 0.44 * |
ALP (IU/L) | 164.47 ± 8.98 | 387.23 ± 5.32 # | 242.39 ± 8.25 * | 240.00 ± 7.25 * |
Bilirubin (mg/dL) | 0.54 ± 0.16 | 0.83 ± 0.12 # | 0.52 ± 0.25 * | 0.52 ± 0.27 * |
Albumin (g/dL) | 3.90 ± 0.28 | 2.61 ± 0.43 # | 3.85 ± 0.26 * | 3.85 ± 0.47 * |
Total protein (g/dL) | 9.15 ± 0.18 | 5.52 ± 0.33 # | 8.78 ± 0.38 * | 8.76 ± 0.20 * |
Groups | GPx (IU/mg Protein) | CAT (IU/mg Protein) | SOD (IU/mg Protein) |
---|---|---|---|
Normal control | 4.70 ± 0.18 | 42.21 ± 0.34 | 22.23 ± 0.25 |
Positive control | 2.92 ± 0.32 # | 20.49 ± 0.17 # | 15.61 ± 0.20 # |
AA CE (150 mg/kg) | 4.39 ± 0.20 * | 41.68 ± 0.34 * | 20.49 ± 0.46 * |
AA NS (100 mg/Kg) | 4.01 ± 0.25 * | 40.86 ± 0.22 * | 20.78 ± 0.25 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahan, N.; Kousar, F.; Rahman, K.U.; Touqeer, S.I.; Abbas, N. Development of Nanosuspension of Artemisia absinthium Extract as Novel Drug Delivery System to Enhance Its Bioavailability and Hepatoprotective Potential. J. Funct. Biomater. 2023, 14, 433. https://doi.org/10.3390/jfb14080433
Jahan N, Kousar F, Rahman KU, Touqeer SI, Abbas N. Development of Nanosuspension of Artemisia absinthium Extract as Novel Drug Delivery System to Enhance Its Bioavailability and Hepatoprotective Potential. Journal of Functional Biomaterials. 2023; 14(8):433. https://doi.org/10.3390/jfb14080433
Chicago/Turabian StyleJahan, Nazish, Fareeha Kousar, Khalil Ur Rahman, Syeeda Iram Touqeer, and Naseem Abbas. 2023. "Development of Nanosuspension of Artemisia absinthium Extract as Novel Drug Delivery System to Enhance Its Bioavailability and Hepatoprotective Potential" Journal of Functional Biomaterials 14, no. 8: 433. https://doi.org/10.3390/jfb14080433
APA StyleJahan, N., Kousar, F., Rahman, K. U., Touqeer, S. I., & Abbas, N. (2023). Development of Nanosuspension of Artemisia absinthium Extract as Novel Drug Delivery System to Enhance Its Bioavailability and Hepatoprotective Potential. Journal of Functional Biomaterials, 14(8), 433. https://doi.org/10.3390/jfb14080433