A Comparative Study of HA/DBM Compounds Derived from Bovine and Porcine for Bone Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bone Extraction and Preparation
2.2. HA Extraction
2.3. DBM Extraction
2.4. HA/DBM Compound Preparation
2.5. HA and DBM Individual Characterization
2.6. HA/DBM Compound Characterization
2.7. Clinical User Evaluation
2.8. In-Vivo Evaluation
2.8.1. Animal Model and Surgical Procedures
2.8.2. Histological Analysis
2.9. Statistical Analysis
3. Results
3.1. HA and DBM Characterization
3.2. HA/DBM Compound Characterization
3.3. Tissue Regeneration and Inflammatory Evaluation In-Vivo
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Bone regeneration: Current concepts and future directions. BMC Med. 2011, 9, 66. [Google Scholar] [CrossRef]
- Rupp, M.; Klute, L.; Baertl, S.; Walter, N.; Mannala, G.K.; Frank, L.; Pfeifer, C.; Alt, V.; Kerschbaum, M. The clinical use of bone graft substitutes in orthopedic surgery in Germany-A 10-years survey from 2008 to 2018 of 1,090,167 surgical interventions. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Nishida, J.; Shimamura, T. Methods of reconstruction for bone defect after tumor excision: A review of alternatives. Med. Sci. Monit. 2008, 8, 107–113. [Google Scholar]
- Archunan, M.; Petronis, S. Bone Grafts in Trauma and Orthopaedics. Cureus 2021, 13, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Mauffrey, C.; Barlow, B.; Smith, W. Management of segmental bone defects. J. Am. Acad. Orthop. Surg. 2015, 23, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Kumawat, V.S.; Bandyopadhyay-Ghosh, S.; Ghosh, S.B. An overview of translational research in bone graft biomaterials. J. Biomater. Sci. Polym. Ed. 2023, 34, 497–540. [Google Scholar] [CrossRef]
- Hong, M.; Lee, J.; Jung, H.; Shin, H.; Shin, H. Biomineralization of bone tissue: Calcium phosphate-based inorganics in collagen fibrillar organic matrices. Biomater. Res. 2022, 26, 42. [Google Scholar] [CrossRef] [PubMed]
- Ielo, I.; Calabrese, G.; De Luca, G.; Conoci, S. Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. Int. J. Mol. Sci. 2022, 23, 9721. [Google Scholar] [CrossRef]
- Ochoa, S.L.; Lara, W.O.; Beltrán, C.G. Hydroxyapatite nanoparticles in drug delivery: Physicochemistry and applications. Pharmaceutics 2021, 13, 1642. [Google Scholar] [CrossRef]
- Koshino, T.; Murase, T.; Takagi, T.; Saito, T. New bone formation around porous hydroxyapatite wedge implanted in opening wedge high tibial osteotomy in patients with osteoarthritis. Biomaterials 2001, 22, 1579–1582. [Google Scholar] [CrossRef]
- Okazaki, A.; Koshino, T.; Saito, T.; Takagi, T. Osseous tissue reaction around hydroxyapatite block implanted into proximal metaphysis of tibia of rat with collagen-induced arthritis. Biomaterials 2000, 21, 483–487. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.; Yang, X.G.; Wang, F.; Feng, J.T.; Hua, K.C.; Li, Q.; Hu, Y.C. Demineralized bone matrix carriers and their clinical applications: An overview. Orthop. Surg. 2019, 11, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Gruskin, E.; Doll, B.A.; Futrell, F.W.; Schmitz, J.P.; Hollinger, J.O. Demineralized bone matrix in bone repair: History and use. Adv. Drug Deliv. Rev. 2012, 64, 1063–1077. [Google Scholar] [CrossRef] [PubMed]
- Thitiset, T.; Damrongsakkul, S.; Yodmuang, S.; Leeanansaksiri, W.; Apinun, J.; Honsawek, S. A novel gelatin/chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering. Biomater. Res. 2021, 25, 19. [Google Scholar] [CrossRef] [PubMed]
- Schallenberger, M.A.; Rossmeier, K.; Lovick, H.M.; Meyer, T.R.; Aberman, H.M.; Juda, G.A. Comparison of the osteogenic potential of osteoselect demineralized bone matrix putty to novabone calcium-phosphosilicate synthetic putty in a cranial defect model. J. Craniofacial Surg. 2014, 25, 657–661. [Google Scholar] [CrossRef]
- Wang, W.; Yeung, K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017, 2, 224–247. [Google Scholar] [CrossRef]
- Xu, G.; Guo, R.; Han, L.; Bie, X.; Hu, X.; Li, L.; Li, Z.; Zhao, Y. Comparison of osteogenesis of bovine bone xenografts between true bone ceramics and decalcified bone matrix. J. Mater. Sci. Mater. Med. 2022, 33, 75. [Google Scholar] [CrossRef]
- Öztürk, A.; Yetkin, H.; Memis, L.; Cila, E.; Bolukbasi, S.; Gemalmaz, C. Demineralized bone matrix and hydroxyapatite/tri-calcium phosphate mixture for bone healing in rats. Int. Orthop. 2006, 30, 147–152. [Google Scholar] [CrossRef]
- Horváthy, D.B.; Vácz, G.; Toró, I.; Szabó, T.; May, Z.; Duarte, M.; Hornyák, I.; Szabó, B.T.; Dobó-Nagy, C.; Doros, A.; et al. Remineralization of demineralized bone matrix in critical-size cranial defects in rats: A 6-month follow-up study. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 1336–1342. [Google Scholar] [CrossRef]
- Hopp, S.; Dahners, L.; Gilbert, J. A study of the mechanical strength of long bone defects treated with various bone autograft substitutes: An experimental investigation in the rabbit. J. Orthop. Res. 1989, 7, 579–584. [Google Scholar] [CrossRef]
- Wessing, B.; Lettner, S.; Zechner, W. Guided bone regeneration with collagen membranes and particulate graft materials: A systematic review and meta-analysis. Int. J. Oral Maxillofac Implant. 2018, 33, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Llano, C.H.; López-Tenorio, D.; Saavedra, M.; Zapata, P.A.; Grande-Tovar, C.D. Comparison of two bovine commercial xenografts in the regeneration of critical cranial defects. Molecules 2022, 27, 5745. [Google Scholar] [CrossRef]
- Nie, Z.; Wang, X.; Ren, L.; Kang, Y.; Kang, Y.; Kang, Y. Development of a decellularized porcine bone matrix for potential applications in bone tissue regeneration. Regen. Med. 2020, 15, 1519–1534. [Google Scholar] [CrossRef]
- Lee, J.H.; Yi, G.S.; Lee, J.W.; Kim, D.J. Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications. J. Periodontal. Implant. Sci. 2017, 47, 388–401. [Google Scholar] [CrossRef] [PubMed]
- Alper, M.E.N.G.; Bernick, S.; Yazdi, M. Osteogenesis in Bone Defects in Rats: The Effects of Hydroxyapatite and Demineralized Bone Matrix. Am. J. Med. Sci. 1989, 298, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Bhatavadekar, N.; Gandhi, Y.; Padhye, N. Comparative assessment of bovine versus porcine xenograft for augmentation: A randomized prospective cohort study. Int. J. Periodontics Restor. Dent. 2022, 42, 789–796. [Google Scholar] [CrossRef]
- Bae, E.B.; Kim, H.J.; Ahn, J.J.; Bae, H.Y.; Kim, H.J.; Huh, J.B. Comparison of Bone Regeneration between Porcine-Derived and Bovine-Derived Xenografts in Rat Calvarial Defects: A Non-Inferiority Study. Materials 2019, 18, 3412. [Google Scholar] [CrossRef]
- Hust, E.S.T.; Snow, M.H. The Effects of Soft Tissue Removal Methods on Porcine Skeletal Remains. New Fla. J. Anthropol. 2021, 1, 30–46. [Google Scholar] [CrossRef]
- Moradi, A.; Pakizeh, M.; Ghassemi, T. A review on bovine hydroxyapatite; Extraction and characterization. Biomed. Phys. Eng. Express 2022, 8, 012001. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Ghazali, S.; Beg, M.D.H.; Jeyaratnam, N. Characterization and elemental quantification of natural hydroxyapatite produced from cow bone. Chem. Eng. Technol. 2019, 42, 1805–1815. [Google Scholar] [CrossRef]
- Tham, W.L.; Chow, W.S.; Ishak, Z.A.M. Flexural and morphological properties of Poly(Methyl Methacrylate)/ hydroxyapatite composites: Effects of planetary ball mill grinding time. J. Reinf. Plast. Compos. 2010, 29, 2065–2075. [Google Scholar] [CrossRef]
- Pang, S.; Su, F.Y.; Green, A.; Salim, J.; McKittrick, J.; Jasiuk, I. Comparison of different protocols for demineralization of cortical bone. Sci. Rep. 2021, 11, 7012. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Wang, L.L.; Chung, J.J.; Kim, Y.H.; Atluri, P.; Burdick, J.A. Assess shear-thinning hydrogels for application as injectable biomaterials. ACS Biomater. Sci. Eng. 2017, 3, 3146–3160. [Google Scholar] [CrossRef] [PubMed]
- ASTM International. Standard Practice for In-Vitro Environmental Conditioning of Polymer Matrix Composite Materials and Implant Devices; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Bhatia, A.; Saikia, P.P.; Dkhar, B.; Pyngrope, H. Anesthesia protocol for ear surgery in Wistar rats (animal research). Anim. Model Exp. Med. 2022, 5, 183–188. [Google Scholar] [CrossRef]
- Abdullah, W.A. Evaluation of bone regenerative capacity in rats claverial bone defect using platelet rich fibrin with and without beta tri calcium phosphate bone graft material. Saudi Dent. J. 2016, 28, 109–117. [Google Scholar] [CrossRef]
- Musso, D.B.; do Nascimento Neto, C.D.; Weigert, N.M.; Rocha, S.M.W.; de Rezende, R.A.; Rosetti, E.P.; Bertollo, R.M.; Castro, M.C.C.; Silva, D.N. Alendronate associated with bovine bone graft in bone defect repair: A histomorphometric study. J. Int. Dent. Med. Res. 2021, 14, 467–473. [Google Scholar]
- Hausser, N.; Johnson, K.; Parsley, M.A.; Guptarak, J.; Spratt, H.; Sell, S.L. Detecting behavioral deficits in rats after traumatic brain injury. J. Vis. Exp. 2018, 2018, e56044. [Google Scholar] [CrossRef]
- Jones, L.; Thomsen, J.S.; Mosekilde, L.; Bosch, C.; Melsen, B. Biomechanical evaluation of rat skull defects, 1, 3, and 6 months after implantation with osteopromotive substances. J. Craniomaxillofac. Surg. 2007, 35, 350–357. [Google Scholar] [CrossRef]
- Yang, J.; Pan, H.; Mishina, Y. Tissue preparation and immunostaining of mouse craniofacial tissues and undecalcified bone. J. Vis. Exp. 2019, 10, e59113. [Google Scholar] [CrossRef]
- Sangeetha, R.; Uma, K.; Chandavarkar, V. Comparison of routine decalcification methods with microwave decalcification of bone and teeth. J. Oral Maxillofac. Pathol. 2013, 17, 386–391. [Google Scholar] [CrossRef]
- Moshaverinia, A.; Chen, C.; Xu, X.; Akiyama, K.; Ansari, S.; Zadeh, H.H.; Shi, S. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold. Tissue Eng. Part A 2014, 20, 611–621. [Google Scholar] [CrossRef] [PubMed]
- da Silva Barbirato, D.; Fogacci, M.F.; Gusman, H.; Takiya, C.M.; de Carvalho, D.P.; Samsone, C. Hydroxyapatite calvaria graft repair in experimental diabetes mellitus in rats. J. Cranio-Maxillofac. Surg. 2018, 46, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, S.; Shiota, M.; Kon, K.; Shimogishi, M.; Iijima, H.; Kasugai, S. Autologous micrografts from the palatal mucosa for bone regeneration in calvarial defects in rats: A radiological and histological analysis. Int. J. Implant. Dent. 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Kojima, S.; Nakamura, H.; Lee, S.; Nagata, F.; Kato, K. Hydroxyapatite formation on self-assembling peptides with differing secondary structures and their selective adsorption for proteins. Int. J. Mol. Sci. 2019, 20, 4650. [Google Scholar] [CrossRef] [PubMed]
- Ungár, T. Microstructural parameters from X-ray diffraction peak broadening. Scr. Mater. 2004, 51, 777–781. [Google Scholar] [CrossRef]
- Poralan, G.M.; Gambe, J.E.; Alcantara, E.M.; Vequizo, R.M. X-ray diffraction and infrared spectroscopy analyses on the crystallinity of engineered biological hydroxyapatite for medical application. IOP Conf. Ser. Mater. Sci. Eng. 2015, 79, 012028. [Google Scholar] [CrossRef]
- Silva, L.; Porto, G.; Andrade, E.; Laureano Filho, J.R. Demineralized bone matrix and calcium-phosphate cement in bone regeneration in rats. Acta Cir. Bras. 2018, 33, 354–361. [Google Scholar] [CrossRef]
- Lienemann, P.S.; Metzger, S.; Kiveliö, A.S.; Blanc, A.; Papageorgiou, P.; Astolfo, A.; Pinzer, B.R.; Cinelli, P.; Weber, F.E.; Schibli, R.; et al. Longitudinal in vivo evaluation of bone regeneration by combined measurement of multi-pinhole SPECT and micro-CT for tissue engineering. Sci. Rep. 2015, 5, 10238. [Google Scholar] [CrossRef]
- Traini, T.; Piattelli, A.; Caputi, S.; Degidi, M.; Mangano, C.; Scarano, A.; Perrotti, V.; Iezzi, G. Regeneration of human bone using different bone substitute biomaterials. Clin. Implant Dent. Relat. Res. 2015, 17, 150–162. [Google Scholar] [CrossRef]
- Ullah, I.; Gloria, A.; Zhang, W.; Ullah, M.W.; Wu, B.; Li, W.; Domingos, M.; Zhang, X. Synthesis and Characterization of Sintered Sr/Fe-Modified Hydroxyapatite Bioceramics for Bone Tissue Engineering Applications. ACS Biomater. Sci. Eng. 2020, 6, 375–388. [Google Scholar] [CrossRef]
- Tihăuan, B.M.; Pircalabioru, G.G.; Axinie, M.; Marina, I.C.; Nicoară, A.C.; Măru, L.; Oprea, O.; Matei, E.; Maier, S.S. Crosslinked collagenic scaffold behavior evaluation by physico-chemical, mechanical and biological assessments in an in vitro microenvironment. Polymers 2022, 14, 2430. [Google Scholar] [CrossRef]
- Salamanca, E.; Lee, W.F.; Lin, C.Y.; Huang, H.M.; Lin, C.T.; Feng, S.W.; Chang, W.J. A novel porcine graft for regeneration of bone defects. Materials 2015, 8, 2523–2536. [Google Scholar] [CrossRef]
- Go, A.; Kim, S.E.; Shim, K.M.; Lee, S.M.; Choi, S.H.; Son, J.S.; Kang, S.S. Osteogenic effect of low-temperature-heated porcine bone particles in a rat calvarial defect model. J. Biomed. Mater. Res. A 2014, 102, 3609–3617. [Google Scholar] [CrossRef]
- Zamirri, L.; Escatllar, A.M.; Guiu, J.M.; Ugliengo, P.; Bromley, S.T. What can infrared spectra tell us about the crystallinity of nanosized interstellar silicate dust grains? ACS Earth Space Chem. 2019, 3, 2323–2338. [Google Scholar] [CrossRef]
- Hannink, G.; Arts, J.J.C. Bioresorbability, porosity and mechanical strength of bone substitutes: What is optimal for bone regeneration? Injury 2011, 42, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Aghaei-Ghareh-Bolagh, B.; Mithieux, S.; Weiss, A. Elastic proteins and elastomeric protein alloys. Curr. Opin. Biotechnol. 2016, 39, 56–160. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.-C.; Lee, J.-W.; Ju, C.-P.; Lin, J.-H.C. Physical/chemical properties and resorption substitute material. Materials 2020, 13, 3458. [Google Scholar] [CrossRef]
- Fernandez de Grado, G.; Keller, L.; Idoux-Gillet, Y.; Wagner, Q.; Musset, A.M.; Benkirane-Jessel, N.; Bornert, F.; Offner, D. Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management. J. Tissue Eng. 2018, 9. [Google Scholar] [CrossRef]
- Walsh, W.R.; Oliver, R.A.; Christou, C.; Lovric, V.; Walsh, E.R.; Prado, G.R.; Haider, T. Critical size bone defect healing using collagen-calcium phosphate bone graft materials. PLoS ONE 2017, 12, e0168883. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, X.; Ji, Z.; Zhu, L.; Ma, N.; Chen, D.; Jia, X.; Tang, J.; Cao, Y. DFT calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components. ACS Omega 2020, 5, 8572–8578. [Google Scholar] [CrossRef]
- Cheng, G.; Guo, S.; Wang, N.; Xiao, S.; Jiang, B.; Ding, Y. A novel lamellar structural biomaterial and its effect on bone regeneration. RSC Adv. 2020, 10, 39072–39079. [Google Scholar] [CrossRef] [PubMed]
- Carulli, C.; Innocenti, M.; Brandi, M.L. Bone vascularization in normal and disease conditions. Front. Endocrinol. 2013, 4, 106. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, L.; Briet, M.; Empana, J.P.; Cunha, P.G.; Maki-Petaja, K.M.; Protogerou, A.D.; Tedgui, A.; Touyz, R.M.; Schiffrin, E.L.; Spronck, B.; et al. Vascular consequences of inflammation: A position statement from the ESH working group on vascular structure and function and the artery society. J. Hypertens. 2020, 38, 1682–1698. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Schilling, K.; Wang, T.; El Khatib, M.; Vinogradov, S.; Brown, E.B.; Zhang, X. Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Biomaterials 2021, 276, 121041. [Google Scholar] [CrossRef] [PubMed]
- Hausman, M.R.; Schaffler, M.B.; Majeska, R.J. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 2001, 29, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Miclau, T.; Hu, D. Histomorphometric study ischemia leads to delayed union during fracture healing: A mouse model. J. Orthop. Res. 2007, 25, 51–61. [Google Scholar] [CrossRef]
- Patel, Z.S.; Young, S.; Tabata, Y.; Jansen, J.A.; Wong, M.E.K.; Mikos, A.G. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 2008, 43, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, E.A.; Finley, S.D.; Popel, A.S.; MacGabhann, F. A systems biology view of blood vessel growth and remodelling. J. Cell Mol. Med. 2014, 18, 1491–1508. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Guo, X.; Qi, W.; Wu, Z.; De Bruijn, J.D.; Xiao, Y.; Bao, C.; Yuan, H. Macrophage polarization plays roles in bone formation instructed by calcium phosphate ceramics. J. Mater. Chem. B 2020, 8, 1863–1877. [Google Scholar] [CrossRef]
- van der Stok, J.; Hartholt, K.A.; Schoenmakers, D.A.L.; Arts, J.J.C. The available evidence on demineralised bone matrix in trauma and orthopaedic surgery: A systematic review. Bone Jt. Res. 2017, 6, 423–432. [Google Scholar] [CrossRef]
- Kang, H.-J.; Park, S.-S.; Tripathi, G.; Lee, B.-T. Injectable demineralized bone matrix particles and their hydrogel bone grafts loaded with β-tricalcium phosphate powder and granules: A comparative study. Mater. Today Bio 2022, 16, 100422. [Google Scholar] [CrossRef] [PubMed]
- Murshed, M.; Harmey, D.; Millán, J.L.; McKee, M.D.; Karsenty, G. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 2005, 19, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Marger, L.; Liaudet, N.; Scherrer, S.S.; Brembilla, N.C.; Preynat-Seauve, O.; Manoil, D.; Mekki, M.; Durual, S. Identification of type-h-like blood vessels in a dynamic and controlled model of osteogenesis in rabbit calvarium. Materials 2022, 15, 4703. [Google Scholar] [CrossRef] [PubMed]
- Marsell, R.; Einhorn, T.A. The biology of fracture healing. Injury 2011, 42, 551–555. [Google Scholar] [CrossRef]
- Hankenson, K.D.; Zimmerman, G.; Marcucio, R. Biological perspectives of delayed fracture healing. Injury 2014, 45, 8–15. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, L.; Theopold, J.; Schleifenbaum, S.; Heyde, C.E.; Osterhoff, G. Methods for bone quality assessment in human bone tissue: A systematic review. J. Orthop. Surg. Res. 2022, 17, 174. [Google Scholar] [CrossRef]
- Ranganath, S.K.; Schlund, M.; Delattre, J.; Ferri, J.; Chai, F. Bilateral double site (calvarial and mandibular) critical-size bone defect model in rabbits for evaluation of a craniofacial tissue engineering constructs. Mater. Today Bio 2022, 14, 100267. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roldan, L.; Isaza, C.; Ospina, J.; Montoya, C.; Domínguez, J.; Orrego, S.; Correa, S. A Comparative Study of HA/DBM Compounds Derived from Bovine and Porcine for Bone Regeneration. J. Funct. Biomater. 2023, 14, 439. https://doi.org/10.3390/jfb14090439
Roldan L, Isaza C, Ospina J, Montoya C, Domínguez J, Orrego S, Correa S. A Comparative Study of HA/DBM Compounds Derived from Bovine and Porcine for Bone Regeneration. Journal of Functional Biomaterials. 2023; 14(9):439. https://doi.org/10.3390/jfb14090439
Chicago/Turabian StyleRoldan, Lina, Catalina Isaza, Juan Ospina, Carolina Montoya, José Domínguez, Santiago Orrego, and Santiago Correa. 2023. "A Comparative Study of HA/DBM Compounds Derived from Bovine and Porcine for Bone Regeneration" Journal of Functional Biomaterials 14, no. 9: 439. https://doi.org/10.3390/jfb14090439
APA StyleRoldan, L., Isaza, C., Ospina, J., Montoya, C., Domínguez, J., Orrego, S., & Correa, S. (2023). A Comparative Study of HA/DBM Compounds Derived from Bovine and Porcine for Bone Regeneration. Journal of Functional Biomaterials, 14(9), 439. https://doi.org/10.3390/jfb14090439