Current Trend and New Opportunities for Multifunctional Bio-Scaffold Fabrication via High-Pressure Foaming
Abstract
:1. Introduction
2. Basic Aspects of GF through the Pressure Quench Method
3. Overview of Polymeric Scaffold Fabrication via GF-Based Processes
4. Advanced Control of Scaffold Architecture
4.1. Nucleating Agent Gradients
4.2. Temperature Gradients
4.3. Gas Concentration Gradients
5. The Bioactivation of the Scaffolds through Incorporation of Bioactive Fillers and Drugs
5.1. Addition of Filler Inorganic Micro/Nanoparticles
5.2. Addition of Drugs to Polymeric Matrix
5.3. Simultaneous Addition of Filler and Drug
Polymer Based Matrix | Filler or Active Compound/Drug | Foaming Conditions | Process Features | Observations/Evaluated Properties | Reference | |||
---|---|---|---|---|---|---|---|---|
P | T | Soaking Time | dP/dt or Venting Time | |||||
Part A: Matrix + inorganic filler | ||||||||
PCL 50 KDa Fibroin 15–20 wt% | Nano hydroxyapatite (nHA) 10 wt% | 140 bar | 37 °C | 1 h | 3 bar CO2/min | One-step by scCO2 under stirring (500 rpm). | 67–70% porosity Additives increased the compressive modulus, cellular adhesion and calcium deposition. synergistic effect of silk fibroin and nHA on the bone repair | L. Diaz-Gomez et al. [87] |
PCL blends LPCL: 10,000 g/ Mol; HPCL: 70,000 g/mol | Nano Hydroxyapatite (nHA) 1–4 wt% | 120–160 bar | 45 °C | 3 h | 0.3 bar/s | 100L, 60L, 60H, 100H and 60H-2.5%HA foamed by scCO2 in one step | Average pore size decreased from 612 μm to 132 μm and the porosity was reduced from 73% to 22.4% as the content of HPCL in the blends was changed from 0% to 100%. Optimal conditions: 45 °C and 140 bar. | M. Z. Moghadam et al. [88] |
PCL 50 kDa PEO Mw:100.000 | Hydroxyapatite (HA) (2 μm) 1, 5, 10 wt% | 90–100 | Blends PCL/PEO and composites were prepared by extrusion foamed using supercritical N2 (0.5%) (Screw speed 100 rad/min) | Highly porous (>75%). The HNT improved viscosity more significantly than HA, and reduced the pore size of scaffolds, while the mechanical performance of PCL/HNT scaffolds was higher than PCL/HA scaffolds with the same filler content. The cell differentiation for 5% HA and 1% HNT scaffolds were significantly higher than other scaffolds. | X. Jing et al. [89] | |||
Halloysite nanotubes (HNT) (800 nm) 1, 5, 10 wt% | ||||||||
PLGA poly(lactic-co-glycolic acid) (mole ratio of LA:GA = 85:15, Mw = 50,000) | Mesoporous bioactive glass particles (MBGs) (5–20 wt%) | 150–300 bar | 38–50 | from 2 min to 80 min | Bach foaming with previous sweeping the vessel with low-pressure CO2 for three times | Highly porous (73% to 85%). Highly interconnected (>90%). Pore size: 120 μm to 320 μm. MBGs reduce porosity, show positive effects on biological response, and improve strength and stiffness. | C. Song et al. [90] | |
PLGA (LA:GA = 85:15) Mw = 50 kDa | Mesoporous bioactive glass particles (MBG) 18 wt% Fingolimod-MBGs 18 wt% | 250 bar | 30–35 °C | 1 h | 80 min of venting time | Foaming from mixtures of polymer/MBG or polymer/FTY720-MBG | Developed scaffolds with angiogenic effects. Bioactive lipid and ionic products from the FTY/MBG-PLGA scaffolds synergistically improved vascularized bone regeneration. | S. Li et al. [91] |
PPC Poly(propylene carbonate) 160 kDa Soluble starch powder ~25 μm | Synthesized bioglass microparticles | 50, 75, 125 | 25, 30, 40 | 4 h | 0.2, 2.5 and 10 bar CO2/s | Pore sizes: 100 to 400 μm (75 bar, 30 °C, 2.5 bar/s) Interconnectivity ~76%. Porosity 45–60% Enhancement in the mechanical behavior due to the presence of starch and bioglass microparticles. | I. Manavitehrani et al. [92] | |
PCL Mn = 80 kDa | Graphene oxide (GO) and reduced Graphene oxide (rGO). 0–2% | 180 bar | 80 °C | 1 h-4 h | 1 atm/s 100 atm/s | PCL/graphene prepared previously to foaming. | PCL/rGO foams with good flexibility. Cell adhesion to the PCL/rGO scaffold was better than that to the PCL and PCL/GO scaffolds. | S. Evlashin et al. [96,97] |
PBS Poly (butylene succinate) (PBS,B601) | CNCs Carbon nanocellulose 0.5–5% | STEP1 22 MPa | 110 °C | 2 h | 5, 10, 15 s respectively fast depressurization rate | synergistic control of temperature variation and two-step depressurization scCO2 foaming process | bimodal open-pore structure: large pores (~68.9 μm in diameter) and small pore (~11.0 μm in diameter). High open porosity (~95.2%). Compressive strength of 2.76 MPa, hydrophilicity (water contact angle of 71.7 °C) | J. Ju et al. [98] |
STEP 2 20, 18, 16 MPa | 85 °C | 10 min | ||||||
PCL Mn = 45 KDa | TiO2 (30%) | 200 bar | 50 °C | 1–17 h | Two step depressurizations 1—venting 2—foaming | one-step process based scCO2 batch foaming | Pore-size: 200–1200 μm Low residual solvent High load efficiency | A.Salerno and C. Domingo [112] |
Part B: Matrix + active compound/drug | ||||||||
PCL Mn= 80,000 Da PEG(Mn= 10,000 Da), PEG/PCL ratio: 10–30 wt%. | Theophylline (THEO) 5 wt% to PCL | 100–200 bar | 40 °C | 8 h | Foaming PCL/PEG/THEO gels from solutions in DMSO. | Optimization of gel matrix for foaming. The increase in PEG concentration led to an increase in the scaffold average pore diameter | M. Guastaferro et al. [101] | |
PLGA (Poly(D,L-lactic-co-glycolic acid) 75:25 Mw = 66–107 kDa PEG (10%) | Curcumin (CM) (~1% w/w) Gentamicin sulfate (GS) (~4 wt%) | 120 bar | 35 | 4 h | Not reported | Two-step process: 1-Drug-encapsulated PLGA powder (oil/water emulsion method) 2-CO2 foaming | Encapsulation Efficiency: GS: 25%, CM: 75% The release profile from all the samples suggests a diffusion-controlled model. No matrix degradation (2 weeks). Pore sizes: 55–120 μm. | Y.X.J. Ong et al. [102] |
PEG-PCL-PEG (PEGCL) Mw= 13242.49 Da | Dexamethasone (DXMT) | 234 bar | 49 °C | 2 h | 5 min | Bach foaming | Maximum porosity %(79.18%) DXMT release by Higuchi model (Diffusion) (~79%) | E. Khodaverdi et al. [103] |
PCL 50 kDa 1200 ppm of H2O2 30% v/v/100-mL stainless steel reactor | 5% Vancomycin hydrochloride (Mw 1486 g/mol, 94.3% purity) | 140 bar | 39 °C | 2.5 h | 5 g CO2/min | One-step by GF | Highly porous (>74%) 6-logarithmic reductions (logR-6) were reached for B. atrophaeus, B. stearothermophilus and B. pumilus. Vancomycin release profile was fitted to a bi-exponential drug release model. | V. Santos-Rosales et al. [104] C.A. García-González et al. [105] |
L-PCL (10,000) H-PCL (80,000) | Nimesulide (NIME) | 150–200 bar | 35–40 °C | 1–48 h | 100 bar/min | one-step supercritical foaming + impregnation process | Solubility NIME varied from 0.035 mg/g CO2 at 60 °C/10.0 MPa to 0.55 mg/g CO2 at 60 °C/20.0 MPa. Maximum wt% NIME adsorbed: <1% for L-PCL, 35% for H-PCL. The release of NIME was delayed 3.5 times. | R. Campardelli et al. [106] |
PCL 80 kDa | 5-fluorouracil nicotinamide triflusal | 200 bar | 40 °C | 1h | Two step | Venting and Foaming from compacted mixtures of PCL + drug solution. | Loading efficiency > 50% Pore size: 87–237 μm Optimized loading drug process. | A. Salerno et al. [60] |
PCL Mn= 80,000 Da | 5-fluorouracil 4.8% and 9.1% | 200 bar | 45 and 50 °C | 1 h | (I) 0.03 MPa/s (7 MPa) (II) 0.1 MPa/s (3–4 min) or 2 MPa/s (5–10 s) | 2-step foaming process from blends of 5-FU in DMSO mixed with PCL | A. Salerno et al. [107] | |
PLGA5050 (50 mol % lactic acid, 50 mol % glycolic acid), PLGA7525 (75 mol % lactic acid, 25 mol % glycolicacid) | Gemcitabine hydrochloride 105–175 mg/g PLGA | 120–200 bar | 25–40 °C | 24 h | One-step process (impregnation and foaming) from 0.8 g PLGA/mL ethyl lactate solutions | Pore sizes: 35–158 μm, achieving an impregnation efficiency higher than 90%. | I. Álvarez et al. [108] | |
Soluplus® (Mw: 90,000–140,000 g/mol) Eudragit® (Mw: 150,000 g/mol) Hydroxypropyl methylcellulose acetate succinate (HPMC-AS) (Mw: 18,000 g/mol) | Carvedilol 30 wt% | 300 bar | 100 °C | 2 h | 1.5 MPa/min | Foaming from mixtures polymer/drug (mass ratio 1:0.3) | pore size: 75–560 μm (Soluplus® and Eudragit® foams); 90 to 340 μm (HPMC-AS foams) Carvedilol’s role as an additional plasticizer. | S. Milovanovic et al. [109] |
Polylactide (PLA) Mw: 17 kg/mol polylactide-co-glycolide (PLGA-I, Mw: 95 kg/mol; PLGA-II, Mw: 17 kg/mol) | Thymol | 75–150 bar | 25–50 °C | 2–24 h | 0.5 MPa CO2/s | Impregnation and foaming from Polymer and drug separated by mesh | PLA foam, average pore diameter: 32.2–88.1 μm. Thymol loading of 0.92–6.62% (2–4 h). Concentration of thymol released within 5 h, 24 h and a month from the representative foams was in the range of 3.5–10 μg/mL, 5.5–15 μg/mL and 16.3–29.3 μg/mL, respectively. | S. Milovanovic et al. [110] |
PLA-E Mw ≈ 210,000 g/mol PLA-I Mw ≈ 160,000 g/mol | Thymol Thyme extract | Extraction 300 bar | 40 °C | 2–5 h | 3.8 ± 1.0 MPa/s. | -Batch process (BP) foaming and impregnation -Coupled extraction and impregnation process (CP) | Porosity > 65%. Pore sizes: ~15–200 μm. BP: thymol loading 4.7–8.5% and foam porosity ~60–65%. CP: 0.71–1.1% of thymol and 0.6–0.7% of thyme extract, porosity ~75%. | R. Kuska et al. [111] |
Impregnation 300 bar | 110 °C | |||||||
PCL Mn = 45 KDa | TiO2 (30%) 5-fluorouracil (30%) | 200 bar | 50 °C | 1–17 h | Two step depressurizations 1—venting 2—foaming | one-step process solution-based scCO2 batch foaming | Pore-size: 200–1200 μm Low residual solvent High impregnation/load efficiency | A. Salerno and C. Domingo [112] |
Part C: Matrix + filler + active compound/drug | ||||||||
PCL 50 kDa | starch aerogel microspheres (SAM) 1.2 μm Ketoprofen (KP) 0–5% | I STEP 150 bar | 40 °C | 11 h 1 h | 0.9 g/min | (I) Impregnation of KP in SAM (II) Foaming PCL/SAM/KP physically mixed. | Porosity > 60%. Pore sizes: 75–99 μm. Interconnectivity > 75%. | L. Goimil et al. [113] |
II STEP 140 bar | 37 °C | 1.8 g/min | (II) Foaming PCL/SAM/KP physically mixed. | |||||
PCL 80,000 g/mol | Chitosan (CS) 5–20 wt% Enzyme transglutaminase (TGM) glutaraldehyde (GA) Hydroxyapatite (HA) 5 wt% | 150 bar | 37 °C | 6 h | 0.05 MPa/s | (I) GF from blends of PCL + CS + HA + NaCl + TGM + GA mixed under supercritical conditions. (II) Salt leaching method. | Storage modulus 5,3–6 MPa. Mean pore size: 180–210 μm. Porosity 41–63%. composites with CS +5 wt% extend protein release patterns and preserved TGM activity up to one month. | G. Kravanja et al. [114] |
PCL 50 kDA | Vancomicyn 0–7 wt% Chitosan 0–15 wt% | 140 bar | 40 °C | 1 h | 1.8 g/min | Powdered mixtures of PCL, vancomycin (V), and chitosan (Chit) | Porosity ~70%. Pore size: 20–90 μm. | C.A. García-González et al. [105] |
PCL Mn = 80 kDa | Fe2O3 0.24–1% Icariin (ICA) 0.1% | 2D and 3D fibrous support by electrospinning and scCO2 foaming | Saturated magnetization of 2D fibrous membranes increased from 1.78 to 6.45 emu/g with 0.25% to 1% of Fe2O3, respectively. PCL/Fe2O3/ICA composites were expanded to 3D scaffolds after depressurization of sc CO2. | K. Li et al. [115] |
6. Conclusions and Recommendations for Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, S.T.; Ramesh, N.S. (Eds.) Polymeric Foams: Mechanisms; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Di Maio, E.; Kiran, E. Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges. J. Supercrit. Fluids 2018, 134, 157–166. [Google Scholar] [CrossRef]
- Salerno, A.; Iannace, S.; Netti, P.A. Open-Pore Biodegradable Foams Prepared via Gas Foaming and Microparticulate Templating. Macromol. Biosci. 2008, 8, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Kuang, T.; Chen, F.; Chang, L.; Zhao, Y.; Fu, D.; Gong, X.; Peng, X. Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chem. Eng. J. 2017, 307, 1017–1025. [Google Scholar] [CrossRef]
- Salerno, A.; Zeppetelli, S.; Di Maio, E.; Iannace, S.; Netti, P.A. Processing/structure/property relationship of multi-scaled PCL and PCL–HA composite scaffolds prepared via gas foaming and NaCl reverse templating. Biotechnol. Bioeng. 2011, 108, 963–976. [Google Scholar] [CrossRef]
- Jacobs, L.J.M.; Kemmere, M.F.; Keurentjes, J.T.F. Sustainable polymer foaming using high pressure carbon dioxide: A review on fundamentals, processes and applications. Green Chem. 2008, 10, 731–738. [Google Scholar] [CrossRef]
- Tai, H.; Mather, M.L.; Howard, D.; Wang, W.; White, L.J.; Crowe, J.A.; Morgan, S.P.; Chandra, A.; Williams, D.J.; Howdle, S.M.; et al. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Eur. Cells Mater. 2007, 14, 64–77. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Jiang, J.; Wang, X.; Hou, J.; Sun, S.; Li, Q. Fabrication of highly interconnected porous poly(ɛ-caprolactone) scaffolds with supercritical CO2 foaming and polymer leaching. J. Mater. Sci. 2019, 54, 5112–5126. [Google Scholar] [CrossRef]
- Salerno, A.; Di Maio, E.; Iannace, S.; Netti, P.A. Tailoring the pore structure of PCL scaffolds for tissue engineering prepared via gas foaming of multi-phase blends. J. Porous Mater. 2012, 19, 181–188. [Google Scholar] [CrossRef]
- Salerno, A.; Di Maio, E.; Iannace, S.; Netti, P.A. Solid-state supercritical CO2 foaming of PCL and PCL-HA nano-composite: Effect of composition, thermal history and foaming process on foam pore structure. J. Supercrit. Fluids 2011, 58, 158–167. [Google Scholar] [CrossRef]
- Goel, S.K.; Beckman, E.J. Generation of Microcellular Polymeric Foams Using Supercritical Carbon Dioxide. I: Effect of Pressure and Temperature on nucleation. Polym. Eng. Sci. 1994, 34, 1137–1147. [Google Scholar] [CrossRef]
- Kravanja, G.; Knez, Ž.; Hrnčič, M.K. Density, interfacial tension, and viscosity of polyethylene glycol 6000 and supercritical CO2. J. Supercrit. Fluids 2018, 139, 72–79. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Zhang, Q.; Xia, C.; Chen, C.; Chen, X.; Yu, P. Foaming of poly(lactic acid) with supercritical CO2: The combined effect of crystallinity and crystalline morphology on cellular structure. J. Supercrit. Fluids 2019, 145, 122–132. [Google Scholar] [CrossRef]
- White, L.J.; Hutter, V.; Tai, H.; Howdle, S.M.; Shakesheff, K.M. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomater. 2012, 8, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Tammaro, D.; Astarita, A.; Di Maio, E.; Iannace, S. Polystyrene foaming at high pressure drop rates. Ind. Eng. Chem. Res. 2016, 55, 5696–5701. [Google Scholar] [CrossRef]
- Salerno, A.; Clerici, U.; Domingo, C. Solid-state foaming of biodegradable polyesters by means of supercritical CO2/ethyl lactate mixtures: Towards designing advanced materials by means of sustainable processes. Eur. Polym. J. 2014, 51, 1–11. [Google Scholar] [CrossRef]
- Park, C.B.; Baldwin, D.F.; Suh, N.P. Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polym. Eng. Sci. 1995, 35, 432–440. [Google Scholar] [CrossRef]
- Taki, K. Experimental and numerical studies on the effects of pressure release rate on number density of bubbles and bubble growth in a polymeric foaming process. Chem. Eng. Sci. 2008, 63, 3643–3653. [Google Scholar] [CrossRef]
- Salerno, A.; Diéguez, S.; Diaz-Gomez, L.; Gómez-Amoza, J.L.; Magariños, B.; Concheiro, A.; Domingo, C.; Alvarez-Lorenzo, C.; García-González, C.A. Synthetic scaffolds with full pore interconnectivity for bone regeneration prepared by supercritical foaming using advanced biofunctional plasticizers. Biofabrication 2017, 9, 035002. [Google Scholar] [CrossRef]
- Salerno, A.; Pascual, C.D. A clean and sustainable route towards the design and fabrication of biodegradable foams by means of supercritical CO2/ethyl lactate solid-state foaming. RSC Adv. 2013, 3, 17355. [Google Scholar] [CrossRef]
- De Ponti, R.; Lardini, E.; Martini, A.; Torricelli, C. Use of Supercritical Fluids to Obtain Porous Sponges of Biodegradable. Polymers. Patent No WO1991009079 A1, 27 June 1991. [Google Scholar]
- Mooney, D.J.; Baldwin, D.F.; Suh, N.P.; Vacanti, J.P.; Langer, R. Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 1996, 17, 1417–1422. [Google Scholar] [CrossRef]
- Harris, L.D.; Kim, B.-S.; Mooney, D.J. Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 1998, 42, 396–402. [Google Scholar] [CrossRef]
- Riddle, K.W.; Mooney, D.J. Role of poly(lactide-co-glycolide) particle size on gas-foamed scaffolds. J. Biomater. Sci. Polymer Edn. 2004, 15, 1561–1570. [Google Scholar] [CrossRef] [PubMed]
- Shea, L.D.; Smiley, E.; Bonadio, J.; Mooney, D.J. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 1999, 17, 817. [Google Scholar] [CrossRef]
- Sheridan, M.H.; Shea, L.D.; Peters, M.C.; Mooney, D.J. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J. Control. Release 2000, 64, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-C.; Connell, M.; Park, Y.; Mooney, D.J.; Rice, K.G. Fabrication and in vitro testing of polymeric delivery system for condensed DNA. J. Biomed. Mater. Res. 2003, 67A, 1384–1392. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Riddle, K.; Rice, K.G.; Mooney, D.J. Long-Term In Vivo Gene Expression via Delivery of PEI–DNA Condensates from Porous Polymer Scaffolds. Hum. Gene Ther. 2005, 16, 609–617. [Google Scholar] [CrossRef]
- Singh, L.; Kumara, V.; Ratner, B.D. Generation of porous microcellular 85/15 poly (dl-lactide-co-glycolide) foams for biomedical applications. Biomaterials 2004, 25, 2611–2617. [Google Scholar] [CrossRef]
- Hile, D.D.; Amirpour, M.L.; Akgerman, A.; Pishko, M.V. Active growth factor delivery from poly(D,L-lactide-co-glycolide) foams prepared in supercritical CO2. J. Control. Release 2000, 66, 177–185. [Google Scholar] [CrossRef]
- Mathieu, L.M.; Montjovent, M.-O.; Bourban, P.-E.; Pioletti, D.P.; Månson, J.-A.E. Bioresorbable composites prepared by supercritical fluid foaming. J. Biomed. Mater. Res. 2005, 75A, 89–97. [Google Scholar] [CrossRef]
- Montjovent, M.-O.; Mathieu, L.; Hinz, B.; Applegate, L.L.; Bourban, P.-E.; Zambelli, P.-Y.; Månson, J.-A.; Pioletti, D.P. Biocompatibility of Bioresorbable Poly(L-lactic acid) Composite Scaffolds Obtained by Supercritical Gas Foaming with Human Fetal Bone Cells. Tissue Eng. 2005, 11, 1640–1649. [Google Scholar] [CrossRef]
- Mather, M.L.; Brion, M.; White, L.J.; Shakesheff, K.M.; Howdle, S.M.; Morgan, S.P.; Crowe, J.A. Time-lapsed imaging for in-process evaluation of supercritical fluid processing of tissue engineering scaffolds. Biotechnol. Prog. 2009, 25, 1176–1183. [Google Scholar] [CrossRef]
- Lemon, G.; Reinwald, Y.; White, L.J.; Howdle, S.M.; Shakesheff, K.M.; King, J.R. Interconnectivity analysis of supercritical CO2-foamed scaffolds. Comput. Methods Programs Biomed. 2012, 106, 139–149. [Google Scholar] [CrossRef]
- Mather, M.L.; Crowe, J.A.; Morgan, S.P.; White, L.J.; Kalashnikov, A.N.; Ivchenko, V.G.; Howdle, S.M.; Shakesheff, K.M. Ultrasonic monitoring of foamed polymeric tissue scaffold fabrication. J. Mater. Sci. Mater. Med. 2008, 19, 3071–3080. [Google Scholar] [CrossRef]
- Ginty, P.J.; Howard, D.; Rose, F.R.A.J.; Whitaker, M.J.; Barry, J.J.A.; Tighe, P.; Mutch, S.R.; Serhatkulu, G.; Oreffo, R.O.C.; Howdle, S.M.; et al. Mammalian cell survival and processing in supercritical CO2. Proc. Natl. Acad. Sci. USA 2006, 103, 7426–7431. [Google Scholar] [CrossRef] [PubMed]
- MFanovich, A.; Jaeger, P. Sorption and diffusion of compressed carbon dioxide in polycaprolactone for the development of porous scaffolds. Mater. Sci. Eng. C 2012, 32, 961–968. [Google Scholar] [CrossRef]
- Nalawade, S.P.; Picchioni, F.; Janssen, L.P.B.M.; Grijpma, D.W.; Feijen, J. Investigation of the Interaction of CO2 with Poly(L-lactide), Poly(DL-lactide) and Poly(e-caprolactone) using FTIR Spectroscopy. J Appl. Polym. Sci. 2008, 109, 3376–3381. [Google Scholar] [CrossRef]
- Léonard, A.; Calberg, C.; Kerckhofs, G.; Wevers, M.; Jérôme, R.; Pirard, J.-P.; Germain, A.; Blacher, S. Characterization of the porous structure of biodegradable scaffolds obtained with supercritical CO2 as foaming agent. J. Porous. Mater. 2008, 15, 397–403. [Google Scholar] [CrossRef]
- Fanovich, M.A.; Ivanovic, J.; Misic, D.; Alvarez, M.V.; Jaeger, P.; Zizovic, I.; Eggers, R. Development of polycaprolactone scaffold with antibacterial activity by an integrated supercritical extraction and impregnation process. J. Supercrit. Fluids 2013, 78, 42–53. [Google Scholar] [CrossRef]
- Lian, Z.; Epstein, S.A.; Blenk, C.W.; Shine, A.D. Carbon dioxide-induced melting point depression of biodegradable semicrystalline polymers. J. Supercrit. Fluids 2006, 39, 107–117. [Google Scholar] [CrossRef]
- Kelly, C.A.; Harrison, K.L.; Leeke, G.A.; Jenkins, M.J. Detection of melting point depression and crystallization of polycaprolactone (PCL) in scCO2 by infrared spectroscopy. Polym. J. 2013, 45, 188–192. [Google Scholar] [CrossRef]
- Markocic, E.; Škerget, M.; Knez, Ž. Effect of Temperature and Pressure on the Behavior of Poly(ε-caprolactone) in the Presence of Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2013, 52, 15594–15601. [Google Scholar] [CrossRef]
- Curia, S.; De Focatiis, D.S.A.; Howdle, S.M. High-pressure rheological analysis of CO2-induced melting point depression and viscosity reduction of poly(ε-caprolactone). Polymer 2015, 69, 17–24. [Google Scholar] [CrossRef]
- Gualandi, C.; White, L.J.; Chen, L.; Gross, R.A.; Shakesheff, K.M.; Howdle, S.M.; Scandola, M. Scaffold for tissue engineering fabricated by non-isothermal supercritical carbon dioxide foaming of a highly crystalline polyester. Acta Biomater. 2010, 6, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, L.M.; Mueller, T.L.; Bourban, P.-E.; Pioletti, D.P.; Müller, R.; Månson, J.-A.E. Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Collins, N.J.; Leeke, G.A.; Bridson, R.H.; Hassan, F.; Grover, L.M. The influence of silica on pore diameter and distribution in PLA scaffolds produced using supercritical CO2. J. Mater. Sci. Mater. Med. 2008, 19, 1497–1502. [Google Scholar] [CrossRef]
- Collins, N.J.; Bridson, R.H.; Leeke, G.A.; Grover, L.M. Particle seeding enhances interconnectivity in polymeric scaffolds foamed using supercritical CO2. Acta Biomater. 2010, 6, 1055–1060. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Kumar, V. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Biomaterials 2006, 27, 1924–1929. [Google Scholar] [CrossRef]
- Watson, N.J.; Johal, R.K.; Glover, Z.; Reinwald, Y.; White, L.J.; Ghaemmaghami, A.M.; Morgan, S.P.; Rose, F.R.A.J.; Povey, M.J.W.; Parker, N.G. Post-processing of polymer foam tissue scaffolds with high power ultrasound: A route to increased pore interconnectivity, pore size and fluid transport. Mater. Sci. Eng. C 2013, 33, 4825–4832. [Google Scholar] [CrossRef]
- Silva, M.M.C.G.; Cyster, L.A.; Barry, J.J.A.; Yangd, X.B.; Oreffo, R.O.C.; Grant, D.M.; Scotchford, C.A.; Howdle, S.M.; Shakesheff, K.M.; Rose, F.R.A.J. The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds. Biomaterials 2006, 27, 5909–5917. [Google Scholar] [CrossRef]
- Salerno, A.; Oliviero, M.; Di Maio, E.; Iannace, S.; Netti, P.A. Design and Preparation of m-Bimodal Porous Scaffold for Tissue Engineering. J. Appl. Polym. Sci. 2007, 106, 3335–3342. [Google Scholar] [CrossRef]
- Salerno, A.; Guarnieri, D.; Iannone, M.; Zeppetelli, S.; Di Maio, E.; Iannace, S.; Netti, P.A. Engineered l-bimodal poly(e-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation. Acta Biomater. 2009, 5, 1082–1093. [Google Scholar] [CrossRef] [PubMed]
- Salerno, A.; Guarnieri, D.; Iannone, M.; Zeppetelli, S.; Netti, P.A. Effect of Micro- and Macroporosity of Bone Tissue Three-Dimensional-Poly(e-Caprolactone) Scaffold on Human Mesenchymal Stem Cells Invasion, Proliferation, and Differentiation In Vitro. Tissue Eng. Part A 2010, 16, 2661–2673. [Google Scholar] [CrossRef] [PubMed]
- Kiran, E. Foaming strategies for bioabsorbable polymers in supercritical fluid mixtures. Part I. Miscibility and foaming of poly(l-lactic acid) in carbon dioxide + acetone binary fluid mixtures. J. Supercrit. Fluids 2010, 54, 296–307. [Google Scholar] [CrossRef]
- Kiran, E. Foaming strategies for bioabsorbable polymers in supercritical fluid mixtures. Part II. Foaming of poly(ε-caprolactone-co-lactide) in carbon dioxide and carbon dioxide + acetone fluid mixtures and formation of tubular foams via solution extrusion. J. Supercrit. Fluids 2010, 54, 308–319. [Google Scholar] [CrossRef]
- Salerno, A.; Fanovich, M.A.; Pascual, C.D. The effect of ethyl-lactate and ethyl-acetate plasticizers on PCL and PCL–HA composites foamed with supercritical CO2. J. Supercrit. Fluids 2014, 95, 394–406. [Google Scholar] [CrossRef]
- Salerno, A.; Pascual, C.D. Low-temperature clean preparationof poly(lactic acid) foams by combining ethyllactate and supercritical CO2: Correlationbetween processing and foam pore structure. Polym. Int. 2014, 63, 1303–1310. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, S.H.; Jung, Y. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2–HFIP co-solvent system for cartilage tissue engineering. J. Control. Release 2015, 206, 101–107. [Google Scholar] [CrossRef]
- Salerno, A.; Saurina, J.; Domingo, C. Supercritical CO2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal. Int. J. Pharm. 2015, 496, 654–663. [Google Scholar] [CrossRef]
- Leung, L.; Chan, C.; Baek, S.; Naguib, H. Comparison of morphology and mechanical properties of PLGA bioscaffolds. Biomed. Mater. 2008, 3, 025006. [Google Scholar] [CrossRef]
- Perron, J.K.; Naguib, H.E.; Daka, J.; Chawla, A.; Wilkins, R. A Study on the Effect of Degradation Media on the Physical and Mechanical Properties of Porous PLGA 85/15 Scaffolds. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 91, 876–886. [Google Scholar] [CrossRef]
- Yu, J.; Song, L.; Chen, F.; Fan, P.; Sun, L.; Zhong, M.; Yang, J. Preparation of polymer foams with a gradient of cell size: Further exploring the nucleation effect of porous inorganic materials in polymer foaming. Mater. Today Commun. 2016, 9, 1–6. [Google Scholar] [CrossRef]
- Pinto, J.; Morselli, D.; Bernardo, V.; Notario, B.; Fragouli, D.; Rodriguez-Perez, M.A.; Athanassiou, A. Nanoporous PMMA foams with templated pore size obtained by localized in situ synthesis of nanoparticles and CO2 foaming. Polymer 2017, 124, 176–185. [Google Scholar] [CrossRef]
- Bai, H.; Chen, Y.; Delattre, B.; Tomsia, A.P.; Ritchie, R.O. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 2015, 1, e1500849. [Google Scholar] [CrossRef]
- Ngo, M.T.; Dickmann, J.S.; Hassler, J.C.; Kiran, E. A new experimental system for combinatorial exploration of foaming of polymers in carbon dioxide: The gradient foaming of PMMA. J. Supercrit. Fluids 2016, 109, 1–19. [Google Scholar] [CrossRef]
- Rostami-Tapeh-Esmaeil, E.; Shojaei, S.; Rodrigue, D. Mechanical and Thermal Properties of Functionally Graded Polyolefin Elastomer Foams. Polymers 2022, 14, 4124. [Google Scholar] [CrossRef] [PubMed]
- Di Maio, E.; Iannace, S.; Mensitieri, G. Foaming with Supercritical Fluids; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Trofa, M.; Di Maio, E.; Maffettone, P.L. Multi-graded foams upon time-dependent exposition to blowing agent. Chem. Eng. J. 2019, 362, 812–817. [Google Scholar] [CrossRef]
- Wang, G.; Liu, J.; Zhao, J.; Li, S.; Zhao, G.; Park, C.B. Structure-gradient thermoplastic polyurethane foams with enhanced resilience derived by microcellular foaming. J. Supercrit. Fluids 2022, 188, 105667. [Google Scholar] [CrossRef]
- Sánchez-Calderón, I.; Bernardo, V.; Santiago-Calvo, M.; Naji, H.; Saiani, A.; Rodríguez-Pérez, M.Á. Effect of the Molecular Structure of TPU on the Cellular Structure of Nanocellular Polymers Based on PMMA/TPU Blends. Polymers 2021, 13, 3055. [Google Scholar] [CrossRef]
- Bernardo, V.; Martín-de León, J.; Sanchez-Calderon, I.; Laguna-Gutierrez, E.; Rodriguez-Perez, M.A. Nanocellular Polymers with a Gradient Cellular Structure Based on Poly(methyl methacrylate)/Thermoplastic Polyurethane Blends Produced by Gas Dissolution Foaming. Macromol. Mater. Eng. 2020, 305, 1900428. [Google Scholar] [CrossRef]
- Errichiello, F.; Cammarano, A.; Di Maio, E.; Nicolais, L. Sintering graded foamed beads: Compressive properties. J. Appl. Polym. Sci. 2022, 139, 52052. [Google Scholar]
- Supitta, S.; Shah, D.U.; Smitthipong, W. Recent progress in processing functionally graded polymer foams. Materials 2020, 13, 4060. [Google Scholar]
- Longo, A.; Giannetti, D.; Tammaro, D.; Costanzo, S.; Di Maio, E. TPU-based porous heterostructures by combined techniques. Int. Polym. Process. 2022, 37, 415–426. [Google Scholar] [CrossRef]
- Drobny, J.G. Handbook of Thermoplastic Elastomers; Elsevier: Oxford, UK, 2014. [Google Scholar] [CrossRef]
- Conner, B.P.; Manogharan, G.P.; Martof, A.N.; Rodomsky, L.M.; Rodomsky, C.M.; Jordan, D.C.; Limperos, J.W. Making sense of 3-D printing: Creating a map of additive manufacturing products and services. Addit. Manuf. 2014, 1, 64–76. [Google Scholar] [CrossRef]
- Horst, D.J.; Duvoisin, C.A.; de Almeida Vieira, R. Additive manufacturing at Industry 4.0: A review. Int. J. Eng. Tech. Res. 2018, 8, 3–8. [Google Scholar]
- Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. Influence of FDM process parameters on the mechanical properties of polymer specimens: A review. Polym. Test. 2018, 69, 157–166. [Google Scholar] [CrossRef]
- Xiao, J.; Gao, Y. The manufacture of 3D printing of medical grade TPU. Prog. Addit. Manuf. 2017, 2, 117–123. [Google Scholar] [CrossRef]
- Haryńska, A.; Gubanska, I.; Kucinska-Lipka, J.; Janik, H. Fabrication and characterization of flexible medical-grade TPU filament for fused deposition modeling 3DP technology. Polymers 2018, 10, 1304. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Cao, P.; Advincula, R.C. Mechanically robust, ultraelastic hierarchical foam with tunable properties via 3D printing. Adv. Funct. Mater. 2018, 28, 1800631. [Google Scholar] [CrossRef]
- Nofar, M.; Utz, J.; Geis, N.; Altstädt, V.; Ruckdäschel, H. Foam 3D printing of thermoplastics: A symbiosis of additive manufacturing and foaming technology. Adv. Sci. 2022, 9, 2105701. [Google Scholar] [CrossRef]
- Park, B.K.; Hwang, D.J.; Kwon, D.E.; Yoon, T.J.; Lee, Y.-W. Fabrication and characterization of multiscale PLA structures using integrated rapid prototyping and gas foaming technologies. Nanomaterials 2018, 8, 575. [Google Scholar] [CrossRef]
- Hu, B.; Li, M.; Jiang, J.; Zhai, W. Development of microcellular thermoplastic polyurethane honeycombs with tailored elasticity and energy absorption via CO2 foaming. Int. J. Mech. Sci. 2021, 197, 106324. [Google Scholar] [CrossRef]
- Oliver, H.; Jameson, K.A.; Sayer, A.A.; Cooper, C.; Dennison, E.M. Growth in early life predicts bone strength in late adulthood. Bone 2007, 41, 400–405. [Google Scholar] [CrossRef]
- Diaz-Gomez, L.; García-González, C.A.; Wang, J.; Yang, F.; Aznar-Cervantes, S.; Cenis, J.L.; Reyes, R.; Delgado, A.; Évora, C.; Concheiro, A.; et al. Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration. Int. J. Pharm. 2017, 527, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, M.Z.; Hassanajili, S.; Esmaeilzadeh, F.; Ayatollahi, M.; Ahmadi, M. Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO2 gas foaming method. J. Mech. Behav. Biomed. Mater. 2017, 69, 115–127. [Google Scholar] [CrossRef]
- Jing, X.; Mi, H.-Y.; Turng, L.-S. Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming. Mater. Sci. Eng. C 2017, 72, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Zhang, J.; Li, S.; Yang, S.; Lu, E.; Xi, Z.; Cen, L.; Zhao, L.; Yuan, W. Highly interconnected macroporous MBG/PLGA scaffolds with enhanced mechanical and biological properties via green foaming strategy. Chin. J. Chem. Eng. 2021, 29, 426–436. [Google Scholar] [CrossRef]
- Li, S.; Song, C.; Yang, S.; Yu, W.; Zhang, W.; Zhang, G.; Xi, Z.; Lu, E. Supercritical CO2 foamed composite scaffolds incorporating bioactive lipids promote vascularized bone regeneration via Hif-1α upregulation and enhanced type H vessel formation. Acta Biomater. 2019, 94, 253–267. [Google Scholar] [CrossRef]
- Manavitehrani, I.; Le, T.Y.L.; Daly, S.; Wang, Y.; Maitz, P.K.; Schindeler, A.; Dehghani, F. Formation of porous biodegradable scaffolds based on poly(propylene carbonate) using gas foaming technology. Mater. Sci. Eng. C 2019, 96, 824–830. [Google Scholar] [CrossRef]
- Nanjundappa, V.S.; Ramakrishnappa, T.; Kempahanumakkagari, S.; Hr, P.; Bm, P. Efficient strategies to produce Graphene and functionalized graphene materials: A review. Appl. Surf. Sci. Adv. 2023, 14, 100386. [Google Scholar] [CrossRef]
- Yu, K.; Chen, X.; Xiang, H.; Lu, B.; Yin, J. Preparation of graphene by supercritical CO2 circulating exfoliation with a jet cavitation. J. Supercrit. Fluids 2022, 186, 105605. [Google Scholar] [CrossRef]
- Liu, G.; Wen, S.; Wang, Y.; Zhang, J.; Huang, S.; Chen, A. Exfoliation and distribution behavior of graphene nanoplatelets in polystyrene-based foams fabricated by supercritical CO2 assisted microcellular foaming. Chem. Eng. Sci. 2022, 249, 117331. [Google Scholar] [CrossRef]
- Evlashin, S.; Dyakonov, P.; Tarkhov, M.; Dagesyan, S.; Rodionov, S.; Shpichka, A.; Kostenko, M.; Konev, S.; Sergeichev, I.; Timashev, P.; et al. Flexible Polycaprolactone and Polycaprolactone/Graphene Scaffolds for Tissue Engineering. Materials 2019, 12, 2991. [Google Scholar] [CrossRef] [PubMed]
- Evlashin, S.A.; Svyakhovskiy, S.E.; Fedorov, F.S.; Mankelevich, Y.A.; Dyakonov, P.V.; Minaev, N.V.; Dagesyan, S.A.; Maslakov, K.I.; Khmelnitsky, R.A.; Suetin, N.V.; et al. Ambient Condition Production of High Quality Reduced Graphene Oxide. Adv. Mater. Interfaces 2018, 5, 1800737. [Google Scholar] [CrossRef]
- Ju, J.; Gu, Z.; Liu, X.; Zhang, S.; Peng, X.; Kuang, T. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Int. J. Biol. Macromol. 2020, 147, 1164–1173. [Google Scholar] [CrossRef]
- Champeau, M.; Thomassin, J.-M.; Tassaing, T.; Jérôme, C. Drug loading of polymer implants by supercritical CO2 assisted impregnation: A review. J. Control. Release 2015, 209, 248–259. [Google Scholar] [CrossRef]
- Machado, N.D.; Mosquera, J.E.; Martini, R.E.; Goñi, M.L.; Gañán, N.A. Supercritical CO2-assisted impregnation/deposition of polymeric materials with pharmaceutical, nutraceutical, and biomedical applications: A review (2015–2021). J. Supercrit. Fluids 2022, 191, 105763. [Google Scholar] [CrossRef]
- Guastaferro, M.; Baldino, L.; Cardea, S.; Reverchon, E. Supercritical processing of PCL and PCL-PEG blends to produce improved PCL-based porous scaffolds. J. Supercrit. Fluids 2022, 186, 105611. [Google Scholar] [CrossRef]
- Ong, Y.X.J.; Lee, L.Y.; Davoodi, P.; Wang, C.-H. Production of drug-releasing biodegradable microporous scaffold using a two-step micro-encapsulation/supercritical foaming process. J. Supercrit. Fluids 2018, 133, 263–269. [Google Scholar] [CrossRef]
- Khodaverdi, E.; Abbaspour, M.R.; Oroojalian, F.; Omidkhah, N.; Hossein-nezahd, S.; Kamali, H.; Hadizadeh, F. Dexamethasone delivery of porous PEG-PCL-PEG scaffolds with supercritical carbon dioxide gas foaming. J. Drug Deliv. Sci. Technol. 2021, 66, 102547. [Google Scholar] [CrossRef]
- Santos-Rosales, V.; Magariños, B.; Alvarez-Lorenzo, C.; García-González, C.A. Combined sterilization and fabrication of drug-loaded scaffolds using supercritical CO2 technology. Int. J. Pharm. 2022, 612, 121362. [Google Scholar] [CrossRef]
- García-González, C.A.; Barros, J.; Rey-Rico, A.; Redondo, P.; Gomez-Amoza, J.L.; Concheiro, A.; Alvarez-Lorenzo, C.; Monteiro, F.J. Antimicrobial Properties and Osteogenicity of Vancomycin-Loaded Synthetic Scaffolds Obtained by Supercritical Foaming. ACS Appl. Mater. Interfaces 2018, 10, 3349–3360. [Google Scholar] [CrossRef] [PubMed]
- Campardelli, R.; Franco, P.; Reverchon, E.; De Marco, I. Polycaprolactone/nimesulide patches obtained by a one-step supercritical foaming + impregnation process. J. Supercrit. Fluids 2019, 146, 47–54. [Google Scholar] [CrossRef]
- Salerno, A.; Domingo, C.; Saurina, J. PCL foamed scaffolds loaded with 5-fluorouracil anti-cancer drug prepared by an eco-friendly route. Mater. Sci. Eng. C 2017, 75, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, I.; Gutiérrez, C.; Rodríguez, J.F.; de Lucas, A.; García, M.T. Production of drug-releasing biodegradable microporous scaffold impregnated with gemcitabine using a CO2 foaming process. J. CO2 Util. 2020, 41, 101227. [Google Scholar] [CrossRef]
- Milovanovic, S.; Djuris, J.; Dapčević, A.; Medarevic, D.; Ibric, S.; Zizovic, I. Soluplus®, Eudragit®, HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO2 process. Polym. Test. 2019, 76, 54–64. [Google Scholar] [CrossRef]
- Milovanovic, S.; Markovic, D.; Mrakovic, A.; Kuska, R.; Zizovic, I.; Frerich, S.; Ivanovic, J. Supercritical CO2—assisted production of PLA and PLGA foams for controlled thymol release. Mater. Sci. Eng. C 2019, 99, 394–404. [Google Scholar] [CrossRef]
- Kuska, R.; Milovanovic, S.; Frerich, S.; Ivanovic, J. Thermal analysis of polylactic acid under high CO2 pressure applied in supercritical impregnation and foaming process design. J. Supercrit. Fluids 2019, 144, 71–80. [Google Scholar] [CrossRef]
- Salerno, A.; Domingo, C. Polycaprolactone foams prepared by supercritical CO2 batch foaming of polymer/organic solvent solutions. J. Supercrit. Fluids 2019, 143, 146–156. [Google Scholar] [CrossRef]
- Goimil, L.; Braga, M.E.M.; Dias, A.M.A.; Gómez-Amoza, J.L.; Concheiro, A.; Alvarez-Lorenzo, C.; de Sousa, H.C.; García-González, C.A. Supercritical processing of starch aerogels and aerogel-loaded poly(ε-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration. J. CO2 Util. 2017, 18, 237–249. [Google Scholar] [CrossRef]
- Kravanja, G.; Primožič, M.; Knez, Ž.; Leitgeb, M. Transglutaminase release and activity from novel poly(ε-caprolactone)-based composites prepared by foaming with supercritical CO2. J. Supercrit. Fluids 2020, 166, 105031. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Y.; Xu, J.; Wang, J.; Gu, X.; Li, P.; Fan, Y. Three-dimensional magnetic fibrous scaffold with icariin expanded by supercritical CO2 for bone tissue engineering under static magnetic field. Compos. Part B Eng. 2021, 226, 109304. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanovich, M.A.; Di Maio, E.; Salerno, A. Current Trend and New Opportunities for Multifunctional Bio-Scaffold Fabrication via High-Pressure Foaming. J. Funct. Biomater. 2023, 14, 480. https://doi.org/10.3390/jfb14090480
Fanovich MA, Di Maio E, Salerno A. Current Trend and New Opportunities for Multifunctional Bio-Scaffold Fabrication via High-Pressure Foaming. Journal of Functional Biomaterials. 2023; 14(9):480. https://doi.org/10.3390/jfb14090480
Chicago/Turabian StyleFanovich, María Alejandra, Ernesto Di Maio, and Aurelio Salerno. 2023. "Current Trend and New Opportunities for Multifunctional Bio-Scaffold Fabrication via High-Pressure Foaming" Journal of Functional Biomaterials 14, no. 9: 480. https://doi.org/10.3390/jfb14090480
APA StyleFanovich, M. A., Di Maio, E., & Salerno, A. (2023). Current Trend and New Opportunities for Multifunctional Bio-Scaffold Fabrication via High-Pressure Foaming. Journal of Functional Biomaterials, 14(9), 480. https://doi.org/10.3390/jfb14090480