Evaluating the Translucency, Surface Roughness, and Cytotoxicity of a PMMA Acrylic Denture Base Reinforced with Bioactive Glasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. pH Analysis
2.3. Surface Roughness
2.4. Translucency
2.5. Cytotoxicity
2.5.1. Assessment of Cell Morphology and Migration as Cytotoxicity Indicators
2.5.2. Cytotoxicity Test—Direct Contact and MTT Assay
2.6. Analysis of the Composition of the Elements Inside the Specimen
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The acrylic material fabricated with 20 wt.% bioactive glasses (S53P4, Biomin F, Biomin C, and 45S5) can be used to produce a removable denture to facilitate ion release.
- The tested bioactive glasses contain calcium, aluminium, silicon, phosphorus, and sodium ions. Additionally, Biomin F contains fluoride ions.
- These series of tests indicate that PMMA containing glass S53P4 can increase the pH of water solutions from 5.5 to 7.54 after 10 days.
- The composite materials do not inhibit the growth of cell cultures from human fibroblasts.
- Specimens containing pure PMMA have the highest transparency. However, the addition of bioactive substances reduces this property. When stored in water, the transparency is further reduced.
- The roughness of the specimen slightly increases after the addition of bioactive glasses.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabri, B.; Satgunam, M.; Abreeza, N.M.; Abed, A. A review on enhancements of PMMA Denture Base Material with Different Nano-Fillers. Cogent Eng. 2021, 8, 1875968. [Google Scholar] [CrossRef]
- Lourinho, C.; Salgado, H.; Correia, A.; Fonseca, P. Mechanical Properties of Polymethyl Methacrylate as Denture Base Material: Heat-Polymerized vs. 3D-Printed-Systematic Review and Meta-Analysis of In Vitro Studies. Biomedicines 2022, 10, 2565. [Google Scholar] [CrossRef] [PubMed]
- Giti, R.; Zomorodian, K.; Firouzmandi, M.; Zareshahrabadi, Z.; Rahmannasab, S. Antimicrobial Activity of Thermocycled Polymethyl Methacrylate Resin Reinforced with Titanium Dioxide and Copper Oxide Nanoparticles. Int. J. Dent. 2021, 2021, 6690806. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, C.; Takakuda, K.; Wakabayashi, N. Reduction of Candida Biofilm Adhesion by Incorporation of Prereacted Glass Ionomer Filler in Denture Base Resin. J. Dent. 2016, 44, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Gligorijević, N.; Mihajlov-Krstev, T.; Kostić, M.; Nikolić, L.; Stanković, N.; Nikolić, V.; Dinić, A.; Igić, M.; Bernstein, N. Antimicrobial Properties of Silver-Modified Denture Base Resins. Nanomaterials 2022, 12, 2453. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, L.; Wang, J.; Li, Y.; Zhou, X.; Guo, X.; Zhang, T.; Guo, H. Characterization and evaluation of a novel silver nanoparticles-loaded polymethyl methacrylate denture base: In vitro and in vivo animal study. Dent. Mater. J. 2021, 40, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Alhotan, A.; Yates, J.; Zidan, S.; Haider, J.; Silikas, N. Assessing fracture toughness and impact strength of PMMA reinforced with nano-particles and fibre as advanced denture base materials. Materials 2021, 14, 4127. [Google Scholar] [CrossRef]
- Totu, E.E.; Nechifor, A.C.; Nechifor, G.; Aboul-Enein, H.Y.; Cristache, C.M. Poly (methyl methacrylate) with TiO2 nanoparticles inclusion for stereolithographic complete denture manufacturing—The future in dental care for elderly edentulous patients? J. Dent. 2017, 59, 68–77. [Google Scholar] [CrossRef]
- Bacali, C.; Baldea, I.; Moldovan, M.; Carpa, R.; Olteanu, D.E.; Filip, G.A.; Nastase, V.; Lascu, L.; Badea, M.; Constantiniuc, M.; et al. Flexural strength, biocompatibility, and antimicrobial activity of a polymethyl methacrylate denture resin enhanced with graphene and silver nanoparticles. Clin. Oral Investig. 2020, 24, 2713–2725. [Google Scholar] [CrossRef]
- Kamonkhantikul, K.; Arksornnukit, M.; Takahashi, H. Antifungal, Optical, and Mechanical Properties of Polymethylmethacrylate Material Incorporated with Silanized Zinc Oxide Nanoparticles. Int. J. Nanomed. 2017, 12, 2353–2360. [Google Scholar] [CrossRef]
- Gad, M.M.; Alshehri, S.Z.; Alhamid, S.A.; Albarrak, A.; Khan, S.Q.; Alshahrani, F.A.; Alqarawi, F.K. Water Sorption, Solubility, and Translucency of 3D-Printed Denture Base Resins. Dent. J. 2022, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Hamid, S.K.; Alghamdi, L.A.; Alshahrani, F.A.; Khan, S.Q.; Matin, A.; Gad, M.M. In Vitro Assessment of Artificial Aging on the Antifungal Activity of PMMA Denture Base Material Modified with ZrO2 Nanoparticles. Int. J. Dent. 2021, 2021, 5560443. [Google Scholar] [CrossRef] [PubMed]
- Alzayyat, S.T.; Almutiri, G.A.; Aljandan, J.K.; Algarzai, R.M.; Khan, S.Q.; Akhtar, S.; Matin, A.; Gad, M.M. Antifungal Efficacy and Physical Properties of Poly(Methylmethacrylate) Denture Base Material Reinforced with SiO2 Nanoparticles. J. Prosthodont. 2021, 30, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Bajunaid, S.O.; Baras, B.H.; Weir, M.D.; Xu, H.H. Denture Acrylic Resin Material with Antibacterial and Protein-Repelling Properties for the Prevention of Denture Stomatitis. Polymers 2022, 14, 230. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Ding, N.; Zhang, Z. Mechanical and antibacterial properties of polymethyl methacrylate modified with zinc dimethacrylate. J. Prosthet. Dent. 2022, 128, 100.e1–100.e8. [Google Scholar] [CrossRef]
- Da Silva Barboza, A.; Fang, L.K.; Ribeiro, J.S.; Cuevas-Suárez, C.E.; Moraes, R.R.; Lund, R.G. Physicomechanical, Optical, and Antifungal Properties of Polymethyl Methacrylate Modified with Metal Methacrylate Monomers. J. Prosthet. 2021, 125, 706.e1–706.e6. [Google Scholar] [CrossRef]
- An, S.; Evans, J.L.; Hamlet, S.; Love, R.M. Incorporation of antimicrobial agents in denture base resin: A systematic review. J. Prosthet. Dent. 2021, 126, 188–195. [Google Scholar] [CrossRef]
- Raszewski, Z.; Chojnacka, K.; Mikulewicz, M.; Alhotan, A. Bioactive Glass-Enhanced Resins: A New Denture Base Material. Materials 2023, 16, 4363. [Google Scholar] [CrossRef]
- Asgari, N.; Baaske, M.; Orrit, M. Burst-by-Burst Measurement of Rotational Diffusion at Nanosecond Resolution Reveals Hot-Brownian Motion and Single-Chain Binding. ACS Nano 2023, 17, 12684–12692. [Google Scholar] [CrossRef]
- Gusmão, G.M.; De Queiroz, T.V.; Pompeu, G.F.; Menezes Filho, P.F.; da Silva, C.H. The influence of storage time and pH variation on water sorption by different composite resins. Indian J. Dent. Res. 2013, 24, 60–65. [Google Scholar] [CrossRef]
- Moslehifard, E.; Ghaffari, T.; Abolghasemi, H.; Maleki Dizaj, S. Comparison of Conventional Pressure-packed and Injection Molding Processing Methods for an Acrylic Resin Denture based on Microhardness, Surface Roughness, and Water Sorption. Int. J. Dent. 2022, 2022, 7069507. [Google Scholar] [CrossRef] [PubMed]
- Alshamrani, A.; Alhotan, A.; Owais, A.; Ellakwa, A. The Clinical Potential of 3D-Printed Crowns Reinforced with Zirconia and Glass Silica Microfillers. J. Funct. Biomater. 2023, 14, 267. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska, D.; Saczko, J.; Kulbacka, J.; Choromanska, A.; Raszewski, Z. Cytotoxic potential of vasoconstrictor experimental gingival retraction agents: In vitro study on primary human gingival fibroblasts. Folia Biol. 2012, 58, 37–43. [Google Scholar]
- Saczko, J.; Dominiak, M.; Kulbacka, J.; Chwiłkowska, A.; Krawczykowska, H. A simple and established method of tissue culture of human gingival fibroblasts for gingival augmentation. Folia Histochem. Cytobiol. 2008, 46, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Elmergawy, F.H.; Nassif, M.S.; El-Borady, O.M.; Mabrouk, M.; El-Korashy, D.I. Physical and mechanical evaluation of dental resin composite after modification with two different types of Montmorillonite nanoclay. J. Dent. 2021, 112, 103731. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Abu-Rashid, K.; Alkhaldi, A.; Alshehri, O.; Khan, S.Q. Evaluation of the effectiveness of bioactive glass fillers against Candida albicans adhesion to PMMA denture base materials: An in vitro study. Saudi Dent. J. 2022, 34, 730–737. [Google Scholar] [CrossRef]
- Berger, J.C.; Driscoll, C.F.; Romberg, E.; Luo, Q.; Thompson, G. Surface roughness of denture base acrylic resins after processing and after polishing. J. Prosthodont. 2006, 15, 180–186. [Google Scholar] [CrossRef]
- Costa, R.T.F.; Pellizzer, E.P.; Vasconcelos, B.; Gomes, J.M.L.; Lemos, C.A.A.; de Moraes, S.L.D. Surface roughness of acrylic resins used for denture base after chemical disinfection: A systematic review and meta-analysis. Gerodontology 2021, 38, 242–251. [Google Scholar] [CrossRef]
- Al-Rifaiy, M.Q. The effect of mechanical and chemical polishing techniques on the surface roughness of denture base acrylic resins. Saudi Dent. J. 2010, 22, 13–17. [Google Scholar] [CrossRef]
- Xu, X.; Burgess, J.O. Compressive strength, fluoride release and recharge of fluoride-releasing materials. Biomaterials 2003, 24, 2451–2461. [Google Scholar] [CrossRef]
- Sagadevan, K.S.S.; Ravichandran, R.; Harsha Kumar, K.; Nair, V.V.; Kavitha, J.; Deepthi, V. Effect of zirconium oxide and cellulose nanoparticles addition on the flexural strength, impact strength and translucency of heat polymerized acrylic resin: An in vitro study. Int. J. Dent. Mater. 2021, 3, 112–119. [Google Scholar]
- Hamid, S.K.; Al Dubayan, A.H.; Alghamdi, L.A. Mechanical, Surface, and Optical Properties of PMMA Denture Base Material Modified with Azadirachta indica as an Antifungal Agent. J. Contemp. Dent. Pract. 2021, 22, 655–664. [Google Scholar] [CrossRef]
- Gad, M.M.; Abualsaud, R.; Alqarawi, F.K.; Emam, A.N.M. Translucency of nanoparticle-reinforced PMMA denture base material: An invitro comparative study. Dent. Mater. J. 2021, 40, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Rismanchian, M.; Khodaeian, N.; Bahramian, L.; Fathi, M.; Sadeghi-Aliabadi, H. In-vitro Comparison of Cytotoxicity of Two Bioactive Glasses in Micropowder and Nanopowder forms. Iran. J. Pharm. Res. 2013, 12, 437–443. [Google Scholar] [PubMed]
- Chen, R.; Han, Z.; Huang, Z.; Karki, J.; Wang, C.; Zhu, B.; Zhang, X. Antibacterial activity, cytotoxicity and mechanical behavior of nano-enhanced denture base resin with different kinds of inorganic antibacterial agents. Dent. Mater. J. 2017, 36, 693–699. [Google Scholar] [CrossRef]
- Safwat, E.M.; Alkabani, Y.M.; Zaki, D.Y. Preparation and Characterization of Dental Pit and Fissure Sealant Based on Calcium Sodium Silicate Bioactive Glasses. Silicon 2023, 15, 6785–6800. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, L.; Chen, X.; Liao, T.; Zheng, J. Preparation and characterization of bioactive glass tablets and evaluation of bioactivity and cytotoxicity in vitro. Bioact. Mater. 2017, 3, 315–321. [Google Scholar] [CrossRef]
- Salehi, S.; Gwinner, F.; Mitchell, J.C.; Pfeifer, C.; Ferracane, J.L. Cytotoxicity of resin composites containing bioactive glass fillers. Dent. Mater. J. 2015, 31, 195–203. [Google Scholar] [CrossRef]
Bioactive Glasses | SiO2 | P2O5 | CaO | Na2O | CaF2 | CaCl2 |
---|---|---|---|---|---|---|
S53P4 | 53.8% | 1.7% | 21.8% | 22.7% | 0 | 0 |
Biomin F | 36–40% | 4–6% | 28–30% | 22–24% | 1.5–3.0% | 0 |
45S5 | 46.1% | 2.6% | 26.9% | 24.4% | 0 | 0 |
Biomin C | 30.3–31.8% | 5.0–5.3% | 44.1–46.3% | 0 | 0 | 16.7–20.6% |
Materials | Surface Roughness (Ra μm) | Translucency (TP) | ||
---|---|---|---|---|
Dry | Water (7 d) | Dry | Water (7 d) | |
PMMA | 0.291 (0.03) ABa | 0.285 (0.04) Aa | 12.42 (1.59) Aa | 12.23 (1.37) Aa |
PMMA + Biomin F | 0.268 (0.06) Aa | 0.273 (0.07) Aa | 8.15 (0.85) Ba | 7.87 (0.73) Ba |
PMMA + Biomin C | 0.318 (0.04) BCa | 0.306 (0.05) Aa | 4.18 (0.39) Ca | 4.40 (0.50) Ca |
PMMA + S53P4 | 0.364 (0.04) CDa | 0.372 (0.06) Ba | 10.51 (1.33) Da | 10.19 (0.88) Da |
PMMA + 45S5 | 0.395 (0.05) Da | 0.402 (0.07) Ba | 9.14 (0.93) BDa | 8.91 (0.75) BDa |
C | O | Cl | Ca | Zn | Al | Si | S | Fe | F | P | Na | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PMMA | 65.65 | 33.27 | 0.07 | 0.23 | 0.26 | 0.17 | 0.11 | 0.04 | 0.22 | |||
20% Biomin F | 59.85 | 33.84 | 3.08 | 0.26 | 1.43 | 0.22 | 0.24 | 0.43 | 0.65 | |||
20% Biomin C | 61.72 | 35.00 | 2.09 | 0.16 | 0.36 | 0.48 | 0.19 | |||||
20% 45S5 | 57.56 | 34.37 | 0.91 | 3.97 | 0.24 | 1.35 | 0.80 | 0.62 | 0.17 | |||
20% S53P4 | 58.22 | 35.02 | 0.06 | 3.44 | 0.22 | 0.22 | 1.42 | 0.52 | 0.42 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhotan, A.; Raszewski, Z.; Chojnacka, K.; Mikulewicz, M.; Kulbacka, J.; Alaqeely, R.; Mirdad, A.; Haider, J. Evaluating the Translucency, Surface Roughness, and Cytotoxicity of a PMMA Acrylic Denture Base Reinforced with Bioactive Glasses. J. Funct. Biomater. 2024, 15, 16. https://doi.org/10.3390/jfb15010016
Alhotan A, Raszewski Z, Chojnacka K, Mikulewicz M, Kulbacka J, Alaqeely R, Mirdad A, Haider J. Evaluating the Translucency, Surface Roughness, and Cytotoxicity of a PMMA Acrylic Denture Base Reinforced with Bioactive Glasses. Journal of Functional Biomaterials. 2024; 15(1):16. https://doi.org/10.3390/jfb15010016
Chicago/Turabian StyleAlhotan, Abdulaziz, Zbigniew Raszewski, Katarzyna Chojnacka, Marcin Mikulewicz, Julita Kulbacka, Razan Alaqeely, Amani Mirdad, and Julfikar Haider. 2024. "Evaluating the Translucency, Surface Roughness, and Cytotoxicity of a PMMA Acrylic Denture Base Reinforced with Bioactive Glasses" Journal of Functional Biomaterials 15, no. 1: 16. https://doi.org/10.3390/jfb15010016
APA StyleAlhotan, A., Raszewski, Z., Chojnacka, K., Mikulewicz, M., Kulbacka, J., Alaqeely, R., Mirdad, A., & Haider, J. (2024). Evaluating the Translucency, Surface Roughness, and Cytotoxicity of a PMMA Acrylic Denture Base Reinforced with Bioactive Glasses. Journal of Functional Biomaterials, 15(1), 16. https://doi.org/10.3390/jfb15010016