The Effect of Micro-Computed Tomography Thresholding Methods on Bone Micromorphometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Micro-Computed Tomography (μCT) Analysis
2.2. Analysis of Bone
2.3. Threshold Analysis
2.4. Statistical Analysis
3. Results
3.1. Threshold Methods
3.2. Optimization of the Threshold
3.3. Micromorphometry Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orhan, K.; Büyüksungur, A. Fundamentals of Micro-CT Imaging. In Micro-computed Tomography (Micro-CT) in Medicine and Engineering; Orhan, K., Ed.; Springer: Cham, Switzerland, 2020; pp. 27–34. [Google Scholar]
- Houssein, E.H.; Mohamed, G.M.; Ibrahim, I.A.; Wazery, Y.M. An efficient multilevel image thresholding method based on improved heap-based optimizer. Sci. Rep. 2023, 13, 9094. [Google Scholar] [CrossRef]
- Bartoš, M.; Suchý, T.; Luňáčková, J.; Soukup, P. The Micro-CT Analysis of the Structural Parameters of Collagen-based Porous Scaffolds: The Influence of Image Processing and Binarization. Microsc. Microanal. 2023, 29, 244–253. [Google Scholar] [CrossRef]
- Padmasini, N.; Umamaheswari, R.; Sikkandar, M.Y. State-of-the-Art of Level-Set Methods in Segmentation and Registration of Spectral Domain Optical Coherence Tomographic Retinal Images. In Soft Computing Based Medical Image Analysis; Dey, N., Ashour, A.S., Shi, F., Balas, E.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 163–181. [Google Scholar]
- Galvez-Hernandez, P.; Gaska, K.; Kratz, J. Phase Segmentation of Uncured Prepreg X-Ray CT Micrographs. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106527. [Google Scholar] [CrossRef]
- Hsieh, J.; Nett, B.; Yu, Z.; Sauer, K.; Thibault, J.B.; Bouman, C.A. Recent advances in CT image reconstruction. Curr. Radiol. Rep. 2013, 1, 39–51. [Google Scholar] [CrossRef]
- Jaques, V.A.; Du Plessis, A.; Zemek, M.; Šalplachta, J.; Stubianová, Z.; Zikmund, T.; Kaiser, J. Review of porosity uncertainty estimation methods in computed tomography dataset. Meas. Sci. Technol. 2021, 32, 122001. [Google Scholar] [CrossRef]
- Ramesh, S.; Thyagaraj, T. Segmentation of X-ray tomography images of compacted soils. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 11. [Google Scholar] [CrossRef]
- Jayawickrama, E.G.; Muto, J.; Sasaki, O.; Nagahama, H. Damage Evolution of Onnagawa Shale by Postmortem Thresholding of X-Ray Computed Tomography. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022056. [Google Scholar] [CrossRef]
- Christiansen, B.A. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice. Bone Rep. 2016, 5, 136–140. [Google Scholar] [CrossRef]
- Dufresne, T. Segmentation techniques for analysis of bone by three-dimensional computed tomographic imaging. Technol. Health Care 1998, 6, 351–359. [Google Scholar] [CrossRef]
- Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Müller, R. Guidelines for assessment of bone microstructure in rodents using micro–computed tomography. J. Bone Miner. Res. 2010, 25, 1468–1486. [Google Scholar] [CrossRef]
- Weber, E.; Fernandez, M.; Wapner, P.; Hoffman, W. Comparison of X-ray micro-tomography measurements of densities and porosity principally to values measured by mercury porosimetry for carbon-carbon composites. Carbon 2010, 48, 2151–2158. [Google Scholar] [CrossRef]
- Tretiak, I.; Smith, R.A. A parametric study of segmentation thresholds for X-ray CT porosity characterization in composite materials. Compos. Part A Appl. Sci. Manuf. 2019, 123, 10–24. [Google Scholar] [CrossRef]
- Abera, K.A.; Manahiloh, K.N.; Nejad, M.M. The effectiveness of global thresholding techniques in segmenting two-phase porous media. Constr. Build. Mater. 2017, 142, 256–267. [Google Scholar] [CrossRef]
- Baveye, P.C.; Laba, M.; Otten, W.; Bouckaert, L.; Sterpaio, P.D.; Goswami, R.R.; Sezgin, M. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma 2010, 157, 51–63. [Google Scholar] [CrossRef]
- Lee, S.U.; Chung, S.Y.; Park, R.H. A comparative performance study of several global thresholding techniques for segmentation. Comput. Vis. Graph. Image Process. 1990, 52, 171–190. [Google Scholar] [CrossRef]
- Kim, F.; Moylan, S.; Garboczi, E.; Slotwinski, J. Investigation of pore structure in cobalt chrome additively manufactured parts using X-ray computed tomography and three-dimensional image analysis. Addit. Manuf. 2017, 17, 23–38. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.; Fan, S.; He, K.; Li, C. Automatic Thresholding of Micro-CT Trabecular Bone Images. In Proceedings of the 2008 International Conference on BioMedical Engineering and Informatics, Sanya, China, 27–30 May 2008; pp. 23–27. [Google Scholar]
- Cengiz, I.F.; Oliveira, J.M.; Reis, R.L. Micro-CT—A digital 3D microstructural voyage into scaffolds: A systematic review of the reported methods and results. Biomater. Res. 2018, 22, 26. [Google Scholar] [CrossRef]
- Orhan, K.; Jacobs, R.; Celikten, B.; Huang, Y.; de Faria Vasconcelos, K.; Nicolielo, L.F.P.; Buyuksungur, A.; Van Dessel, J. Evaluation of threshold values for root canal filling voids in micro-CT and nano-CT images. Scanning 2018, 2018, 9437569. [Google Scholar] [CrossRef]
- Rodrigues, C.T.; Jacobs, R.; Vasconcelos, K.F.; Lambrechts, P.; Rubira-Bullen, I.R.F.; Gaêta-Araujo, H.; Oliveira-Santos, C.; Duarte, M.A.H. Influence of CBCT-based volumetric distortion and beam hardening artefacts on the assessment of root canal filling quality in isthmus-containing molars. Dentomaxillofacial Radiol. 2021, 50, 20200503. [Google Scholar] [CrossRef]
- Pinto, J.C.; Torres, F.F.E.; Lucas-Oliveira, E.; Bonagamba, T.J.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M. Evaluation of curved root canals filled with a new bioceramic sealer: A microcomputed tomographic study using images with different voxel sizes and segmentation methods. Microsc. Res. Tech. 2021, 84, 2960–2967. [Google Scholar] [CrossRef]
- Jung, M.; Lommel, D.; Klimek, J. The imaging of root canal obturation using micro-CT. Int. Endod. J. 2005, 38, 617–626. [Google Scholar] [CrossRef]
- Li, H.; Qiao, T.; Ding, X. Effect of grayscale threshold on X-ray computed tomography reconstruction of gas diffusion layers in polymer electrolyte membrane fuel cells. Heliyon 2024, 10, e29378. [Google Scholar] [CrossRef]
- Torres FF, E.; Jacobs, R.; EzEldeen, M.; de Faria-Vasconcelos, K.; Guerreiro-Tanomaru, J.M.; Dos Santos, B.C.; Tanomaru-Filho, M. How image-processing parameters can influence the assessment of dental materials using micro-CT. Imaging Sci. Dent. 2020, 50, 161. [Google Scholar] [CrossRef]
- Lee, M.H.; Zea, R.; Garrett, J.W.; Graffy, P.M.; Summers, R.M.; Pickhardt, P.J. Abdominal CT body composition thresholds using automated AI tools for predicting 10-year adverse outcomes. Radiology 2022, 306, e220574. [Google Scholar] [CrossRef]
- Moreau, N.; Rousseau, C.; Fourcade, C.; Santini, G.; Ferrer, L.; Lacombe, M.; Guillerminet, C.; Jezequel, P.; Campone, M.; Normand, N.; et al. Comparison between threshold-based and deep learning-based bone segmentation on whole-body CT images. In Proceedings of the Medical Imaging 2021: Computer-Aided Diagnosis, Online, 15–19 February 2021; Volume 11597, pp. 661–667. [Google Scholar]
- Blarr, J.; Kunze, P.; Kresin, N.; Liebig, W.V.; Inal, K.; Weidenmann, K.A. Novel thresholding method and convolutional neural network for fiber volume content determination from 3D μCT images. NDT E Int. 2024, 144, 103067. [Google Scholar] [CrossRef]
Nomenclature | Description | Unit |
---|---|---|
TV | Tissue volume: The 3D volume measurement in the selected volume of interest (VOI) | mm3 |
BV | Bone volume: The 3D volume of binarized objects within the VOI | mm3 |
BS | Bone surface: The surface area measured in 3D of all of the solid objects within the VOI | mm2 |
BS/BV | Bone surface/volume ratio: 3D measured ratio of surface to the volume within the VOI | mm−1 |
BV/TV | Percent bone volume: Binarized solid objects in proportion to total VOI | % |
Conn. | Connectivity: The degree to which the object’s parts are interconnected multiple times | - |
Tb.N | Trabecular number: The number of traversals that a random linear path through the volume of interest makes across a solid structure per unit length. | mm−1 |
Tb.Th | Trabecular thickness: Mean thickness of trabeculae | mm |
Tb.Sp | Trabecular separation: Mean distance between trabeculae by binarization within the VOI. | mm |
Tb.Pf | Trabecular pattern factor: Comparison of volume and surface in 3D within the VOI. | mm−1 |
SMI | Structural model index: Indication of rods’ and plates’ prevalence in 3D | - |
Threshold Methods | Settings (Lower and Upper Threshold, Pre-Threshold, Background Information, Methods of Calculation in 2D or 3D, Image Processing Inside VOI, and Radius Information) |
---|---|
Global | Output to: Image, Lower grey threshold: 80, Upper grey threshold: 255 |
Adaptive Median-C | 2D space, Output to Image, Kernel: Round, Radius: 10, Constant: 0, Background: Dark, Pre-threshold: on, Lower grey threshold: 80, Upper grey threshold: 255 |
Adaptive Midrange-C | Output to: Image, Kernel: Round, Radius: 10, Constant: 0, Background: Dark, Pre-threshold: on, Lower grey threshold: 80, Upper grey threshold: 255 |
Adaptive Median-C | 3D space, Output to Image, Kernel: Square, Radius: 1, Constant: 0, Background: Dark, Pre-threshold: on, Lower grey threshold: 80, Upper grey threshold: 255 |
Automatic Mean | 3D space, Inside VOI, Output to Image, Background: Dark, Lower grey threshold: 26–47, Upper grey threshold: 255 |
Automatic Ridler–Calvard | 3D space, Inside VOI, Output to Image, Background: Dark, Lower grey threshold: 75, Upper grey threshold: 255 |
Automatic Mid-range | 3D space, Inside VOI, Output to Image, Background: Dark, Lower grey threshold: 127, Upper grey threshold: 255 |
Automatic Otsu | 3D space, Inside VOI, Output to Image, Background: Dark, Lower grey threshold: 80, Upper grey threshold: 255 |
Automatic Quantile | 2D space, inside ROI, Output to Image, Background: Dark, Quantile: 0.50, Lower grey threshold: 24–30, Upper grey threshold: 255 |
Automatic Triangle | 3D space, Inside VOI, Output to Image, Background: Dark, Lower grey threshold: 63, Upper grey threshold: 255 |
Two-dimensional Otsu | 3D space, Inside VOI, Output to Image, Kernel: Round, Radius: 1, Background: Dark |
Threshold Method | BS/BV | Threshold Method | BV/TV | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Pairwise Comparison | Mean | Std. Dev. | Pairwise Comparison | ||||||
Global | 0.08 | 0.01 | A | B | Global | 8.05 | 3.13 | A | |||
Automatic Triangle | 0.08 | 0.01 | A | Automatic Triangle | 10.07 | 3.49 | A | ||||
Automatic Midrange | 0.1 | 0.02 | B | Automatic Midrange | 4.07 | 1.57 | B | ||||
Automatic Mean | 0.13 | 0.01 | C | Automatic Mean | 35.66 | 3.22 | C | ||||
Automatic Quantile | 0.08 | 0.01 | A | B | Automatic Quantile | 7.4 | 3.18 | A | |||
Automatic Ridler–Calvard | 0.08 | 0.01 | A | B | Automatic Ridler–Calvard | 8.74 | 3.42 | A | |||
Adaptive Median-C | 0.09 | 0.01 | A | B | Adaptive Median-C | 7.65 | 2.87 | A | |||
Adaptive Mean-C | 0.08 | 0.01 | A | B | Adaptive Mean-C | 7.76 | 2.95 | A | |||
Adaptive Midrange-C | 0.09 | 0.01 | A | B | Adaptive Midrange-C | 6.49 | 2.48 | A | B | ||
Automatic Otsu | 0.08 | 0.01 | A | B | Automatic Otsu | 8.73 | 3.41 | A | |||
Two-dimensional (Otsu) | 0.08 | 0.01 | A | B | Two-dimensional (Otsu) | 7.85 | 2.82 | A |
Threshold Method | Tb.Th | Threshold Method | Tb.Sp | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Pairwise Comparison | Mean | Std. Dev. | Pairwise Comparison | ||||||
Global | 57.12 | 5.52 | A | Global | 360.84 | 115.87 | A | B | |||
Automatic Triangle | 59.1 | 5.64 | A | Automatic Triangle | 165.44 | 18.18 | C | ||||
Automatic Midrange | 43.73 | 6.35 | B | Automatic Midrange | 477.27 | 141.56 | A | ||||
Automatic Mean | 42.78 | 8.21 | B | Automatic Mean | 39.12 | 6.2 | D | ||||
Automatic Quantile | 55.37 | 5.93 | A | Automatic Quantile | 393.36 | 125.71 | A | B | |||
Automatic Ridler–Calvard | 58.15 | 4.97 | A | Automatic Ridler–Calvard | 306.23 | 108.04 | B | ||||
Adaptive Median-C | 45.18 | 2.98 | B | Adaptive Median-C | 359.58 | 116.15 | A | B | |||
Adaptive Mean-C | 48.39 | 3.44 | B | Adaptive Mean-C | 359.98 | 116 | A | B | |||
Adaptive Midrange-C | 47.85 | 4.55 | B | Adaptive Midrange-C | 360.95 | 115.3 | A | B | |||
Automatic Otsu | 58.12 | 4.94 | A | Automatic Otsu | 307.32 | 107.84 | B | ||||
Two-dimensional (Otsu) | 57.33 | 3.57 | A | Two-dimensional (Otsu) | 374.86 | 106.57 | A | B |
Threshold Method | Tb.Pf | Threshold Method | Tb.N | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Pairwise Comparison | Mean | Std. Dev. | Pairwise Comparison | ||||||||
Global | 0.04 | 0.01 | A | C | Global | 0.00141 | 0.00054 | A | B | ||||
Automatic Triangle | 0.06 | 0.02 | D | Automatic Triangle | 0.0017 | 0.00057 | A | ||||||
Automatic Midrange | 0.04 | 0.01 | A | B | Automatic Midrange | 0.00094 | 0.00034 | B | |||||
Automatic Mean | 0.05 | 0.01 | B | D | E | Automatic Mean | 0.00872 | 0.00226 | C | ||||
Automatic Quantile | 0.04 | 0.01 | A | C | Automatic Quantile | 0.00133 | 0.00054 | A | B | ||||
Automatic Ridler–Calvard | 0.04 | 0.01 | A | E | Automatic Ridler–Calvard | 0.00151 | 0.00063 | A | B | ||||
Adaptive Median-C | 0.03 | 0.01 | C | Adaptive Median-C | 0.00171 | 0.00069 | A | ||||||
Adaptive Mean-C | 0.03 | 0.01 | A | Adaptive Mean-C | 0.00162 | 0.00064 | A | B | |||||
Adaptive Midrange-C | 0.04 | 0.01 | A | E | Adaptive Midrange-C | 0.00137 | 0.00055 | A | B | ||||
Automatic Otsu | 0.04 | 0.01 | A | C | E | Automatic Otsu | 0.00151 | 0.00063 | A | B | |||
Two-dimensional (Otsu) | 0.03 | 0.01 | A | C | Two-dimensional (Otsu) | 0.00137 | 0.00051 | A | B |
Threshold Method | Conn. | ||||||
Mean | Std. Dev. | Pairwise Comparison | |||||
Global | 806.80 | 481.33 | A | ||||
Automatic Triangle | 1188.53 | 514.61 | A | ||||
Automatic Midrange | 669.07 | 492.58 | A | ||||
Automatic Mean | 32,318.00 | 15,244.29 | B | ||||
Automatic Quantile | 749.67 | 470,74 | A | ||||
Automatic Ridler–Calvard | 960.67 | 778.77 | A | ||||
Adaptive Median-C | 1224.53 | 674.83 | A | ||||
Adaptive Mean-C | 948.13 | 540.73 | A | ||||
Adaptive Midrange-C | 885.93 | 568.93 | A | ||||
Automatic Otsu | 958.87 | 779.05 | A | ||||
Two-dimensional (Otsu) | 668.47 | 311.73 | A | B | |||
Threshold Method | Structure model index | ||||||
Mean | Std. Dev. | Pairwise Comparison | |||||
Global | 2.77 | 0.21 | A | ||||
Automatic Triangle | 4.35 | 0.70 | D | ||||
Automatic Midrange | 2.43 | 0.18 | B | C | E | ||
Automatic Mean | 2.37 | 0.80 | A | C | |||
Automatic Quantile | 2.65 | 0.29 | A | B | |||
Automatic Ridler–Calvard | 3.11 | 0.53 | A | ||||
Adaptive Median-C | 2.06 | 0.37 | C | ||||
Adaptive Mean-C | 2.36 | 0.34 | B | C | E | ||
Adaptive Midrange-C | 2.62 | 0.23 | A | E | |||
Automatic Otsu | 3.10 | 0.52 | A | ||||
Two-dimensional (Otsu) | 2.70 | 0.27 | A | E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buyuksungur, A.; Szabó, B.T.; Dobai, A.; Orhan, K. The Effect of Micro-Computed Tomography Thresholding Methods on Bone Micromorphometric Analysis. J. Funct. Biomater. 2024, 15, 343. https://doi.org/10.3390/jfb15110343
Buyuksungur A, Szabó BT, Dobai A, Orhan K. The Effect of Micro-Computed Tomography Thresholding Methods on Bone Micromorphometric Analysis. Journal of Functional Biomaterials. 2024; 15(11):343. https://doi.org/10.3390/jfb15110343
Chicago/Turabian StyleBuyuksungur, Arda, Bence Tamás Szabó, Adrienn Dobai, and Kaan Orhan. 2024. "The Effect of Micro-Computed Tomography Thresholding Methods on Bone Micromorphometric Analysis" Journal of Functional Biomaterials 15, no. 11: 343. https://doi.org/10.3390/jfb15110343
APA StyleBuyuksungur, A., Szabó, B. T., Dobai, A., & Orhan, K. (2024). The Effect of Micro-Computed Tomography Thresholding Methods on Bone Micromorphometric Analysis. Journal of Functional Biomaterials, 15(11), 343. https://doi.org/10.3390/jfb15110343