Finite Element Combined Design and Material Optimization Addressing the Wear in Removable Implant Prosthodontics
Abstract
:1. Introduction
2. Materials and Methods
2.1. FEM Model
Abutment Type | Misfit Type (Figure 6) | Loading Situation |
---|---|---|
Solid Ti (Figure 4a) | Perfect fit, horizontal misfit, angulation misfit | Maximum, Final |
Long Ti (Figure 4b) | Angulation misfit | Maximum, Final |
Long Nitinol (Figure 4b) | Angulation misfit | Maximum, Final |
Short Nitinol (Figure 4c) | Angulation misfit | Maximum, Final |
Necked Nitinol (Figure 4d) | Angulation misfit | Maximum, Final |
2.2. Materials
2.3. Boundary Conditions
3. Results and Discussion
3.1. The Effects of the Design and Material Optimization on the Mechanical Fields in the Female Part
3.1.1. Solid Ti Implant
3.1.2. Long Ti Implant
3.1.3. Long Nitinol Implant
3.1.4. Short Nitinol Implant
3.1.5. Short-Necked Nitinol Implant
3.2. The Effects of the Design and Material Optimization on the Abutment Reaction Stresses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duerig, T.; Pelton, A.; Stöckel, D. An overview of nitinol medical applications. Mater. Sci. Eng. A 1999, 273–275, 149–160. [Google Scholar] [CrossRef]
- Tarniţă, D.; Tarniţă, D.N.; Bîzdoacă, N.; Mîndrilă, I.; Vasilescu, M. Properties and medical applications of shape memory alloys. Rom. J. Morphol. Embryol. 2009, 50, 15–21. [Google Scholar] [PubMed]
- Pannala, R.; Ross, A.S. Nitinol self-expanding metal stents—Safe and effective? Nat. Rev. Gastroenterol. Hepatol. 2011, 9, 10–11. [Google Scholar] [CrossRef] [PubMed]
- Rapp, B. Nitinol for stents. Mater. Today 2004, 7, 13. [Google Scholar] [CrossRef]
- Duerig, T.W.; Tolomeo, D.E.; Wholey, M. An overview of superelastic stent design. Minim. Invasive Ther. Allied Technol. 2000, 9, 235–246. [Google Scholar] [CrossRef]
- Shayanfard, P.; Šandera, P.; Horníková, J.; Petruška, J.; Sittner, P.; Pokluda, J. Ni-Ti Self-Expanding Vascular Stent Configuration and Biomedical Interaction with Artery: Finite Element Analysis. Solid State Phenom. 2016, 258, 366–369. [Google Scholar] [CrossRef]
- Thompson, S.A. An overview of nickel–titanium alloys used in dentistry. Int. Endod. J. 2000, 33, 297–310. [Google Scholar] [CrossRef]
- Glendenning, R.; Hood, J.; Enlow, R. Orthodontic Applications of a Superelastic Shape-Memory Alloy Model. Mater. Sci. Forum 2000, 327–328, 71–74. [Google Scholar] [CrossRef]
- Azizi, F.; Extiari, A.; Imani, M.M. Tooth alignment and pain experience with A-NiTi versus Cu-NiTi: A randomized clinical trial. BMC Oral Heal. 2021, 21, 431. [Google Scholar] [CrossRef]
- Ryhänen, J. Biocompatibility of Nitinol. Minim. Invasive Ther. Allied Technol. 2000, 9, 99–105. [Google Scholar] [CrossRef]
- Shabalovskaya, S.; Van Humbeeck, J. 9-Biocompatibility of Nitinol for biomedical applications. In Shape Memory Alloys for Biomedical Applications; Yoneyama, T., Miyazaki, S., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp. 194–233. [Google Scholar] [CrossRef]
- Wakam, R.; Benoit, A.; Mawussi, K.B.; Gorin, C. Evaluation of Retention, Wear, and Maintenance of Attachment Systems for Single- or Two-Implant-Retained Mandibular Overdentures: A Systematic Review. Materials 2022, 15, 1933. [Google Scholar] [CrossRef] [PubMed]
- de Resende, G.P.; de Menezes, E.E.G.; Maniewicz, S.; Srinivasan, M.; Leles, C.R. Prosthodontic outcomes of mandibular overdenture treatment with one or two implants: 4-year results of a randomized clinical trial. Clin. Oral Implant. Res. 2023, 34, 233–242. [Google Scholar] [CrossRef]
- Wakam, R.; Ramalingam, S.; Mawussi, K.B.; Gorin, C.; Benoit, A. Retention loss and wear assessment of three attachment systems for implant retained-mandibular overdentures: An in vitro study. J. Mech. Behav. Biomed. Mater. 2023, 150, 106269. [Google Scholar] [CrossRef]
- Karlsson, K.; Derks, J.; Wennström, J.L.; Petzold, M.; Berglundh, T. Health economic aspects of implant-supported restorative therapy. Clin. Oral Implant. Res. 2021, 33, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Patodia, C.; Sutton, A.; Gozalo, D.; Font, K. Cost and complications associated with implant-supported overdentures with a resilient-attachment system: A retrospective study. J. Prosthet. Dent. 2021, 128, 181–186. [Google Scholar] [CrossRef]
- Kern, J.-S.; Hanisch, O.; Hammächer, C.; Yildirim, M.; Wolfart, S. Telescopic Crowns on Implants and Teeth: Evaluation of a Clinical Study After 8 to 12 Years. Int. J. Oral Maxillofac. Implant. 2019, 34, 977–986. [Google Scholar] [CrossRef]
- Keshk, A.M.; Alqutaibi, A.Y.; Algabri, R.S.; Swedan, M.S.; Kaddah, A. Prosthodontic maintenance and peri-implant tissue conditions for telescopic attachment-retained mandibular implant overdenture: Systematic review and meta-analysis of randomized clinical trials. Eur. J. Dent. 2017, 11, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Krennmair, G.; Sütö, D.; Seemann, R.; Piehslinger, E. Removable four implant-supported mandibular overdentures rigidly retained with telescopic crowns or milled bars: A 3-year prospective study. Clin. Oral Implant. Res. 2011, 23, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Lian, M.; Zhao, K.; Wang, F.; Huang, W.; Zhang, X.; Wu, Y. Stud vs Bar Attachments for Maxillary Four-Implant–Supported Overdentures: 3- to 9-year Results from a Retrospective Study. Int. J. Oral Maxillofac. Implant. 2019, 34, 936–946. [Google Scholar] [CrossRef]
- Goodacre, B.J.; Goodacre, S.E.; Goodacre, C.J. Prosthetic complications with implant prostheses (2001–2017). Eur. J. Oral Implantol. 2018, 11, S27–S36. [Google Scholar]
- Choi, J.-W.; Bae, J.-H.; Jeong, C.-M.; Huh, J.-B. Retention and wear behaviors of two implant overdenture stud-type attachments at different implant angulations. J. Prosthet. Dent. 2017, 117, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, R.E.; Mohamed, F.S.; Abd-Ellah, M.E. Quantitative and qualitative assessment of the wear pattern of two attachment systems of dissimilar materials for mandibular implant-retained overdentures: An in-vitro study. BMC Oral Heal. 2023, 23, 948. [Google Scholar] [CrossRef] [PubMed]
- Karl, M.; Winter, W.; Taylor, T.D.; Heckmann, S.M. Fixation of 5-unit implant-supported fixed partial dentures and resulting bone loading: A finite element assessment based on in vivo strain measurements. Int. J. Oral Maxillofac. Implant. 2006, 21, 756–762. [Google Scholar]
- Karl, M.; Winter, W.; Taylor, T.D.; Heckmann, S.M. In vitro study on passive fit in implant-supported 5-unit fixed partial dentures. Int. J. Oral Maxillofac. Implant. 2004, 19, 30–37. [Google Scholar]
- Elsyad, M.; Hatem, O.; Shawky, A.; Emera, R. Effect of Different Degrees of Mesial Implant Inclination on the Retention and Stability of Two-Implant Mandibular Overdentures Retained with Stud Attachments: An In Vitro Study. Int. J. Oral Maxillofac. Implant. 2018, 33, 259–268. [Google Scholar] [CrossRef]
- Matthys, C.; Vervaeke, S.; Besseler, J.; De Bruyn, H. Five-year study of mandibular overdentures on stud abutments: Clinical outcome, patient satisfaction and prosthetic maintenance—Influence of bone resorption and implant position. Clin. Oral Implant. Res. 2019, 30, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Maniewicz, S.; Badoud, I.; Herrmann, F.R.; Chebib, N.; Ammann, P.; Schimmel, M.; Müller, F.; Srinivasan, M. In vitro retention force changes during cyclic dislodging of three novel attachment systems for implant overdentures with different implant angulations. Clin. Oral Implant. Res. 2019, 31, 315–327. [Google Scholar] [CrossRef]
- Hahnel, S.; Alamanos, C.; Schneider-Feyrer, S.; Stöckle, M.; Rosentritt, M. Investigation of Clinical and Laboratory Wear in Locator-Supported, Implant-Retained Overdentures. Int. J. Prosthodont. 2018, 31, 334–337. [Google Scholar] [CrossRef]
- Guédat, C.; Nagy, U.; Schimmel, M.; Müller, F.; Srinivasan, M. Clinical performance of LOCATOR® attachments: A retrospective study with 1–8 years of follow-up. Clin. Exp. Dent. Res. 2018, 4, 132–145. [Google Scholar] [CrossRef]
- Rutkunas, V.; Mizutani, H.; Takahashi, H.; Iwasaki, N. Wear simulation effects on overdenture stud attachments. Dent. Mater. J. 2011, 30, 845–853. [Google Scholar] [CrossRef]
- Winkler, S.; Piermatti, J.; Rothman, A.; Siamos, G. An overview of the O-ring implant overdenture attachment: Clinical reports. J. Oral Implant. 2002, 28, 82–86. [Google Scholar] [CrossRef]
- Campos, M.; Botelho, A.L.; dos Reis, A.C. Reasons for the fatigue of ball attachments and their O-rings: A systematic review. Dent. Med. Probl. 2023, 60, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Gent, A.N.; Pulford, C.T.R. Wear of metal by rubber. J. Mater. Sci. 1979, 14, 1301–1307. [Google Scholar] [CrossRef]
- Ortegón, S.M.; Thompson, G.A.; Agar, J.R.; Taylor, T.D.; Perdikis, D. Retention forces of spherical attachments as a function of implant and matrix angulation in mandibular overdentures: An in vitro study. J. Prosthet. Dent. 2009, 101, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Besimo, C.E.; Guarneri, A. In vitro retention force changes of prefabricated attachments for overdentures. J. Oral Rehabilit. 2003, 30, 671–678. [Google Scholar] [CrossRef]
- Guttal, S.S.; Tavargeri, A.K.; Nadiger, R.K.; Thakur, S.L. Use of an Implant O-Ring Attachment for the Tooth Supported Mandibular Overdenture: A Clinical Report. Eur. J. Dent. 2011, 05, 331–336. [Google Scholar] [CrossRef]
- Elsyad, M.A.; Elhaddad, A.A.; Khirallah, A.S. Retentive Properties of O-Ring and Locator Attachments for Implant-Retained Maxillary Overdentures: An In Vitro Study. J. Prosthodont. 2018, 27, 568–576. [Google Scholar] [CrossRef]
- Grobecker-Karl, T.; Kafitz, L.; Karl, M. Effect of Implant Position and Attachment Type on the Biomechanical Behavior of Mandibular Single Implant Prostheses. Eur. J. Prosthodont. Restor. Dent. 2020, 28, 152–160. [Google Scholar] [CrossRef]
- Wendler, F.; Diehl, L.; Shayanfard, P.; Karl, M. Implant-Supported Overdentures: Current Status and Preclinical Testing of a Novel Attachment System. J. Clin. Med. 2023, 12, 1012. [Google Scholar] [CrossRef]
- Orujov, K.; Roth, D.; Karl, M.; Grobecker-Karl, T. Retentive Behavior of Locator versus Ball Attachments on Parallel versus Non-Parallel Implants. Appl. Sci. 2024, 14, 914. [Google Scholar] [CrossRef]
- Grobecker-Karl, T.; Kafitz, L.; Karl, M. Rationale for a Novel Attachment System for Implant-Supported Overdentures. Int. J. Prosthodont. 2022, 35, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Shayanfard, P.; Wendler, F.; Hempel, P.; Karl, M. Design and Numerical-Method-Aided Optimization of a Novel Attachment System for Implant-Retained Dental Prostheses Using NiTi Shape Memory Alloys. Appl. Sci. 2022, 13, 491. [Google Scholar] [CrossRef]
- Shah, K.C.; Linsley, C.S.; Wu, B.M. Evaluation of a shape memory implant abutment system: An up to 6-month pilot clinical study. J. Prosthet. Dent. 2019, 123, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Falcinelli, C.; Valente, F.; Vasta, M.; Traini, T. Finite element analysis in implant dentistry: State of the art and future directions. Dent. Mater. 2023, 39, 539–556. [Google Scholar] [CrossRef]
- Winter, W.; Mohrle, S.; Holst, S.; Karl, M. Bone loading caused by different types of misfits of implant-supported fixed dental prostheses: A three-dimensional finite element analysis based on experimental results. Int. J. Oral Maxillofac. Implant. 2010, 25, 947–952. [Google Scholar]
- Bedoui, F.; Fayolle, B. POM Mechanical Properties. In Polyoxymethylene Handbook: Structure, Properties, Applications and their Nanocomposites (Polymer Science and Plastics Engineering); Lüftl, S., Visakh, P.M., Chandran., S., Eds.; Wiley: Hoboken, NJ, USA, 2014; pp. 241–255. [Google Scholar] [CrossRef]
- Possebon, A.P.d.R.; Schuster, A.J.; de Miranda, S.B.; Marcello-Machado, R.M.; Chagas-Júnior, O.L.; Faot, F. Do implant-retained mandibular overdentures maintain radiographic, functional, and patient-centered outcomes after 3 years of loading? Clin. Oral Implant. Res. 2020, 31, 936–945. [Google Scholar] [CrossRef]
Param./[Unit] | [MPa] | [MPa] | [MPa] | [MPa] | ||
---|---|---|---|---|---|---|
Values | 440 | 450 | 250 | 240 | ||
Param./[unit] | [GPa] | [GPa] | [-] | [-] | [-] | Tension–Compression Asymmetry |
Values | 19 | 61 | 0.33 | 0.33 | 0.049 | ~1.2 |
Young’s Modulus (MPa) | Poisson’s Ratio | Yield Stress (MPa) |
---|---|---|
750 | 0.28 | 60 |
Yield Stress (MPa) | Plastic Strain |
---|---|
60 | 0 |
65 | 0.01 |
70 | 0.04 |
71 | 0.1 |
72 | 0.3 |
73 | 0.5 |
74 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shayanfard, P.; Tan, X.; Karl, M.; Wendler, F. Finite Element Combined Design and Material Optimization Addressing the Wear in Removable Implant Prosthodontics. J. Funct. Biomater. 2024, 15, 344. https://doi.org/10.3390/jfb15110344
Shayanfard P, Tan X, Karl M, Wendler F. Finite Element Combined Design and Material Optimization Addressing the Wear in Removable Implant Prosthodontics. Journal of Functional Biomaterials. 2024; 15(11):344. https://doi.org/10.3390/jfb15110344
Chicago/Turabian StyleShayanfard, Pejman, Xingchen Tan, Matthias Karl, and Frank Wendler. 2024. "Finite Element Combined Design and Material Optimization Addressing the Wear in Removable Implant Prosthodontics" Journal of Functional Biomaterials 15, no. 11: 344. https://doi.org/10.3390/jfb15110344
APA StyleShayanfard, P., Tan, X., Karl, M., & Wendler, F. (2024). Finite Element Combined Design and Material Optimization Addressing the Wear in Removable Implant Prosthodontics. Journal of Functional Biomaterials, 15(11), 344. https://doi.org/10.3390/jfb15110344