Microstructural and Surface Texture Evaluation of Orthodontic Microimplants Covered with Bioactive Layers Enriched with Silver Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hybrid Layer Manufacturing on Microimplants
2.2. Material Examinations
2.2.1. Scanning Electron Microscopy Coupled with Energy-Dispersive Spectroscopy
2.2.2. Confocal Microscopy
3. Results
4. Discussion
4.1. Effect of Acid Etching on Microstructure and Roughness
4.2. Effects of AgNP-Containing Coatings on Surface Topography
4.3. Impact of CaP-Enriched Layers on Microstructure
4.4. Comparison Between Etched and Non-Etched Coatings
4.5. Clinical Implications and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.H.; Chang, C.S.; Hsieh, C.H.; Tseng, Y.C.; Shen, Y.S.; Huang, I.Y.; Yang, C.F.; Chen, C.M. The Use of Microimplants in Orthodontic Anchorage. J. Oral Maxillofac. Surg. 2006, 64, 1209–1213. [Google Scholar] [CrossRef] [PubMed]
- Apel, S.; Apel, C.; Morea, C.; Tortamano, A.; Dominguez, G.C.; Conrads, G. Microflora associated with successful and failed orthodontic mini-implants. Clin. Oral Implant. Res. 2009, 20, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Marin, E.; Lanzutti, A. Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials 2023, 17, 114. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elaziem, W.; Darwish, M.A.; Hamada, A.; Daoush, W.M. Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review. Mater. Design. 2024, 241, 112850. [Google Scholar] [CrossRef]
- Baxi, S.; Bhatia, V.; Tripathi, A.; Prasad Dubey, M.; Kumar, P.; Mapare, S. Temporary Anchorage Devices. Cureus 2023, 15, e44514. [Google Scholar] [CrossRef]
- Kligman, S.; Ren, Z.; Chung, C.-H.; Perillo, M.A.; Chang, Y.-C.; Koo, H.; Zheng, Z.; Li, C. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. J. Clin. Med. 2021, 10, 1641. [Google Scholar] [CrossRef]
- Barrino, F. Hybrid Organic–Inorganic Materials Prepared by Sol–Gel and Sol–Gel-Coating Method for Biomedical Use: Study and Synthetic Review of Synthesis and Properties. Coatings 2024, 14, 425. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, J.; Guan, K.; Zhou, J.; Yuan, F.; Guan, Y. Artificial neural network for cytocompatibility and antibacterial enhancement induced by femtosecond laser micro/nano structures. J. Nanobiotechnol. 2022, 20, 365. [Google Scholar] [CrossRef]
- Nouri, A.; Rohani Shirvan, A.; Li, Y.; Wen, C. Surface modification of additively manufactured metallic biomaterials with active antipathogenic properties. Smart Mater. Manuf. 2023, 1, 100001. [Google Scholar] [CrossRef]
- Hu, X.; Wang, T.; Li, F.; Mao, X. Surface modifications of biomaterials in different applied fields. RSC Adv. 2023, 13, 20495–20511. [Google Scholar] [CrossRef] [PubMed]
- Ly, N.T.K.; Shin, H.; Gupta, K.C.; Kang, I.K.; Yu, W. Bioactive Antibacterial Modification of Orthodontic Microimplants Using Chitosan Biopolymer. Macromol. Res. 2019, 27, 504–510. [Google Scholar] [CrossRef]
- Qing, Y.; Cheng, L.; Li, R.; Liu, G.; Zhang, Y.; Tang, X.; Wang, J.; Liu, H.; Qin, Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 2018, 13, 3311–3327. [Google Scholar] [CrossRef] [PubMed]
- Ziąbka, M.; Menaszek, E.; Tarasiuk, J.; Wroński, S. Biocompatible Nanocomposite Implant with Silver Nanoparticles for Otology—In Vivo Evaluation. Nanomaterials 2018, 8, 764. [Google Scholar] [CrossRef] [PubMed]
- Sycińska-Dziarnowska, M.; Szyszka-Sommerfeld, L.; Ziąbka, M.; Spagnuolo, G.; Woźniak, K. Use of Antimicrobial Silver Coatings on Fixed Orthodontic Appliances, Including Archwires, Brackets, and Microimplants: A Systematic Review. Med. Sci. Monit. 2024, 30, e944255. [Google Scholar] [CrossRef]
- Subramanian, S.K.; Anbarasu, P.; Navin, N.; Iyer, S.R. Comparison of antimicrobial effect of selenium nanoparticles and silver nanoparticles coated orthodontic mini-implants—An in vitro study. APOS 2022, 12, 20–26. [Google Scholar] [CrossRef]
- Fathy Abo-Elmahasen, M.M.; Abo Dena, A.S.; Zhran, M.; Albohy, S.A.H. Do silver/hydroxyapatite and zinc oxide nano-coatings improve inflammation around titanium orthodontic mini-screws? In vitro study. Int. Orthod. 2023, 21, 100711. [Google Scholar] [CrossRef]
- Venugopal, A.; Muthuchamy, N.; Tejani, H.; Gopalan, A.-I.; Lee, K.-P.; Lee, H.-J.; Kyung, H.M. Incorporation of silver nanoparticles on the surface of orthodontic microimplants to achieve antimicrobial properties. Korean J. Orthod. 2017, 47, 3. [Google Scholar] [CrossRef]
- Huang, C.; Wang, H.; Yao, L.; Li, L.; Lou, W.; Yao, L.; Shi, Y.; Li, R. Fabrication and evaluation of silver modified micro/nano structured titanium implant. J. Biomater. Appl. 2024, 38, 848–857. [Google Scholar] [CrossRef]
- Dutra, D.; Pereira, G.; Kantorski, K.; Valandro, L.; Zanatta, F. Does Finishing and Polishing of Restorative Materials Affect Bacterial Adhesion and Biofilm Formation? A Systematic Review. Oper. Dent. 2018, 43, E37–E52. [Google Scholar] [CrossRef]
- Peng, M.; Chuan, J.L.; Zhao, G.P.; Fu, Q. Construction of silver-coated high translucent zirconia implanting abutment material and its property of antibacterial. Artif. Cells Nanomed. Biotechnol. 2023, 51, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Xie, Y.; Fang, B.; Wang, X.; Lin, K. In situ modulation of crystallinity and nano-structures to enhance the stability and osseointegration of hydroxyapatite coatings on Ti-6Al-4V implants. Chem. Eng. J. 2018, 347, 711–720. [Google Scholar] [CrossRef]
- Vande Vannet, B.; Sabzevar, M.M.; Wehrbein, H.; Asscherickx, K. Osseointegration of miniscrews: A histomorphometric evaluation. Eur. J. Orthod. 2007, 29, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Huang, C.-W.; Cheng, Y.-T.; Peng, L.; Shi, C.; Hong, W.; Liao, J. Global research trends of peri-implantitis during the last two decades: A bibliometric and visualized study. Am. J. Transl. Res. 2023, 15, 6888–6896. [Google Scholar]
- Tomisa, A.P.; Launey, M.E.; Lee, J.S.; Mankani, M.H.; Wegst, U.G.K.; Saiz, E. Nanotechnology approaches to improve dental implants. Int. J. Oral Maxillofac. Implant. 2011, 26, 25–44. [Google Scholar]
- Liu, H.Y.; Wang, X.J.; Wang, L.P.; Lei, F.Y.; Wang, X.F.; Ai, H.J. Effect of fluoride-ion implantation on the biocompatibility of titanium for dental applications. Appl. Surf. Sci. 2008, 254, 6305–6312. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Avila, J.D.; Upadhyayula, M.; Bose, S. Porous metal implants: Processing, properties, and challenges. Int. J. Extrem. Manuf. 2023, 5, 032014. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphate coatings, films and layers. Prog. Biomater. 2012, 1, 1. [Google Scholar] [CrossRef]
- More, P.R.; Pandit, S.; Filippis, A.D.; Franci, G.; Mijakovic, I.; Galdiero, M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms 2023, 11, 369. [Google Scholar] [CrossRef]
- Mikhailova, E.O. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. 2020, 11, 84. [Google Scholar] [CrossRef]
Microimplant Characteristics | Microimplant Nomenclature |
---|---|
Titanium alloy Ti-6Al-4V unetched | Ti |
Titanium alloy Ti-6Al-4V etched in HF | Ti-E |
Titanium alloy Ti-6Al-4V etched in HF and covered with hybrid layer containing 0.5 mol % AgNPs | Ti-E-Ag |
Titanium alloy Ti-6Al-4V etched in HF and covered with hybrid layer containing 0.5 mol % AgNPs and containing Ca and P | Ti-E-Ag-CaP |
Titanium alloy Ti-6Al-4V unetched and covered with hybrid layer containing 0.5 mol % AgNPs | Ti-Ag |
Titanium alloy Ti-6Al-4V unetched and covered with hybrid layer containing 0.5 mol % AgNPs and containing Ca and P | Ti-Ag-CaP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sycińska-Dziarnowska, M.; Ziąbka, M.; Cholewa-Kowalska, K.; Spagnuolo, G.; Park, H.-S.; Lindauer, S.J.; Woźniak, K. Microstructural and Surface Texture Evaluation of Orthodontic Microimplants Covered with Bioactive Layers Enriched with Silver Nanoparticles. J. Funct. Biomater. 2024, 15, 371. https://doi.org/10.3390/jfb15120371
Sycińska-Dziarnowska M, Ziąbka M, Cholewa-Kowalska K, Spagnuolo G, Park H-S, Lindauer SJ, Woźniak K. Microstructural and Surface Texture Evaluation of Orthodontic Microimplants Covered with Bioactive Layers Enriched with Silver Nanoparticles. Journal of Functional Biomaterials. 2024; 15(12):371. https://doi.org/10.3390/jfb15120371
Chicago/Turabian StyleSycińska-Dziarnowska, Magdalena, Magdalena Ziąbka, Katarzyna Cholewa-Kowalska, Gianrico Spagnuolo, Hyo-Sang Park, Steven J. Lindauer, and Krzysztof Woźniak. 2024. "Microstructural and Surface Texture Evaluation of Orthodontic Microimplants Covered with Bioactive Layers Enriched with Silver Nanoparticles" Journal of Functional Biomaterials 15, no. 12: 371. https://doi.org/10.3390/jfb15120371
APA StyleSycińska-Dziarnowska, M., Ziąbka, M., Cholewa-Kowalska, K., Spagnuolo, G., Park, H.-S., Lindauer, S. J., & Woźniak, K. (2024). Microstructural and Surface Texture Evaluation of Orthodontic Microimplants Covered with Bioactive Layers Enriched with Silver Nanoparticles. Journal of Functional Biomaterials, 15(12), 371. https://doi.org/10.3390/jfb15120371