Improving the Anti-Tumor Effect of Indoleamine 2,3-Dioxygenase Inhibitor CY1-4 by CY1-4 Nano-Skeleton Drug Delivery System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MSNM@CY1-4
2.3. Solubility of CY1-4 in MSNM@CY1-4
2.4. In Vitro Dissolution of CY1-4 from MSNM@CY1-4
2.5. In Vivo Pharmacokinetics
2.6. In Vivo Anti-Tumor Efficacy
2.7. IDO Inhibition Assays
2.8. In Vivo Anti-Tumor Immune Flow Cytometric Analysis
2.9. HPLC Analysis of CY1-4
2.10. Statistical Analysis
3. Results
3.1. Solubility of CY1-4 in MSNM@CY1-4
3.2. In Vitro Dissolution of CY1-4 from MSNM@CY1-4
3.3. In Vivo Pharmacokinetics
3.4. In Vivo Anti-Tumor Efficacy
3.5. IDO Inhibition Assays
3.6. In Vivo Anti-Tumor Immune Flow Cytometric Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kjeldsen, J.W.; Lorentzen, C.L.; Martinenaite, E.; Ellebaek, E.; Donia, M.; Holmstroem, R.B.; Klausen, T.W.; Madsen, C.O.; Ahmed, S.M.; Weis-Banke, S.E.; et al. A phase 1/2 trial of an immune-modulatory vaccine against IDO/PD-L1 in combination with nivolumab in metastatic melanoma. Nat. Med. 2021, 27, 2212–2223. [Google Scholar] [CrossRef] [PubMed]
- Nandre, R.; Verma, V.; Gaur, P.; Patil, V.; Yang, X.; Ramlaoui, Z.; Shobaki, N.; Andersen, M.H.; Pedersen, A.W.; Zocca, M.B.; et al. IDO Vaccine Ablates Immune-Suppressive Myeloid Populations and Enhances Antitumor Effects Independent of Tumor Cell IDO Status. Cancer Immunol. Res. 2022, 10, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Stone, T.W.; Williams, R.O. Modulation of T cells by tryptophan metabolites in the kynurenine pathway. Trends Pharmacol. Sci. 2023, 44, 442–456. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.R.; Zhao, L.P.; Yang, N.; Chen, Z.X.; Kong, R.J.; Huang, C.Y.; Rao, X.N.; Chen, X.; Cheng, H.; Li, S.Y. Cascade Immune Activation of Self-Delivery Biomedicine for Photodynamic Immunotherapy Against Metastatic Tumor. Small 2023, 19, e2205694. [Google Scholar] [CrossRef] [PubMed]
- Heimberger, A.B.; Lukas, R.V. The kynurenine pathway implicated in patient delirium: Possible indications for indoleamine 2,3 dioxygenase inhibitors. J. Clin. Investig. 2023, 133, e164577. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Pu, Y.; Zhou, B.; Shen, Y.; Gao, S.; Zhou, M.; Shi, J. Photoactivatable Immunostimulatory Nanomedicine for Immunometabolic Cancer Therapy. J. Am. Chem. Soc. 2022, 144, 19038–19050. [Google Scholar] [CrossRef]
- Huang, D.; Wu, T.; Lan, S.; Liu, C.; Guo, Z.; Zhang, W. In situ photothermal nano-vaccine based on tumor cell membrane-coated black phosphorus-Au for photo-immunotherapy of metastatic breast tumors. Biomaterials 2022, 289, 121808. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, J.; Zeng, Z.; He, S.; Cheng, P.; Li, J.; Pu, K. Catalytical nano-immunocomplexes for remote-controlled sono-metabolic checkpoint trimodal cancer therapy. Nat. Commun. 2022, 13, 3468. [Google Scholar] [CrossRef]
- Zhai, L.; Bell, A.; Ladomersky, E.; Lauing, K.L.; Bollu, L.; Nguyen, B.; Genet, M.; Kim, M.; Chen, P.; Mi, X.; et al. Tumor Cell IDO Enhances Immune Suppression and Decreases Survival Independent of Tryptophan Metabolism in Glioblastoma. Clin. Cancer Res. 2021, 27, 6514–6528. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Z.; Yang, S.; Zhang, R.; Guo, J.; Yang, D. Energy-storing DNA-based hydrogel remodels tumor microenvironments for laser-free photodynamic immunotherapy. Biomaterials 2024, 309, 122620. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Yan, C.; Du, Y.; Li, T.; Yang, W.; Lei, L.; He, B.; Gao, H.; Peppas, N.A.; et al. Supramolecular artificial Nano-AUTACs enable tumor-specific metabolism protein degradation for synergistic immunotherapy. Sci. Adv. 2024, 10, eadn8079. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, M.; Qian, Y.; Li, L.; Sun, Q.; Gao, M.; Li, C. Novel PdPtCu Nanozymes for Reprogramming Tumor Microenvironment to Boost Immunotherapy Through Endoplasmic Reticulum Stress and Blocking IDO-Mediated Immune Escape. Small 2023, 19, 2303596. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Fang, J.; Lou, C.; Yang, L.; Shan, S.; Wang, Z.; Chen, Y.; Li, H.; Li, X. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy. Acta Pharm. Sin. B 2024, 14, 3432–3456. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.; Oliver, T.; Rowe, M.; Thomas, S.; Zakharia, Y.; Gilman, P.B.; Muller, A.J.; Prendergast, G.C. Indoximod: An Immunometabolic Adjuvant That Empowers T Cell Activity in Cancer. Front. Oncol. 2018, 8, 370. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, B.; Mahroo, A.; Nasir, K.; Farooq, R.K.; Jalal, N.; Rashid, M.U.; Asghar, K. Nanomedicine and cancer immunotherapy: Focus on indoleamine 2,3-dioxygenase inhibitors. Onco Targets Ther. 2017, 10, 463–476. [Google Scholar] [CrossRef]
- Rohrig, U.F.; Reynaud, A.; Majjigapu, S.R.; Vogel, P.; Pojer, F.; Zoete, V. Inhibition Mechanisms of Indoleamine 2,3-Dioxygenase 1 (IDO1). J. Med. Chem. 2019, 62, 8784–8795. [Google Scholar] [CrossRef]
- Dhiman, V.; Giri, K.K.; Zainuddin, M.; Rajagopal, S.; Mullangi, R. Determination of epacadostat, a novel IDO1 inhibitor in mouse plasma by LC-MS/MS and its application to a pharmacokinetic study in mice. Biomed. Chromatogr. 2017, 31, e3794. [Google Scholar] [CrossRef]
- Discenza, L.N.; Balog, A.; Huang, C.; Moore, R.; Ranasinghe, A.; Lin, T.A.; D’Arienzo, C.; Olah, T.V. Quantification of Linrodostat and its metabolites: Overcoming bioanalytical challenges in support of a discovery Indoleamine 2,3 dioxygenase program. J. Chromatogr. B 2022, 1207, 123305. [Google Scholar] [CrossRef]
- Kumar, S.; Jaipuri, F.A.; Waldo, J.P.; Potturi, H.; Marcinowicz, A.; Adams, J.; Van Allen, C.; Zhuang, H.; Vahanian, N.; Link, C., Jr.; et al. Discovery of indoximod prodrugs and characterization of clinical candidate NLG802. Eur. J. Med. Chem. 2020, 198, 112373. [Google Scholar] [CrossRef]
- Eskiler, G.G.; Bilir, C. The efficacy of indoximod upon stimulation with pro-inflammatory cytokines in triple-negative breast cancer cells. Immunopharmacol. Immunotoxicol. 2021, 43, 554–561. [Google Scholar] [CrossRef]
- Johnson, T.S.; MacDonald, T.J.; Pacholczyk, R.; Aguilera, D.; Al-Basheer, A.; Bajaj, M.; Bandopadhayay, P.; Berrong, Z.; Bouffet, E.; Castellino, R.C.; et al. Indoximod-based chemo-immunotherapy for pediatric brain tumors: A first-in-children phase I trial. Neuro Oncol. 2024, 26, 348–361. [Google Scholar] [CrossRef] [PubMed]
- Khoshkhabar, R.; Yazdani, M.; Hoda Alavizadeh, S.; Saberi, Z.; Arabi, L.; Reza Jaafari, M. Chemo-immunotherapy by nanoliposomal epacadostat and docetaxel combination to IDO1 inhibition and tumor microenvironment suppression. Int. Immunopharmacol. 2024, 137, 112437. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, Y.; Fang, Z.; Zhang, Y.; Ding, H.; Ren, L.; Zhang, L.; Gong, Q.; Gu, Z.; Luo, K. Dendritic Nanomedicine with Boronate Bonds for Augmented Chemo-Immunotherapy via Synergistic Modulation of Tumor Immune Microenvironment. Adv. Mater. 2024, 36, e2307263. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, C.; Sun, T.; Zhou, Y.; Huang, X.; Wu, D.; Luo, X.; Zeng, C.; Li, H. Hypoxia-Specific Metal-Organic Frameworks Augment Cancer Immunotherapy of High-Intensity Focused Ultrasound. ACS Nano 2024, 18, 18412–18424. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Ye, B.; Yu, G.; Yang, H.; Wu, H.; Ding, Y.; Huang, F.; Wang, W.; Mao, Z. Dual-Responsive Supramolecular Polymeric Nanomedicine for Self-Cascade Amplified Cancer Immunotherapy. Adv. Sci. 2024, 11, e2305382. [Google Scholar] [CrossRef]
- Opitz, C.A.; Somarribas Patterson, L.F.; Mohapatra, S.R.; Dewi, D.L.; Sadik, A.; Platten, M.; Trump, S. The therapeutic potential of targeting tryptophan catabolism in cancer. Br. J. Cancer 2020, 122, 30–44. [Google Scholar] [CrossRef]
- Song, X.; Sun, P.; Wang, J.; Guo, W.; Wang, Y.; Meng, L.H.; Liu, H. Design, synthesis, and biological evaluation of 1,2,5-oxadiazole-3-carboximidamide derivatives as novel indoleamine-2,3-dioxygenase 1 inhibitors. Eur. J. Med. Chem. 2020, 189, 112059. [Google Scholar] [CrossRef]
- Peyraud, F.; Guegan, J.P.; Bodet, D.; Cousin, S.; Bessede, A.; Italiano, A. Targeting Tryptophan Catabolism in Cancer Immunotherapy Era: Challenges and Perspectives. Front. Immunol. 2022, 13, 807271. [Google Scholar] [CrossRef]
- Yang, C.; Ng, C.T.; Li, D.; Zhang, L. Targeting Indoleamine 2,3-Dioxygenase 1: Fighting Cancers via Dormancy Regulation. Front. Immunol. 2021, 12, 725204. [Google Scholar] [CrossRef]
- Lin, S.Y.; Yeh, T.K.; Song, J.S.; Hung, M.S.; Cheng, M.F.; Liao, F.Y.; Li, A.S.; Cheng, S.Y.; Lin, L.M.; Chiu, C.H.; et al. 4-Bromophenylhydrazinyl benzenesulfonylphenylureas as indoleamine 2,3-dioxygenase inhibitors with in vivo target inhibition and anti-tumor efficacy. Bioorganic Chem. 2018, 77, 600–607. [Google Scholar] [CrossRef]
- Wen, H.; Liu, Y.; Wang, S.; Wang, T.; Zhang, G.; Chen, X.; Li, Y.; Cui, H.; Lai, F.; Sheng, L. Design and Synthesis of Indoleamine 2,3-Dioxygenase 1 Inhibitors and Evaluation of Their Use as Anti-Tumor Agents. Molecules 2019, 24, 2124. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Sloman, D.L.; Achab, A.; Zhou, H.; McGowan, M.A.; White, C.; Gibeau, C.; Zhang, H.; Pu, Q.; Bharathan, I.; et al. Oxetane Promise Delivered: Discovery of Long-Acting IDO1 Inhibitors Suitable for Q3W Oral or Parenteral Dosing. J. Med. Chem. 2022, 65, 6001–6016. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, H.; Li, Z.; Li, J.; He, S.; Hu, C.; Song, Y.; Gao, H.; Qin, Y. Transformable self-delivered supramolecular nanomaterials combined with anti-PD-1 antibodies alleviate tumor immunosuppression to treat breast cancer with bone metastasis. J. Nanobiotechnol. 2024, 22, 566. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Sun, Z.Q.; Gao, Y.; Zhang, S.T.; Yang, C.X.; Qian, Z.F.; Jin, L.L.; Zhang, J.J.; Zeng, C.; Mao, Z.W.; et al. Plasmon-Driven Catalytic Chemotherapy Augments Cancer Immunotherapy through Induction of Immunogenic Cell Death and Blockage of IDO Pathway. Adv. Mater. 2021, 33, 2102128. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.M.; Lee, S.N.; Kim, J.E.; Yoo, Y.J.; Song, C.; Shin, H.S.; Phuengkham, H.; Lee, C.H.; Um, S.H.; Lim, Y.T. Overcoming Chemoimmunotherapy-Induced Immunosuppression by Assemblable and Depot Forming Immune Modulating Nanosuspension. Adv. Sci. 2021, 8, e2102043. [Google Scholar] [CrossRef]
- Hu, X.; Hou, B.; Xu, Z.; Saeed, M.; Sun, F.; Gao, Z.; Lai, Y.; Zhu, T.; Zhang, F.; Zhang, W.; et al. Supramolecular Prodrug Nanovectors for Active Tumor Targeting and Combination Immunotherapy of Colorectal Cancer. Adv. Sci. 2020, 7, 1903332. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Wang, X.; Ren, H.; Zhang, Y. An Activatable Dual Polymer Nanosystem for Photoimmunotherapy and Metabolic Modulation of Deep-Seated Tumors. Adv. Healthc. Mater. 2024, 13, e2303305. [Google Scholar] [CrossRef]
- Guo, Y.; Zhong, T.; Duan, X.C.; Zhang, S.; Yao, X.; Yin, Y.F.; Huang, D.; Ren, W.; Zhang, Q.; Zhang, X. Improving anti-tumor activity of sorafenib tosylate by lipid- and polymer-coated nanomatrix. Drug Deliv. 2017, 24, 270–277. [Google Scholar] [CrossRef]
- Li, Z.Y.; Yin, Y.F.; Guo, Y.; Li, H.; Xu, M.Q.; Liu, M.; Wang, J.R.; Feng, Z.H.; Duan, X.C.; Zhang, S.; et al. Enhancing Anti-Tumor Activity of Sorafenib Mesoporous Silica Nanomatrix in Metastatic Breast Tumor and Hepatocellular Carcinoma via the Co-Administration with Flufenamic Acid. Int. J. Nanomed. 2020, 15, 1809–1821. [Google Scholar] [CrossRef]
- Meng, X.B.; Chen, Y.; Li, Z.J.; Zhang, M.Q. Nitrogen Heterocyclic Tryptamine Ketone Derivative and Application as IDO1 and TDO Inhibitor. CN107260743A, 20 October 2017. [Google Scholar]
- Wang, L.; Jiang, W.; Su, Y.; Zhan, M.; Peng, S.; Liu, H.; Lu, L. Self-Splittable Transcytosis Nanoraspberry for NIR-II Photo-Immunometabolic Cancer Therapy in Deep Tumor Tissue. Adv. Sci. 2022, 9, e2204067. [Google Scholar] [CrossRef]
- Zeng, F.; Fan, Z.; Li, S.; Li, L.; Sun, T.; Qiu, Y.; Nie, L.; Huang, G. Tumor Microenvironment Activated Photoacoustic-Fluorescence Bimodal Nanoprobe for Precise Chemo-immunotherapy and Immune Response Tracing of Glioblastoma. ACS Nano 2023, 17, 19753–19766. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, Q.; Jia, Z.; Cheng, N.; Zhang, S.; Chen, W.; Wang, L. Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression. Acta Pharm. Sin. B 2024, 14, 3834–3854. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.L.; Li, X.; Yao, M.J.; Niu, P.Y.; Yuan, X.C.; Li, K.; Chen, M.W.; Fu, Z.X.; Duan, X.L.; Liu, H.B.; et al. Programmable prodrug micelle with size-shrinkage and charge-reversal for chemotherapy-improved IDO immunotherapy. Biomaterials 2020, 241, 119901. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.R.; Zhao, L.P.; Huang, C.Y.; Cheng, H.; Yang, N.; Chen, Z.X.; Cai, H.; Zhang, W.; Kong, R.J.; Li, S.Y. Paraptosis Inducer to Effectively Trigger Immunogenic Cell Death for Metastatic Tumor Immunotherapy with IDO Inhibition. ACS Nano 2023, 17, 9972–9986. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, J.; Liu, J.; Yu, J.; Wang, J.; Wang, H.; Wei, Q.; Liu, M.; Xu, M.; Feng, Z.; et al. Multifunctional ZnO@DOX/ICG-LMHP Nanoparticles for Synergistic Multimodal Antitumor Activity. J. Funct. Biomater. 2024, 15, 35. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, J.; Wang, Y.; Han, Y.; Zhao, X.; Hu, H.; Qiao, M.; Chen, D. Blockage of the IDO1 pathway by charge-switchable nanoparticles amplifies immunogenic cell death for enhanced cancer immunotherapy. Acta Biomater. 2022, 150, 353–366. [Google Scholar] [CrossRef]
- Munn, D.H.; Mellor, A.L. IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol. 2016, 37, 193–207. [Google Scholar] [CrossRef]
- Meireson, A.; Devos, M.; Brochez, L. IDO Expression in Cancer: Different Compartment, Different Functionality? Front. Immunol. 2020, 11, 531491. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, T.; Zheng, L.; Liu, H.; Song, W.; Liu, D.; Li, Z.; Pan, C.X. Combination strategies to maximize the benefits of cancer immunotherapy. J. Hematol. Oncol. 2021, 14, 156. [Google Scholar] [CrossRef]
- Yang, L.; Chu, Z.; Liu, M.; Zou, Q.; Li, J.; Liu, Q.; Wang, Y.; Wang, T.; Xiang, J.; Wang, B. Amino acid metabolism in immune cells: Essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J. Hematol. Oncol. 2023, 16, 59. [Google Scholar] [CrossRef]
- Hornyák, L.; Dobos, N.; Koncz, G.; Karányi, Z.; Páll, D.; Szabó, Z.; Halmos, G.; Székvölgyi, L. The Role of Indoleamine-2,3-Dioxygenase in Cancer Development, Diagnostics, and Therapy. Front. Immunol. 2018, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Heeren, A.M.; Rotman, J.; Samuels, S.; Zijlmans, H.; Fons, G.; van de Vijver, K.K.; Bleeker, M.C.G.; Kenter, G.G.; Jordanova, E.J.; de Gruijl, T.D. Immune landscape in vulvar cancer-draining lymph nodes indicates distinct immune escape mechanisms in support of metastatic spread and growth. J. Immunother. Cancer 2021, 9, e003623. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.X.; Liu, Y.; Wu, W.; Ling, D.S.; Zhang, Q.; Zhao, P.; Hu, X. Indoleamine 2,3-dioxygenase (Ido) inhibitors and their nanomedicines for cancer immunotherapy. Biomaterials 2021, 276, 121018. [Google Scholar] [CrossRef] [PubMed]
- Pardhi, V.; Chavan, R.B.; Thipparaboina, R.; Thatikonda, S.; Naidu, V.G.M.; Shastri, N.R. Preparation, characterization, and cytotoxicity studies of niclosamide loaded mesoporous drug delivery systems. Int. J. Pharm. 2017, 528, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Hayashi, Y.; Tsuji, T.; Onuki, Y. Low-Field NMR to Characterize the Crystalline State of Ibuprofen Confined in Ordered or Nonordered Mesoporous Silica. Chem. Pharm. Bull. 2022, 70, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.; He, Z.G.; Ma, P.P.; Wang, X.; Li, C.; Sun, J.; Sun, Y.H.; Li, J. Impact of HPMC on inhibiting crystallization and improving permeability of curcumin amorphous solid dispersions. Carbohydr. Polym. 2018, 181, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Jasinski, J.B.; Braje, W.M.; Handa, S. Ultrasmall Cu(I) Nanoparticles Stabilized on Surface of HPMC: An Efficient Catalyst for Fast and Organic Solvent-Free Tandem Click Chemistry in Water. ChemSusChem 2023, 16, e202201826. [Google Scholar] [CrossRef]
- Touqeer, S.I.; Jahan, N.; Abbas, N.; Ali, A. Formulation and Process Optimization of Rauvolfia serpentina Nanosuspension by HPMC and In Vitro Evaluation of ACE Inhibitory Potential. J. Funct. Biomater. 2022, 13, 268. [Google Scholar] [CrossRef]
- Jahan, N.; Kousar, F.; Rahman, K.U.; Touqeer, S.I.; Abbas, N. Development of Nanosuspension of Artemisia absinthium Extract as Novel Drug Delivery System to Enhance Its Bioavailability and Hepatoprotective Potential. J. Funct. Biomater. 2023, 14, 433. [Google Scholar] [CrossRef]
- Lee, H.R.; Park, H.J.; Park, J.S.; Park, D.W.; Ho, M.J.; Kim, D.Y.; Lee, H.C.; Kim, E.J.; Song, W.H.; Park, J.S.; et al. Montelukast microsuspension with hypromellose for improved stability and oral absorption. Int. J. Biol. Macromol. 2021, 183, 1732–1742. [Google Scholar] [CrossRef]
- Liu, S.; Shi, D.; Chen, L.; Yan, Y.; Wang, X.; Song, Y.; Pu, S.; Liang, Y.; Zhao, Y.; Zhang, Y.; et al. Paclitaxel-loaded magnetic nanocrystals for tumor neovascular-targeted theranostics: An amplifying synergistic therapy combining magnetic hyperthermia with chemotherapy. Nanoscale 2021, 13, 3613–3626. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Duong, V.A.; Maeng, H.J. Pharmaceutical Formulations with P-Glycoprotein Inhibitory Effect as Promising Approaches for Enhancing Oral Drug Absorption and Bioavailability. Pharmaceutics 2021, 13, 1103. [Google Scholar] [CrossRef] [PubMed]
- Vrettos, N.N.; Roberts, C.J.; Zhu, Z. Gastroretentive Technologies in Tandem with Controlled-Release Strategies: A Potent Answer to Oral Drug Bioavailability and Patient Compliance Implications. Pharmaceutics 2021, 13, 1591. [Google Scholar] [CrossRef] [PubMed]
- Chibhabha, F.; Yang, Y.; Ying, K.; Jia, F.; Zhang, Q.; Ullah, S.; Liang, Z.; Xie, M.; Li, F. Non-invasive optical imaging of retinal Aβ plaques using curcumin loaded polymeric micelles in APP(swe)/PS1(ΔE9) transgenic mice for the diagnosis of Alzheimer’s disease. J. Mater. Chem. B 2020, 8, 7438–7452. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Okeke, C.I.; Zhang, L.; Zhao, H.; Li, J.; Aggrey, M.O.; Li, N.; Guo, X.; Pang, X.; Fan, L.; et al. Mixed polyethylene glycol-modified breviscapine-loaded solid lipid nanoparticles for improved brain bioavailability: Preparation, characterization, and in vivo cerebral microdialysis evaluation in adult Sprague Dawley rats. AAPS PharmSciTech 2014, 15, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhao, Z.; Liu, L.; Bai, L.; Tong, R.; Yang, H.; Zhong, L. Targeting Indoleamine Dioxygenase and Tryptophan Dioxygenase in Cancer Immunotherapy: Clinical Progress and Challenges. Drug Des. Devel. Ther. 2022, 16, 2639–2657. [Google Scholar] [CrossRef]
- Beatty, G.L.; Delman, D.; Yu, J.; Liu, M.; Li, J.H.; Zhang, L.; Lee, J.W.; Chang, R.B.; Bahary, N.; Kennedy, E.P.; et al. Treatment Response in First-Line Metastatic Pancreatic Ductal Adenocarcinoma Is Stratified By a Composite Index of Tumor Proliferation and CD8 T-Cell Infiltration. Clin. Cancer Res. 2023, 29, 3514–3525. [Google Scholar] [CrossRef]
- Soliman, H.H.; Minton, S.E.; Han, H.S.; Ismail-Khan, R.; Neuger, A.; Khambati, F.; Noyes, D.; Lush, R.; Chiappori, A.A.; Roberts, J.D.; et al. A phase I study of indoximod in patients with advanced malignancies. Oncotarget 2016, 7, 22928–22938. [Google Scholar] [CrossRef]
- Reardon, D.A.; Desjardins, A.; Rixe, O.; Cloughesy, T.; Alekar, S.; Williams, J.H.; Li, R.; Taylor, C.T.; Lassman, A.B. A phase 1 study of PF-06840003, an oral indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor in patients with recurrent malignant glioma. Investig. New Drugs 2020, 38, 1784–1795. [Google Scholar] [CrossRef]
- Beatty, G.L.; O’Dwyer, P.J.; Clark, J.; Shi, J.G.; Bowman, K.J.; Scherle, P.A.; Newton, R.C.; Schaub, R.; Maleski, J.; Leopold, L.; et al. First-in-Human Phase I Study of the Oral Inhibitor of Indoleamine 2,3-Dioxygenase-1 Epacadostat (INCB024360) in Patients with Advanced Solid Malignancies. Clin. Cancer Res. 2017, 23, 3269–3276. [Google Scholar] [CrossRef]
- Wu, P.; Yao, S.; Wang, X.; Yang, L.; Wang, S.; Dai, W.; Zhang, H.; He, B.; Wang, X.; Wang, S.; et al. Oral administration of nanoformulated indoximod ameliorates ulcerative colitis by promoting mitochondrial function and mucosal healing. Int. J. Pharm. 2023, 637, 122813. [Google Scholar] [CrossRef] [PubMed]
- Calleja, P.; Irache, J.M.; Zandueta, C.; Martinez-Oharriz, C.; Espuelas, S. A combination of nanosystems for the delivery of cancer chemoimmunotherapeutic combinations: 1-Methyltryptophan nanocrystals and paclitaxel nanoparticles. Pharmacol. Res. 2017, 126, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yan, B.; Li, H.; Yuan, J.; Guo, J.; Wang, S.; Dai, P.; Liu, X. Reprogrammed IDO-Induced Immunosuppressive Microenvironment Synergizes with Immunogenic Magnetothermodynamics for Improved Cancer Therapy. ACS Appl. Mater. Interfaces 2024, 16, 30671–30684. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Chen, D.; Ye, Z.; Zhu, X.; Li, X.; Jiao, H.; Duan, M.; Zhang, C.; Cheng, J.; Xu, L.; et al. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol. Cancer 2024, 23, 241. [Google Scholar] [CrossRef]
- Abd El Fattah, E.E. IDO/kynurenine pathway in cancer: Possible therapeutic approaches. J. Transl. Med. 2022, 20, 347. [Google Scholar] [CrossRef]
- Yoshioka, S.; Ikeda, T.; Fukuchi, S.; Kawai, Y.; Ohta, K.; Murakami, H.; Ogo, N.; Muraoka, D.; Takikawa, O.; Asai, A. Identification and Characterization of a Novel Dual Inhibitor of Indoleamine 2,3-dioxygenase 1 and Tryptophan 2,3-dioxygenase. Int. J. Tryptophan Res. 2022, 15, 11786469221138456. [Google Scholar] [CrossRef]
- Chen, X.; Xu, D.; Yu, J.; Song, X.J.; Li, X.; Cui, Y.L. Tryptophan Metabolism Disorder-Triggered Diseases, Mechanisms, and Therapeutic Strategies: A Scientometric Review. Nutrients 2024, 16, 3380. [Google Scholar] [CrossRef]
- Muller, A.J.; Manfredi, M.G.; Zakharia, Y.; Prendergast, G.C. Inhibiting IDO pathways to treat cancer: Lessons from the ECHO-301 trial and beyond. Semin. Immunopathol. 2019, 41, 41–48. [Google Scholar] [CrossRef]
- Kim, M.; Tomek, P. Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and TDO. Front. Immunol. 2021, 12, 636081. [Google Scholar] [CrossRef]
Solubility (μg/mL) | |
---|---|
CY1-4 | 1.16 ± 0.08 |
MSNM@CY1-4 (CY1-4:Sylysia:HPMC:DSPE-PEG2000 = 1:3:3:3) | 233.22 ± 8.94 |
Parameters | CY1-4 Suspension 50 mg/kg | MSNM@CY1-4 10 mg/kg | MSNM@CY1-4 20 mg/kg |
---|---|---|---|
Cmax (mg/L) | 0.17 ± 0.01 | 0.32 ± 0.03 * | 0.67 ± 0.14 ** ## |
Tmax (h) | 1.00 ± 0.00 | 0.60 ± 0.22 | 1.00 ± 0.00 |
AUC(0–∞) (mg/L·h) | 0.20 ± 0.03 | 1.29 ± 0.17 ** | 4.77 ± 0.89 ** ## |
T1/2 (h) | 1.13 ± 0.06 | 3.64 ± 0.68 ** | 12.86 ± 1.29 ** ## |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, J.; Wang, J.; Li, Z.; Yu, J.; Huang, X.; Wan, B.; Meng, X.; Zhang, X. Improving the Anti-Tumor Effect of Indoleamine 2,3-Dioxygenase Inhibitor CY1-4 by CY1-4 Nano-Skeleton Drug Delivery System. J. Funct. Biomater. 2024, 15, 372. https://doi.org/10.3390/jfb15120372
Li H, Liu J, Wang J, Li Z, Yu J, Huang X, Wan B, Meng X, Zhang X. Improving the Anti-Tumor Effect of Indoleamine 2,3-Dioxygenase Inhibitor CY1-4 by CY1-4 Nano-Skeleton Drug Delivery System. Journal of Functional Biomaterials. 2024; 15(12):372. https://doi.org/10.3390/jfb15120372
Chicago/Turabian StyleLi, Hui, Junwei Liu, Jingru Wang, Zhuoyue Li, Jianming Yu, Xu Huang, Bingchuan Wan, Xiangbao Meng, and Xuan Zhang. 2024. "Improving the Anti-Tumor Effect of Indoleamine 2,3-Dioxygenase Inhibitor CY1-4 by CY1-4 Nano-Skeleton Drug Delivery System" Journal of Functional Biomaterials 15, no. 12: 372. https://doi.org/10.3390/jfb15120372
APA StyleLi, H., Liu, J., Wang, J., Li, Z., Yu, J., Huang, X., Wan, B., Meng, X., & Zhang, X. (2024). Improving the Anti-Tumor Effect of Indoleamine 2,3-Dioxygenase Inhibitor CY1-4 by CY1-4 Nano-Skeleton Drug Delivery System. Journal of Functional Biomaterials, 15(12), 372. https://doi.org/10.3390/jfb15120372