Bone Regeneration and Repair Materials
1. Introduction
2. Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Contributors
- Tabrizian, P.; Sun, H.; Jargalsaikhan, U.; Sui, T.; Davis, S.; Su, B. Biomimetic Nacre-like Hydroxyapatite/Polymer Composites for Bone Implants. J. Funct. Biomater. 2023, 14, 393. https://doi.org/10.3390/jfb14080393
- Abdul Rahman, F.S.; Abdullah, A.M.; Radhi, A.; Shahidan, W.N.S.; Abdullah, J.Y. Physicochemical Characterization of Thermally Processed Goose Bone Ash for Bone Regeneration. J. Funct. Biomater. 2023, 14, 351. https://doi.org/10.3390/jfb14070351
- Santos, C.P.G.; Prado, J.P.S.; Fernandes, K.R.; Kido, H.W.; Dorileo, B.P.; Parisi, J.R.; Silva, J.A.; Cruz, M.A.; Custódio, M.R.; Rennó, A.C.M.; et al. Different Species of Marine Sponges Diverge in Osteogenic Potential When Therapeutically Applied as Natural Scaffolds for Bone Regeneration in Rats. J. Funct. Biomater. 2023, 14, 122. https://doi.org/10.3390/jfb14030122
- Gao, J.; Li, M.; Cheng, J.; Liu, X.; Liu, Z.; Liu, J.; Tang, P. 3D-Printed GelMA/PEGDA/F127DA Scaffolds for Bone Regeneration. J. Funct. Biomater. 2023, 14, 96. https://doi.org/10.3390/jfb14020096
- de Araújo, J.C.R.; Sobral Silva, L.A.; de Barros Lima, V.A.; Bastos Campos, T.M.; Lisboa Filho, P.N.; Okamoto, R.; de Vasconcellos, L.M.R. The Local Release of Teriparatide Incorporated in 45S5 Bioglass Promotes a Beneficial Effect on Osteogenic Cells and Bone Repair in Calvarial Defects in Ovariectomized Rats. J. Funct. Biomater. 2023, 14, 93. https://doi.org/10.3390/jfb14020093
- Adolpho, L.F.; Ribeiro, L.M.S.; Freitas, G.P.; Lopes, H.B.; Gomes, M.P.O.; Ferraz, E.P.; Gimenes, R.; Beloti, M.M.; Rosa, A.L. Mesenchymal Stem Cells Combined with a P(VDF-TrFE)/BaTiO3 Scaffold and Photobiomodulation Therapy Enhance Bone Repair in Rat Calvarial Defects. J. Funct. Biomater. 2023, 14, 306. https://doi.org/10.3390/jfb14060306
- da Silva, Z.A.; Melo, W.W.P.; Ferreira, H.H.N.; Lima, R.R.; Souza-Rodrigues, R.D. Global Trends and Future Research Directions for Temporomandibular Disorders and Stem Cells. J. Funct. Biomater. 2023, 14, 103. https://doi.org/10.3390/jfb14020103
- Dotta, T.C.; Hayann, L.; de Padua Andrade Almeida, L.; Nogueira, L.F.B.; Arnez, M.M.; Castelo, R.; Cassiano, A.F.B.; Faria, G.; Martelli-Tosi, M.; Bottini, M.; et al. Strontium Carbonate and Strontium-Substituted Calcium Carbonate Nanoparticles Form Protective Deposits on Dentin Surface and Enhance Human Dental Pulp Stem Cells Mineralization. J. Funct. Biomater. 2022, 13, 250. https://doi.org/10.3390/jfb13040250
- Miyauchi, Y.; Izutani, T.; Teranishi, Y.; Iida, T.; Nakajima, Y.; Xavier, S.P.; Baba, S. Healing Patterns of Non-Collagenated Bovine and Collagenated Porcine Xenografts Used for Sinus Floor Elevation: A Histological Study in Rabbits. J. Funct. Biomater. 2022, 13, 276. https://doi.org/10.3390/jfb13040276
- Omori, Y.; Botticelli, D.; Migani, S.; Ferreira Balan, V.; Pires Godoy, E.; Xavier, S.P. Sinus Mucosal Damage Triggered by Synthetic or Xenogeneic Bone Substitutes: A Histological Analysis in Rabbits. J. Funct. Biomater. 2022, 13, 257. https://doi.org/10.3390/jfb13040257
- Santiago, E.; Martin, V.; Colaço, B.; Fernandes, M.H.; Santos, C.; Gomes, P.S. Hydrothermal Synthesis of Fluorapatite Coatings over Titanium Implants for Enhanced Osseointegration—An In Vivo Study in the Rabbit. J. Funct. Biomater. 2022, 13, 241. https://doi.org/10.3390/jfb13040241
- Mulinari-Santos, G.; dos Santos, J.S.; Kitagawa, I.L.; de Souza Batista, F.R.; Botacin, P.R.; Antoniali, C.; Lisboa-Filho, P.N.; Okamoto, R. Estrogen Deficiency Impairs Osseointegration in Hypertensive Rats Even Treated with Alendronate Coated on the Implant Surface. J. Funct. Biomater. 2023, 14, 471. https://doi.org/10.3390/jfb14090471
- Pinto, T.S.; Gomes, A.M.; de Morais, P.B.; Zambuzzi, W.F. Adipogenesis-Related Metabolic Condition Affects Shear-Stressed Endothelial Cells Activity Responding to Titanium. J. Funct. Biomater. 2023, 14, 162. https://doi.org/10.3390/jfb14030162
- Teixeira, J.F.L.; de Souza, J.A.C.; Magalhães, F.A.C.; de Oliveira, G.J.P.L.; de Santis, J.B.; de Souza Costa, C.A.; de Souza, P.P.C. Laser-Modified Ti Surface Improves Paracrine Osteogenesis by Modulating the Expression of DKK1 in Osteoblasts. J. Funct. Biomater. 2023, 14, 224. https://doi.org/10.3390/jfb14040224
- Souza, P.G.; Adolpho, L.F.; Lopes, H.B.; Weffort, D.; Souza, A.T.P.; Oliveira, F.S.; Rosa, A.L.; Beloti, M.M. Effects of Modulation of the Hedgehog and Notch Signaling Pathways on Osteoblast Differentiation Induced by Titanium with Nanotopography. J. Funct. Biomater. 2023, 14, 79. https://doi.org/10.3390/jfb14020079
- Nefjodovs, V.; Andze, L.; Andzs, M.; Filipova, I.; Tupciauskas, R.; Vecbiskena, L.; Kapickis, M. Wood as Possible Renewable Material for Bone Implants—Literature Review. J. Funct. Biomater. 2023, 14, 266. https://doi.org/10.3390/jfb14050266
References
- Schelling, S.H. Secondary (Classical) Bone Healing. Semin. Vet. Med. Surg. Small Anim. 1991, 6, 16. [Google Scholar] [PubMed]
- Tseng, S.S.; Lee, M.A.; Reddi, A.H. Nonunions and the Potential of Stem Cells in Fracture-Healing. J. Bone Joint Surg. Am. 2008, 90 (Suppl. 1), 98. [Google Scholar] [CrossRef]
- Bosch-Rué, È.; Díez-Tercero, L.; Buitrago, J.O.; Castro, E.; Pérez, R.A. Angiogenic and Immunomodulation Role of Ions for Initial Stages of Bone Tissue Regeneration. Acta Biomater. 2023, 166, 14. [Google Scholar] [CrossRef]
- Ring, D.; Jupiter, J.B.; Sanders, R. A, Quintero, J.; Santoro, V.M.; Ganz, R.; Marti R.K. Complex Nonunion of Fractures of the Femoral Shaft Treated by Wave-Plate Osteosynthesis. J. Bone Joint. Surg. Br. 1997, 79, 289. [Google Scholar] [CrossRef] [PubMed]
- Seebach, C.; Nau, C.; Henrich, D.; Verboket, R.; Bellen, M.; Frischknecht, N.; Moeck, V.; Eichler, K.; Horlohé, K.H.S.; Hoffmann, R.; et al. Cell-Based Therapy by Autologous Bone Marrow-Derived Mononuclear Cells for Bone Augmentation of Plate-Stabilized Proximal Humeral Fractures: A Multicentric, Randomized, Open Phase IIa study. Stem Cells Transl. Med. 2024, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.M.; Holt, B.D.; Daneshmandi, L.; Laurencin, C.T.; Sydlik, S.A. Phosphate Graphene as an Intrinsically Osteoinductive Scaffold for Stem Cell-Driven Bone Regeneration. Proc. Natl. Acad. Sci. USA 2019, 116, 4855. [Google Scholar] [CrossRef] [PubMed]
- Freitas, G.P.; Lopes, H.B.; Souza, A.T.P.; Gomes, M.P.O.; Quiles, G.K.; Gordon, J.; Tye, C.; Stein, J.L.; Stein, G.S.; Lian, J.B.; et al. Mesenchymal Stem Cells Overexpressing BMP-9 by CRISPR-Cas9 Present High In Vitro Osteogenic Potential and Enhance In Vivo Bone Formation. Gene Ther. 2021, 28, 748. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, J.; Hang, R.; Yao, X.; Bai, L.; Huang, D.; Hang, R. Impact of Surface Biofunctionalization Strategies on Key Effector Cells Response in Polyacrylamide Hydrogels for Bone Regeneration. Biomater. Adv. 2024, 158, 213768. [Google Scholar] [CrossRef] [PubMed]
- Martins, E.; Diogo, G.S.; Pires, R.; Reis, R.L.; Silva, T.H. 3D Biocomposites Comprising Marine Collagen and Silica-Based Materials Inspired on the Composition of Marine Sponge Skeletons Envisaging Bone Tissue Regeneration. Mar. Drugs 2022, 20, 718. [Google Scholar] [CrossRef]
- Tabatabaei, F.; Gelin, A.; Rasoulianboroujeni, M.; Tayebi, L. Coating of 3D Printed PCL/TCP Scaffolds Using Homogenized-Fibrillated Collagen. Colloids Surf. B Biointerfaces 2022, 217, 112670. [Google Scholar] [CrossRef]
- Xynos, I.D.; Hukkanen, M.V.; Batten, J.J.; Buttery, L.D.; Hench, L.L.; Polak, J.M. Bioglass 45S5 Stimulates Osteoblast Turnover and Enhances Bone Formation In Vitro: Implications and Applications for Bone Tissue Engineering. Calcif. Tissue Int. 2000, 67, 321. [Google Scholar] [CrossRef]
- Jones, J.R. Review of Bioactive Glass: From Hench to Hybrids. Acta Biomater. 2013, 9, 4457. [Google Scholar] [CrossRef] [PubMed]
- Freitas, G.P.; Lopes, H.B.; Almeida, A.L.G.; Abuna, R.P.F.; Gimenes, R.; Souza, L.E.B.; Covas, D.T.; Beloti, M.M.; Rosa, A.L. Potential of Osteoblastic Cells Derived from Bone Marrow and Adipose Tissue Associated with a Polymer/Ceramic Composite to Repair Bone Tissue. Calcif. Tissue Int. 2017, 101, 312. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, E.; Iaquinta, M.R.; Mosaico, M.; De Pace, R.; D’Agostino, A.; Tognon, M.; Martini, F. Human Mesenchymal Stem Cells and Innovative Scaffolds for Bone Tissue Engineering Applications. Tissue Eng. Part. B Rev. 2023, 29, 514. [Google Scholar] [CrossRef]
- Degli Esposti, L.; Ionescu, A.C.; Gandolfi, S.; Ilie, N.; Adamiano, A.; Brambilla, E.; Iafisco, M. Natural, Biphasic Calcium Phosphate from Fish Bones for Enamel Remineralization and Dentin Tubules Occlusion. Dent. Mater. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Zhao, Y.; Lu, Y.; Bao, S.; Zhu, W.; Chen, Q.; Si, M. Clinical and Radiographic Outcomes of Lateral Sinus Floor Elevation with Simultaneous Hydrophilic Implants Placement: A Retrospective Study of 2–5 Years. Clin. Oral Implants Res. 2024, 1–13. [Google Scholar] [CrossRef]
- Listl, S.; Faggion, C.M., Jr. An Economic Evaluation of Different Sinus Lift Techniques. J. Clin. Periodontol. 2010, 37, 777. [Google Scholar] [CrossRef]
- Brånemark, P.I.; Hansson, B.O.; Adell, R.; Breine, U.; Lindström, J.; Hallén, O.; Ohman, A. Osseointegrated Implants in the Treatment of the Edentulous Jaw. Experience from a 10-Year Period. Scand. J. Plast. Reconstr. Surg. Suppl. 1977, 16, 1. [Google Scholar]
- Freitas, G.P.; Lopes, H.B.; Martins-Neto, E.C.; de Oliveira, P.T.; Beloti, M.M.; Rosa, A.L. Effect of Surface Nanotopography on Bone Response to Titanium Implant. J. Oral Implantol. 2016, 42, 240. [Google Scholar] [CrossRef]
- Wu, X.; Al-Abedalla, K.; Eimar, H.; Arekunnath Madathil, S.; Abi-Nader, S.; Daniel, N.G.; Nicolau, B.; Tamimi, F. Antihypertensive Medications and the Survival Rate of Osseointegrated Dental Implants: A Cohort Study. Clin. Implant. Dent. Relat. Res. 2016, 18, 1171. [Google Scholar] [CrossRef]
- Siverino, C.; Tirkkonen-Rajasalo, L.; Freitag, L.; Günther, C.; Thompson, K.; Styger, U.; Zeiter, S.; Eglin, D.; Stadelmann, V.A. Restoring Implant Fixation Strength in Osteoporotic Bone With a Hydrogel Locally Delivering Zoledronic Acid and Bone Morphogenetic Protein 2. A Longitudinal In Vivo MicroCT Study in Rats. Bone 2024, 180, 117011. [Google Scholar] [CrossRef] [PubMed]
- Rőszer, T.; Józsa, T.; Kiss-Tóth, E.D.; De Clerck, N.; Balogh, L. Leptin Receptor Deficient Diabetic (Db/Db) Mice are Compromised in Postnatal Bone Regeneration. Cell Tissue Res. 2014, 356, 195. [Google Scholar] [CrossRef]
- Bighetti-Trevisan, R.L.; Almeida, L.O.; Castro-Raucci, L.M.S.; Gordon, J.A.R.; Tye, C.E.; Stein, G.S.; Lian, J.B.; Stein, J.L.; Rosa, A.L.; Beloti, M.M. Titanium with Nanotopography Attenuates the Osteoclast-Induced Disruption of Osteoblast Differentiation by Regulating Histone Methylation. Biomater. Adv. 2022, 134, 112548. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, S.; Ravindran, S.; Cooper, L.F. Topography-Mediated Immunomodulation in Osseointegration; Ally or Enemy. Biomaterials 2022, 291, 121903. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beloti, M.M.; Rosa, A.L. Bone Regeneration and Repair Materials. J. Funct. Biomater. 2024, 15, 78. https://doi.org/10.3390/jfb15030078
Beloti MM, Rosa AL. Bone Regeneration and Repair Materials. Journal of Functional Biomaterials. 2024; 15(3):78. https://doi.org/10.3390/jfb15030078
Chicago/Turabian StyleBeloti, Marcio Mateus, and Adalberto Luiz Rosa. 2024. "Bone Regeneration and Repair Materials" Journal of Functional Biomaterials 15, no. 3: 78. https://doi.org/10.3390/jfb15030078
APA StyleBeloti, M. M., & Rosa, A. L. (2024). Bone Regeneration and Repair Materials. Journal of Functional Biomaterials, 15(3), 78. https://doi.org/10.3390/jfb15030078