A Type of Ferrocene-Based Derivative FE-1 COF Material for Glycopeptide and Phosphopeptide Selective Enrichment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Reagents
2.2. Synthesis of FE-1 COF Material
- (1)
- Weigh 200 mg of 1,1′-ferrocene dimethanol, dissolve it in glacial acetic acid (8 mL), add 520 mg of sodium azide and stir for 4–6 h at 50 °C. Rotate in vacuo to remove the solvent. Partition the residue between dichloromethane (3 × 15 mL) and saturated sodium bicarbonate solution, and the organic salt layer was washed with saturated brine. The material is dried and filtered with anhydrous sodium sulfate.
- (2)
- The obtained 1,1′-bis(azidomethyl)ferrocene oily liquid (174 mg) was dissolved in ethanol (4.8 mL) and water (1 mL), and 143 mg NH4Cl and 149 mg were added to activated zinc powder. The suspension was stirred vigorously at room temperature until TLC analysis showed complete conversion of the substrate. After filtration, the filtrate was partitioned between ethyl acetate (3 × 20 mL) and 1 mol/L ammonia solution (14 mL). The organic layer was separated and washed with saturated brine. Anhydrous sodium sulfate treatment was used for dehydration. The organic solvent was removed by rotary evaporation to obtain the final product. Diaminoferrocene is a deep yellow oily liquid.
- (3)
- A Pyrex tube (10 cm) was used as the reaction vessel; diamino ferrocene (0.1 mmol) and dialdehyde ferrocene (0.1 mmol) were dissolved in 3 mL DMAc, 1.5 mL 1,4-dioxane and 0.5 mL acetic acid (6 mol/L). The obtained material is ultrasounded for 5 min and thawed with a freezer pump. The tube was sealed after 3 cycles and left to react at 120 °C for 3d. After the reaction was completed, acetone/DMAC was washed 3 times each. Dry under vacuum at 180 °C overnight. The preparation of ferrocene-based covalent organic material FE-1 is shown in Figure 1.
2.3. Preparation of Tryptic Digests of Standard Proteins and Biological Samples
2.4. Enrichment of N-Glycopeptides and Phosphopeptides
2.4.1. The Process of Glycopeptide Enrichment
2.4.2. The Process of Phosphopeptide Enrichment
2.5. Mixing Enrichment of Glycopeptides and Phosphopeptides
2.6. Separation and Enrichment of Glycopeptides in Human Serum
2.7. Mass Spectrometry Analysis and Data Analysis
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Selective Enrichment of Phosphopeptides and Determination of Enrichment Capacity
3.3. Selective Enrichment of Glycopeptides
3.4. Simultaneous Enrichment of Phosphopeptides and Glycopeptides
3.5. Selective Enrichment of Phosphopeptides and Glycopeptides in Biological Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Walsh, G.; Jefferis, R. Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 2006, 24, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.T.; Garneau-Tsodikova, S.; Gatto, G.J., Jr. Protein Posttranslational Modifications: The Chemistry of Proteome Diversifications. Angew. Chem. Int. Ed. Eng. 2005, 44, 7342–7372. [Google Scholar] [CrossRef] [PubMed]
- Signaling, T.H. 2000 and beyond. Cell 2000, 100, 113–127. [Google Scholar]
- Morandell, S.; Stasyk, T.; Grosstessner-Hain, K.; Roitinger, E.; Mechtler, K.; Bonn, G.K.; Huber, L.A. Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics 2006, 6, 4047–4056. [Google Scholar] [CrossRef] [PubMed]
- Isaji, T.; Gu, J.; Nishiuchi, R.; Zhao, Y. Introduction of bisecting GlcNAc into integrin alpha5beta1 reduces ligand binding and down-regulates cell adhesion and cell migration. J. Biol. Chem. 2004, 279, 19747–19754. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Handa, K.; Withers, D.A.; Hakomori, S. Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motility: A preliminary note on functional alpha3, alpha5-CD82 glycosylation complex in ldlD 14 cells. Biochem. Biophys. Res. Commun. 2000, 279, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Bruckner, K.; Perez, L.; Clausen, H.; Cohen, S. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 2000, 406, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Helenius, A.; Aebi, M. Intracellular Functions of N-linked Glycans. Science 2001, 291, 2364–2369. [Google Scholar] [CrossRef]
- Drake, P.M.; Cho, W.; Li, B.; Prakobphol, A.; Johansen, E.; Anderson, N.L.; Regnier, F.E.; Gibson, B.W.S.; Fisher, J. Sweetening the pot: Adding glycosylation to the biomarker discovery equation. Clin. Chem. 2010, 56, 223–236. [Google Scholar] [CrossRef]
- Hebert, D.N.; Lamriben, L.; Powers, E.T.; Kelly, J.W. The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis. Nat. Chem. Biol. 2014, 10, 902–910. [Google Scholar] [CrossRef]
- Cova, M.; Oliveira-Silva, R.; Ferreira, J.A.; Ferreira, R.; Amado, F.; Daniel-da-Silva, A.L.; Vitorino, R. Glycoprotein enrichment method using a selective magmetic nano-probe platform(MNP) functionalized with lectins. Clin. Proteom. 2015, 1243, 83–100. [Google Scholar]
- Gbormittah, F.O.; Lee, L.Y.; Taylor, K.; Hancock, W.S.; Iliopoulos, O. Comparative Studies of the Proteome, Glycoproteome, and N-Glycome of Clear Cell Renal Cell Carcinoma Plasma before and after Curative Nephrectomy. J. Proteome Res. 2014, 13, 4889–4900. [Google Scholar] [CrossRef] [PubMed]
- Alpert, A.J. Hydrophilic-interaction chromatography for the separation of peptides nucleic acids and other polar compounds. J. Chromatogr. 1990, 499, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Seidler, J.; Zinn, N.; Haaf, E.; Boehm, M.E.; Winter, D.; Schlosser, A. Metal ion-mobilizing additives for comprehensive detection of femtomole amounts of phosphopeptides by reversed phase LC-MS. Amino Acids 2011, 41, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Boersema, P.J.; Mohammed, S.; Heck, A.J.R. Phosphopeptide fragmentation and analysis by mass spectrometry. J. Mass Spectrom. 2009, 44, 861–878. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.V.; Mann, M. Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry. Mol. Cell. Proteom. 2013, 12, 3444–3452. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Zhao, H.; Pu, C.; Zhan, Q.; Sheng, Q.; Lan, M. Hydrophilic phytic acid-coated magnetic graphene for titanium(IV) immobilization as a novel hydrophilic interaction liquid chromatography-immobilized metal affinity chromatography platform for glyco- and phosphopeptide enrichment with controllable selectivity. Anal. Chem. 2018, 90, 11008–11015. [Google Scholar] [PubMed]
- Wang, K.; Yu, A.; Gao, Y.; Chen, M.; Yuan, H.; Zhang, S.; Ouyang, G. A nitrogen-doped graphene tube composite based on immobilized metal affinity chromatography for the capture of phosphopeptides. Talanta 2023, 261, 124617. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Z.; Zhang, Y.; Chen, M.; Wang, J. ZrO2 doped magnetic mesoporous polyimide for the efficient enrichment of phosphopeptides. Talanta 2018, 188, 385–392. [Google Scholar] [CrossRef]
- Jiang, Y.; Liang, W.; Wang, B.; Feng, Q.; Xia, C.; Wang, Q.; Yan, Y.; Zhao, L.; Cui, W.; Liang, H. Magnetic mesoporous silica nanoparticles modified by phosphonate functionalized ionic liquid for selective enrichment of phosphopeptides. RSC Adv. 2022, 12, 26859–26865. [Google Scholar] [CrossRef]
- Bortel, P.; Piga, I.; Koenig, C.; Gerner, C.; Martinez-Val, A.; Olsen, J.V. Systematic optimization of automated phosphopeptide enrichment for high-sensitivity phosphoproteomics. Mol. Cell. Proteom. 2024, 23, 100754. [Google Scholar] [CrossRef] [PubMed]
- Alpert, A.J.; Hudecz, O.; Mechtler, K. Anion-Exchange Chromatography of Phosphopeptides: Weak Anion Exchange versus Strong Anion Exchange and Anion-Exchange Chromatography versus Electrostatic Repulsion-Hydrophilic Interaction Chromatography. Anal. Chem. 2015, 87, 4704–4711. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; He, X.; Chen, X.; Hussain, D.; Ding, J.; Feng, Y. Magnetic graphitic carbon nitride anion exchanger for specific enrichment of phosphopeptides. J. Chromatogr. A 2016, 1437, 137–1442. [Google Scholar] [CrossRef] [PubMed]
- Boersema, P.J.; Foong, L.Y.; Ding, V.M.; Lemeer, S.; van Breukelen, B.; Philp, R.; Boekhorst, J.; Snel, B.; den Hertog, J.; Choo, A.B.; et al. In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Mol. Cell Proteom. 2010, 9, 84–99. [Google Scholar] [CrossRef] [PubMed]
- Zoumaro-Djayoon, A.D.; Heck, A.J.; Munoz, J. Targeted analysis of tyrosine phosphorylation by immuno-affinity enrichment of tyrosine phosphorylated peptides prior to mass spectrometric analysis. Methods 2012, 56, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fu, D.; Xiao, Y.; Gao, Z.; Yu, L.; Liang, X. Synthesis and evaluation of a silica-bonded concanavalin A material for lectin affinity enrichment of N-linked glycoproteins and glycopeptides. Anal. Chem. 2015, 7, 25–28. [Google Scholar] [CrossRef]
- Kuo, C.W.; Wu, I.L.; Hsiao, H.H.; Khoo, K.H. Rapid glycopeptide enrichment and N-glycosylation site mapping strategies based on amine-functionalized magnetic nanoparticles. Anal. Bioanal. Chem. 2012, 402, 2765–2776. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, J.; Gao, Y.; Zhao, L.; Liu, L.; Qin, Y.; Huang, C. Identification of potential serum proteomic biomarkers for clear cell renal cell carcinoma. PLoS ONE 2014, 9, e111364. [Google Scholar] [CrossRef]
- Khatri, K.; Klein, J.A.; Haserick, J.R.; Leon, D.R.; Costello, C.E.; McComb, M.E.; Zaia, J. Microfluidic capillary electrophoresis–mass spectrometry for analysis of monosaccharides, oligosaccharides, and glycopeptides. Anal. Chem. 2017, 89, 6645–6655. [Google Scholar] [CrossRef]
- Totten, S.M.; Kullolli, M.; Pitteri, S.J. Multi-Lectin Affinity Chromatography for Separation, Identification, and Quantitation of Intact Protein Glycoforms in Complex Biological Mixtures. Methods Mol. Biol. 2017, 1550, 99–113. [Google Scholar]
- Hong, Q.; Ruhaak, L.R.; Stroble, C.; Parker, E.; Huang, J.; Maverakis, E.; Lebrilla, C.B. A Method for Comprehensive Glycosite Mapping and Direct Quantitation of Serum Glycoproteins. J. Proteome Res. 2015, 14, 5179–5192. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yu, M.; Zhang, Y.; Wang, C.; Lu, H. Hydrazide Functionalized Core–Shell Magnetic Nanocomposites for Highly Specific Enrichment of N-Glycopeptides. ACS Appl. Mater. Interfaces 2014, 6, 7823–7832. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.Y.; Mant, C.T.; Hodges, R.S. Hydrophilic-interaction chromatography of peptides on hydrophilic and strong cation-exchange columns. J. Chromatogr. A 1991, 548, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, Q.; Su, J.; Tian, H. A dual-ion-switched molecular brake based on ferrocene. Chem. Commun. 2009, 13, 1700–1702. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Medel, M.J.R.; Daniel, M.C.; Blais, J.C.; Astruc, D. Redox-robust pentamethylamidoferrocenyl metallodendrimers that cleanly and selectively recognize the H2PO4—anion. Chem. Commun. 2003, 4, 464–465. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, L.; Yu, H.; Khan, R.U.; Haroon, M. Ferrocene-based redox-responsive polymer gels: Synthesis, structures and applications. J. Organomet. Chem. 2017, 828, 38–51. [Google Scholar] [CrossRef]
- Li, L.; Shi, J.L.; Yan, J.N.; Zhao, X.G.; Chen, H.G. Mesoporous SBA-15 material functionalized with ferrocene group and its use as heterogeneous catalyst for benzene hydroxylation. Appl. Catal. A Gen. 2004, 263, 213–217. [Google Scholar] [CrossRef]
- Sha, Y.; Jia, H.; Shen, Z.; Luo, Z. Synthetic strategies, properties, and applications of unsaturated main-chain metallopolymers prepared by olefin metathesis polymerization. Polym. Rev. 2021, 61, 415–455. [Google Scholar] [CrossRef]
- Wong, W.W.; Curiel, D.; Lai, S.W.; Drew, M.G.; Beer, P.D. Ditopic redox-active polyferrocenyl zinc (II) dithiocarbamate macrocyclic receptors: Synthesis, coordination and electrochemical recognition properties. Dalton Trans. 2005, 4, 774–781. [Google Scholar] [CrossRef]
- Appoh, F.E.; Thomas, D.S.; Kraatz, H.B. Glutamic acid dendrimers attached to a central ferrocene core: Synthesis and properties. Macromolecules 2005, 38, 7562–7570. [Google Scholar] [CrossRef]
- Gallei, M.; Rüttiger, C. Recent Trends in Metallopolymer Design: Redox-Controlled Surfaces, Porous Membranes, and Switchable Optical Materials Using Ferrocene-Containing Polymers. Chem.–A Eur. J. 2018, 24, 10006–10021. [Google Scholar] [CrossRef] [PubMed]
- Labande, A.; Ruiz, J.; Astruc, D. Supramolecular gold nanoparticles for the redox recognition of oxoanions: Syntheses, titrations, stereoelectronic effects, and selectivity. J. Am. Chem. Soc. 2002, 124, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Aranzaes, J.R.; Belin, C.; Astruc, D. Assembly of Dendrimers with Redox-Active [{CpFe(μ3-CO)}4] Clusters at the Periphery and Their Application to Oxo-Anion and Adenosine-5′-Triphosphate Sensing. Angew. Chem. 2006, 118, 138–142. [Google Scholar] [CrossRef]
- Wang, Y.; Astruc, D.; Abd-El-Aziz, A.S. Metallopolymers for advanced sustainable applications. Chem. Soc. Rev. 2019, 48, 558–636. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, J.; Garzón, C.; Bergmann, C.; Geshev, J.; Quijada, R. Development of multifunctional polymer nanocomposites with carbon-based hybrid nanostructures synthesized from ferrocene. Eur. Polym. J. 2016, 75, 200–209. [Google Scholar] [CrossRef]
- Chun, W.; Qian, N.; Jian, L.; Yujun, L. Catalytic activity of modified protein anchored palladium in coupling reaction of organotin and acid chloride. Chem. Reag. 2002, 24, 264–265. [Google Scholar]
- Jeon, H.S.; Jo, M.H.; Kim, H.J.; Lee, M.H.; Yu, S.K.; Kim, C.S.; Lee, S.Y.; Kim, S.G.; Chun, H.S.; Park, E.; et al. Anticancer activities of diphenyl difluoroketone, a novel curcumin analog, on KB human oral cancer cells. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 451–456. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, L.; Liu, F.; Astruc, D.; Gu, H. Supramolecular redox-responsive ferrocene hydrogels and microgels. Coord. Chem. Rev. 2020, 419, 213406. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, Z.; Wu, M.; Liao, B.; Zhou, H.; Ou, B.; Yu, G.; Zhou, Z.; Li, X. Novel ferrocene-based nanoporous organic polymers for clean energy application. RSC Adv. 2015, 5, 8933–8937. [Google Scholar] [CrossRef]
- Guo, W.; Lei, Z. Redox-responsive supramolecular polymer based on β-cyclodextrin and ferrocene-decorated main chain of PAA. J. Mater. Res. 2015, 30, 3201–3210. [Google Scholar] [CrossRef]
- Kweon, H.K.; Hakansson, K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal. Chem. 2006, 78, 1743–1749. [Google Scholar] [CrossRef]
- Qiu, W.; Evans, C.A.; Landels, A.; Pham, T.K.; Wright, P.C. Phosphopeptide enrichment for phosphoproteomic analysis-a tutorial and review of novel materials. Anal. Chim. Acta 2020, 1129, 158–180. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Gropp, C.; Ma, Y.; Zhu, C.; Yaghi, O.M. 3D covalent organic frameworks selectively crystallized through conformational design. J. Am. Chem. Soc. 2020, 142, 20335–20339. [Google Scholar] [CrossRef]
- McNulty, D.E.; Annan, R.S. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol. Cell. Proteom. 2008, 7, 971–980. [Google Scholar] [CrossRef]
- Garai, B.; Shetty, D.; Skorjanc, T.; Gándara, F.; Naleem, N.; Varghese, S.; Sharma, S.K.; Baias, M.; Jagannathan, R.; Olson, M.A.; et al. Taming the topology of calix[4]arene-based 2D-covalent organic frameworks: Interpenetrated vs noninterpenetrated frameworks and their selective removal of cationic dyes. J. Am. Chem. Soc. 2021, 143, 3407–3415. [Google Scholar] [CrossRef]
- Li, Y.; Guo, L.; Lv, Y.; Zhao, Z.; Ma, Y.; Chen, W.; Xing, G.; Jiang, D.; Chen, L. Polymorphism of 2D imine covalent organic frameworks. Angew. Chem. 2021, 133, 5423–5429. [Google Scholar] [CrossRef]
- Sun, N.; Deng, C.; Li, Y.; Zhang, X. Size-Exclusive magnetic graphene/mesoporous silica composites with titanium(IV)-immobilized pore walls for selective enrichment of endogenous phosphorylated peptides. ACS Appl. Mater. Interfaces 2014, 6, 11799–11804. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, X.; Deng, C. Designed synthesis of titania nanoparticles coated hierarchially ordered macro/mesoporous silica for selective enrichment of phosphopeptides. ACS Appl. Mater. Interfaces 2014, 6, 5467–5471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Xu, S.; Ding, F.; Zhang, W.; Liu, H. A Type of Ferrocene-Based Derivative FE-1 COF Material for Glycopeptide and Phosphopeptide Selective Enrichment. J. Funct. Biomater. 2024, 15, 185. https://doi.org/10.3390/jfb15070185
Wu Y, Xu S, Ding F, Zhang W, Liu H. A Type of Ferrocene-Based Derivative FE-1 COF Material for Glycopeptide and Phosphopeptide Selective Enrichment. Journal of Functional Biomaterials. 2024; 15(7):185. https://doi.org/10.3390/jfb15070185
Chicago/Turabian StyleWu, Yu, Sen Xu, Fengjuan Ding, Weibing Zhang, and Haiyan Liu. 2024. "A Type of Ferrocene-Based Derivative FE-1 COF Material for Glycopeptide and Phosphopeptide Selective Enrichment" Journal of Functional Biomaterials 15, no. 7: 185. https://doi.org/10.3390/jfb15070185
APA StyleWu, Y., Xu, S., Ding, F., Zhang, W., & Liu, H. (2024). A Type of Ferrocene-Based Derivative FE-1 COF Material for Glycopeptide and Phosphopeptide Selective Enrichment. Journal of Functional Biomaterials, 15(7), 185. https://doi.org/10.3390/jfb15070185