Comparison of Biomechanical and Microstructural Properties of Aortic Graft Materials in Aortic Repair Surgeries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Uniaxial Tensile Testing
2.3. Constitutive Modeling
2.4. Quantitative Histological Analysis
2.5. Structural Characterization
2.6. Statistical Analysis
3. Results
3.1. Comparison of Mechanical Failure Properties among Five Material Groups
3.2. Comparison of Material Stiffness among Five Material Groups
3.3. Comparison of Histological Properties among Four Tissue Groups
3.4. Tissue Ultrastructure from SEM
4. Discussion
4.1. Clinical Implication from Mechanical Comparison among Five Materials
4.2. Relationship between Mechanical and Microstructural/Ultrastructural Properties
4.3. Mechanical–Microstructural Property Relationship for Aortic Graft Design
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Isselbacher, E.M.; Preventza, O.; Black, J.H.; Augoustides, J.G.; Beck, A.W.; Bolen, M.A.; Braverman, A.C.; Bray, B.E.; Brown-Zimmerman, M.M.; Chen, E.P.; et al. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: A report of the American Heart Association/American College of Cardiology joint committee on clinical practice guidelines. Circulation 2022, 146, E334–E482. [Google Scholar] [CrossRef] [PubMed]
- Bossone, E.; Eagle, K.A. Epidemiology and management of aortic disease: Aortic aneurysms and acute aortic syndromes. Nat. Rev. Cardiol. 2021, 18, 331–348. [Google Scholar] [CrossRef] [PubMed]
- Ogino, H.; Iida, O.; Akutsu, K.; Chiba, Y.; Hayashi, H.; Ishibashi-Ueda, H.; Kaji, S.; Kato, M.; Komori, K.; Matsuda, H.; et al. JCS/JSCVS/JATS/JSVS 2020 guideline on diagnosis and treatment of aortic aneurysm and aortic dissection. Circ. J. 2023, 87, 1410–1621. [Google Scholar]
- Vitanova, K.; Cleuziou, J.; Pabst von Ohain, J.; Burri, M.; Eicken, A.; Lange, R. Recoarctation after Norwood I procedure for hypoplastic left heart syndrome: Impact of patch material. Ann. Thorac. Surg. 2017, 103, 617–621. [Google Scholar] [CrossRef]
- Piciucchi, S.; Goodman, L.R.; Earing, M.; Nicolosi, A.; Almassi, H.; Tisol, W.; Shannon-Stone, M. Delayed complications of coarctation of the aorta repair using Dacron patch aortoplasty. J. Thorac. Imaging 2008, 23, 278–283. [Google Scholar] [CrossRef]
- Kurt, M.; Krian, A.; Litmathe, J. Autologous pericardium as patch material in the high pressure-system—Report of a case of subsequent development of an aneurysm and review of the literature. Arch. Med. Sci. 2006, 2, 286–288. [Google Scholar]
- Cooke, P.A.; Nobis, P.A.; Stoney, R.J. Dacron aortic graft failure. Arch. Surg. 1974, 108, 101–103. [Google Scholar] [CrossRef]
- Spadaccio, C.; Rainer, A.; Barbato, R.; Chello, M.; Meyns, B. The fate of large-diameter Dacron® vascular grafts in surgical practice: Are we really satisfied? Int. J. Cardiol. 2013, 168, 5028–5029. [Google Scholar] [CrossRef] [PubMed]
- Camasão, D.B.; Mantovani, D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A Crit. Rev. Mater. Today Bio. 2021, 10, 100106. [Google Scholar] [CrossRef]
- Szafron, J.M.; Heng, E.E.; Boyd, J.; Humphrey, J.D.; Marsden, A.L. Hemodynamics and wall mechanics of vascular graft failure. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 1065–1085. [Google Scholar] [CrossRef]
- Ballyk, P.D.; Walsh, C.; Butany, J.; Ojha, M. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J. Biomech. 1998, 31, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Lejay, A.; Geny, B.; Kolh, P.; Chakfé, N. Effects of aortic graft implantation on heart and downstream vessels: An artery is not a rigid pipe. Eur. J. Vasc. Endovasc. Surg. 2019, 58, 477–478. [Google Scholar] [CrossRef] [PubMed]
- Spadaccio, C.; Nappi, F.; Al-attar, N.; Sutherland, F.W.; Acar, C.; Nenna, A.; Trombetta, M.; Chello, M.; Rainer, A. Old myths, new concerns: The long-term effects of ascending aorta replacement with Dacron grafts: Not all that glitters is gold. J. Cardiovasc. Trans. Res. 2016, 9, 334–342. [Google Scholar] [CrossRef]
- Tremblay, D.; Zigras, T.; Cartier, R.; Leduc, L.; Butany, J.; Mongrain, R.; Leask, R.L. A comparison of mechanical properties of materials used in aortic arch reconstruction. Ann. Thorac. Surg. 2009, 88, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Recco, D.P.; Kizilski, S.B.; Marshall, L.E.; Earley, P.D.; Kneier, N.E.; Del Nido, P.J.; Hammer, P.E.; Hoganson, D.M. Mechanical failure analysis of patch materials used in aortic arch reconstruction: Implications for clinical practice. Eur. J. Cardiothorac. Surg. 2023, 64, ezad366. [Google Scholar] [CrossRef]
- Linka, K.; Cavinato, C.; Humphrey, J.D.; Cyron, C.J. Predicting and understanding arterial elasticity from key microstructural features by bidirectional deep learning. Acta Biomater. 2022, 147, 63–72. [Google Scholar] [CrossRef]
- Bersi, M.R.; Bellini, C.; Humphrey, J.D.; Avril, S. Local variations in material and structural properties characterize murine thoracic aortic aneurysm mechanics. Biomech. Model. Mechanobiol. 2019, 18, 203–218. [Google Scholar] [CrossRef]
- Sherifova, S.; Sommer, G.; Viertler, C.; Regitnig, R.; Caranasos, T.; Smith, M.A.; Griffith, B.E.; Ogden, R.W.; Holzapfel, G.A. Failure properties and microstructure of healthy and aneurysmatic human thoracic aortas subjected to uniaxial extension with a focus on the media. Acta Biomater. 2019, 99, 443–456. [Google Scholar] [CrossRef]
- Pukaluk, A.; Wolinski, H.; Viertler, C.; Regitnig, P.; Holzapfel, G.A.; Sommer, G. Changes in the microstructure of the human aortic medial layer under biaxial loading investigated by multi-photon microscopy. Acta Biomater. 2022, 151, 396–413. [Google Scholar] [CrossRef]
- Pukaluk, A.; Wolinski, H.; Viertler, C.; Regitnig, P.; Holzapfel, G.A.; Sommer, G. Changes in the microstructure of the human aortic adventitia under biaxial loading investigated by multi-photon microscopy. Acta Biomater. 2023, 161, 154–169. [Google Scholar] [CrossRef]
- Guo, X.; Gong, C.; Zhai, Y.; Yu, H.; Li, J.; Sun, H.; Wang, L.; Tang, D. Biomechanical characterization of normal and pathological human ascending aortic tissues via biaxial testing Experiment, constitutive modeling and finite element analysis. Comput. Biol. Med. 2023, 166, 107561. [Google Scholar] [CrossRef]
- García-Herrera, C.M.; Atienza, J.M.; Rojo, F.J.; Claes, E.; Guinea, G.V.; Celentano, D.J.; García-Montero, C.; Burgos, R.L. Mechanical behaviour and rupture of normal and pathological human ascending aortic wall. Med. Biol. Eng. Comput. 2012, 50, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.G.; Zhu, J.M.; Zheng, J.; Liu, Y.M.; Ziganshin, B.A.; Elefteriades, J.A.; Sun, L.Z. Sun’s procedure for complex aortic arch repair: Total arch replacement using a tetrafurcate graft with stented elephant trunk implantation. Ann. Cardiothorac. Surg. 2013, 2, 642–648. [Google Scholar]
- Teng, Z.; Zhang, Y.; Huang, Y.; Feng, J.; Yuan, J.; Lu, Q.; Sutcliffe, M.P.; Brown, A.J.; Jing, Z.; Gillard, J.H. Material properties of components in human carotid atherosclerotic plaques: A uniaxial extension study. Acta Biomater. 2014, 10, 5055–5063. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Sommer, G.; Gasser, C.T.; Regitnig, P. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2048–H2058. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.F.; Luo, T.; Wang, S.; Jia, H.Y.; Gong, Q.; Liu, X.P.; Sutcliffe, M.P.; Zhu, H.J.; Liu, Q.; Chen, D.D.; et al. Mechanical and histological characteristics of aortic dissection tissues. Acta Biomater. 2022, 146, 284–294. [Google Scholar] [CrossRef]
- Tang, D.; Yang, C.; Huang, S.; Mani, V.; Zheng, J.; Woodard, P.K.; Robson, P.; Teng, Z.; Dweck, M.; Fayad, Z.A. Cap inflammation leads to higher plaque cap strain and lower cap stress: An MRI-PET/CT-based FSI modeling approach. J. Biomech. 2017, 50, 121–129. [Google Scholar] [CrossRef]
- Moré, J.J.; Sorensen, D.C. Computing a Trust Region Step, SIAM J. Sci. Stat. Comput. 1983, 4, 553–572. [Google Scholar] [CrossRef]
- Labrosse, M.R.; Beller, C.J.; Mesana, T.; Veinot, J.P. Mechanical behavior of human aortas: Experiments, material constants and 3-D finite element modeling including residual stress. J. Biomech. 2009, 42, 996–1004. [Google Scholar] [CrossRef]
- Deplano, V.; Boufi, M.; Gariboldi, V.; Loundou, A.D.; D’Journo, X.B.; Cautela, J.; Djemli, A.; Alimi, Y.S. Mechanical characterisation of human ascending aorta dissection. J. Biomech. 2019, 94, 138–146. [Google Scholar] [CrossRef]
- Sokolis, D.P.; Kritharis, E.P.; Giagini, A.T.; Lampropoulos, K.M.; Papadodima, S.A.; Iliopoulos, D.C. Biomechanical response of ascending thoracic aortic aneurysms: Association with structural remodelling. Comput. Methods Biomech. Biomed. Engin 2012, 15, 231–248. [Google Scholar] [CrossRef] [PubMed]
- Surman, T.L.; Abrahams, J.M.; Manavis, J.; Finnie, J.; O’Rourke, D.; Reynolds, K.J.; Edwards, J.; Worthington, M.G.; Beltrame, J. Histological regional analysis of the aortic root and thoracic ascending aorta: A complete analysis of aneurysms from root to arch. J. Cardiothorac. Surg. 2021, 16, 255. [Google Scholar] [CrossRef]
- Rodrigues, A.; Figueiredo, L.; Diogo, H.; Bordado, J. Mechanical behavior of PET fibers and textiles for Stent-Grafts using video extensometry and image analysis. Sci. Technol. Mater. 2018, 30, 23–33. [Google Scholar] [CrossRef]
- Inoué, T.; Osatake, H. A new drying method of biological specimens for scanning electron microscopy: The t-butyl alcohol freeze-drying method. Arch. Histol. Cytol. 1988, 51, 53–59. [Google Scholar] [CrossRef]
- Pretorius, E. Traditional coating techniques in scanning electron microscopy compared to uncoated charge compensator technology: Looking at human blood fibrin networks with the ZEISS ULTRA plus FEG-SEM. Microsc. Res. Tech. 2011, 74, 343–346. [Google Scholar] [CrossRef]
- Hossack, M.; Fisher, R.; Torella, F.; Madine, J.; Field, M.; Akhtar, R. Micromechanical and ultrastructural properties of abdominal aortic aneurysms. Artery Res. 2022, 28, 15–30. [Google Scholar] [CrossRef]
- Betz, T.; Neuwerth, D.; Steinbauer, M.; Uhl, C.; Pfister, K.; Töpel, I. Biosynthetic vascular graft: A valuable alternative to traditional replacement materials for treatment of prosthetic aortic graft infection? Scand. J. Surg. 2019, 108, 291–296. [Google Scholar] [CrossRef]
- Morisaki, A.; Kato, Y.; Motoki, M.; Takahashi, Y.; Nishimura, S.; Shibata, T. Rupture of equine pericardial aortic-root patch after aortic valve replacement with aortic annulus enlargement: A case report. J. Cardiothorac. Surg. 2014, 9, 109. [Google Scholar] [CrossRef]
- Teng, Z.; Feng, J.; Zhang, Y.; Huang, Y.; Sutcliffe, M.P.F.; Brown, A.J.; Jing, Z.; Gillard, J.H.; Lu, Q. Layer- and direction-specific material properties, extreme extensibility and ultimate material strength of human abdominal aorta and aneurysm: A uniaxial extension study. Ann. Biomed. Eng. 2015, 43, 2745–2759. [Google Scholar] [CrossRef] [PubMed]
- Torun, S.G.; de Miguel Munoz, P.; Crielaard, H.; Verhagen, H.J.M.; Kremers, G.J.; van der Steen, A.F.W.; Akyildiz, A.C. Local characterization of collagen architecture and mechanical failure properties of fibrous plaque tissue of atherosclerotic human carotid arteries. Acta Biomater. 2023, 164, 293–302. [Google Scholar] [CrossRef]
- Oudet, C.; Bunsell, A.R. Effects of structure on the tensile, creep and fatigue properties of polyester fibres. J. Mater. Sci. 1987, 22, 4292–4298. [Google Scholar] [CrossRef]
- Lechat, C.; Bunsell, A.R.; Davies, P.; Piant, A. Mechanical behaviour of polyethylene terephthalate & polyethylene naphthalate fibres under cyclic loading. J. Mater. Sci. 2006, 41, 1745–1756. [Google Scholar]
- Cho, D.H.; Yu, W.R.; Youk, J.H.; Yoo, J.H. Formation of micro-crystals in poly(ethylene terephthalate) fiber by a short heat treatment and their influence on the mechanical properties. Eur. Polym. J. 2007, 43, 3562–3572. [Google Scholar] [CrossRef]
- van Beynum, I.M.; Kurul, S.; Krasemann, T.; Dalinghaus, M.; van de Woestijne, P.; Etnel, J.R.; Bogers, A.J.J.C. Reconstruction of the aortic arch in neonates and infants: The importance of patch material. World J. Pediatr. Congenit. Heart Surg. 2021, 12, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Takami, Y.; Tajima, K.; Kato, W.; Fujii, K.; Hibino, M.; Munakata, H.; Uchida, K.; Sakai, Y. Long-term size follow-up of knitted Dacron grafts (Gelseal) used in the ascending aorta. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 529–531. [Google Scholar] [CrossRef] [PubMed]
- Roach, M.R.; Burton, A.C. The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 1957, 35, 681–690. [Google Scholar] [CrossRef]
- Espinosa, M.G.; Staiculescu, M.C.; Kim, J.; Marin, E.; Wagenseil, J.E. Elastic fibers and large artery mechanics in animal models of development and disease. J. Biomech. Eng. 2018, 140, 020803. [Google Scholar]
- Kielty, C.M.; Sherratt, M.J.; Shuttleworth, C.A. Elastic fibres. J. Cell Sci. 2002, 115, 2817–2828. [Google Scholar] [CrossRef]
- Pecqueux, F.; Tancret, F.; Payraudeau, N.; Bouler, J.M. Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics: Modelling and experiment. J. Eur. Ceram. Soc. 2010, 30, 819–829. [Google Scholar] [CrossRef]
- Elassal, A.A.; AL-Radi, O.O.; Zaher, Z.F.; Dohain, A.M.; Abdelmohsen, G.A.; Mohamed, R.S.; Fatani, M.A.; Abdelmotaleb, M.E.; Noaman, N.A.; Elmeligy, M.A.; et al. Equine pericardium: A versatile alternative reconstructive material in congenital cardiac surgery. J. Cardiothorac. Surg. 2021, 16, 110. [Google Scholar] [CrossRef]
- Balà, N.; Aranda, A.; Teixidó, P.; Molhoek, C.; Moreno-Jiménez, I.; Febas, G.; López-Guimet, J.; Groothuis, A.; Edelman, E.R.; Balcells, M.; et al. In vivo efficacy of an adhesive bioresorbable patch to treat aortic dissections. JACC Basic. Transl. Sci. 2023, 9, 65–77. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Cheng, Z.; Guo, X.; Gu, H.; Tang, D.; Wang, L. Comparison of Biomechanical and Microstructural Properties of Aortic Graft Materials in Aortic Repair Surgeries. J. Funct. Biomater. 2024, 15, 248. https://doi.org/10.3390/jfb15090248
Sun H, Cheng Z, Guo X, Gu H, Tang D, Wang L. Comparison of Biomechanical and Microstructural Properties of Aortic Graft Materials in Aortic Repair Surgeries. Journal of Functional Biomaterials. 2024; 15(9):248. https://doi.org/10.3390/jfb15090248
Chicago/Turabian StyleSun, Haoliang, Zirui Cheng, Xiaoya Guo, Hongcheng Gu, Dalin Tang, and Liang Wang. 2024. "Comparison of Biomechanical and Microstructural Properties of Aortic Graft Materials in Aortic Repair Surgeries" Journal of Functional Biomaterials 15, no. 9: 248. https://doi.org/10.3390/jfb15090248
APA StyleSun, H., Cheng, Z., Guo, X., Gu, H., Tang, D., & Wang, L. (2024). Comparison of Biomechanical and Microstructural Properties of Aortic Graft Materials in Aortic Repair Surgeries. Journal of Functional Biomaterials, 15(9), 248. https://doi.org/10.3390/jfb15090248