Functional Biomaterials and Biomaterial Composites with Antimicrobial Properties
Antimicrobial Resistance (AMR)
Conflicts of Interest
References
- Miller, W.R.; Arias, C.A. ESKAPE pathogens: Antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat. Rev. Microbiol. 2024, 22, 598–616. [Google Scholar] [CrossRef] [PubMed]
- Stan, D.; Enciu, A.M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation. Front. Pharmacol. 2021, 12, 723233. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.K.; Chakraborty, S.; Manna, S.; Mandal, S.M. Antimicrobial nanoparticles: Current landscape and future challenges. RSC Pharm. 2024, 1, 388–402. [Google Scholar] [CrossRef]
- Ma, D.S.; Tan, L.T.H.; Chan, K.G.; Yap, W.H.; Pusparajah, P.; Chuah, L.H.; Ming, L.C.; Khan, T.M.; Lee, L.H.; Goh, B.H. Resveratrol—Potential antibacterial agent against foodborne pathogens. Front. Pharmacol. 2018, 9, 102. [Google Scholar] [CrossRef] [PubMed]
- Mattio, L.M.; Catinella, G.; Dallavalle, S.; Pinto, A. Stilbenoids: A natural arsenal against bacterial pathogens. Antibiotics 2020, 9, 336. [Google Scholar] [CrossRef] [PubMed]
- Maria, C.; de Matos, A.M.; Rauter, A.P. Antibacterial prodrugs to overcome bacterial antimicrobial resistance. Pharmaceuticals 2024, 17, 718. [Google Scholar] [CrossRef] [PubMed]
- Mateo, E.M.; Jiménez, M. Silver nanoparticle-based therapy: Can it be useful to combat multi-drug resistant bacteria? Antibiotics 2022, 11, 1205. [Google Scholar] [CrossRef] [PubMed]
- Sultana, A.; Zare, M.; Thomas, V.; Kumar, T.S.; Ramakrishna, S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Med. Drug Discov. 2022, 15, 100134. [Google Scholar] [CrossRef]
- Almanza-Reyes, H.; Moreno, S.; Plascencia-López, I.; Alvarado-Vera, M.; Patrón-Romero, L.; Borrego, B.; Reyes-Escamilla, A.; Valencia-Manzo, D.; Brun, A.; Pestryakov, A.; et al. Evaluation of silver nanoparticles for the prevention of SARS-CoV-2 infection in health workers: In vitro and in vivo. PLoS ONE 2021, 16, e0256401. [Google Scholar] [CrossRef] [PubMed]
- Prasong, W.; Matthapan, L.; Lertrujiwanit, K.; Supcharoenkul, S.; Ongsri, P.; Kiratiwongwan, R.; Leeyaphan, C.; Bunyaratavej, S. In vitro antifungal activity of plain socks and zinc oxide nanoparticle-coated socks. J. Am. Podiatr. Med. Assoc. 2022, 112, 20–134. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, Y.; Kim, D.; Ren, Z.; Oh, M.J.; Cormode, D.P.; Hara, A.T.; Zero, D.T.; Koo, H. Ferumoxytol nanoparticles target biofilms causing tooth decay in the human mouth. Nano Lett. 2021, 21, 9442–9449. [Google Scholar] [CrossRef] [PubMed]
- Landim, M.G.; Carneiro, M.L.B.; Joanitti, G.A.; Anflor, C.T.M.; Marinho, D.D.; Rodrigues, J.F.B.; de Sousa, W.J.B.; Fernandes, D.d.O.; Souza, B.F.; Ombredane, A.S.; et al. A novel N95 respirator with chitosan nanoparticles: Mechanical, antiviral, microbiological and cytotoxicity evaluations. Discov. Nano 2023, 18, 118. [Google Scholar] [CrossRef] [PubMed]
- Maertens, J.; Pagano, L.; Azoulay, E.; Warris, A. Liposomal amphotericin B—The present. J. Antimicrob. Chemother. 2022, 77, ii11–ii20. [Google Scholar] [CrossRef] [PubMed]
- Joyce, M.G.; Chen, W.H.; Sankhala, R.S.; Hajduczki, A.; Thomas, P.V.; Choe, M.; Martinez, E.J.; Chang, W.C.; Peterson, C.E.; Morrison, E.B.; et al. SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity. Cell Rep. 2021, 37, 110143. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luong, J.H.T. Functional Biomaterials and Biomaterial Composites with Antimicrobial Properties. J. Funct. Biomater. 2024, 15, 267. https://doi.org/10.3390/jfb15090267
Luong JHT. Functional Biomaterials and Biomaterial Composites with Antimicrobial Properties. Journal of Functional Biomaterials. 2024; 15(9):267. https://doi.org/10.3390/jfb15090267
Chicago/Turabian StyleLuong, John H. T. 2024. "Functional Biomaterials and Biomaterial Composites with Antimicrobial Properties" Journal of Functional Biomaterials 15, no. 9: 267. https://doi.org/10.3390/jfb15090267
APA StyleLuong, J. H. T. (2024). Functional Biomaterials and Biomaterial Composites with Antimicrobial Properties. Journal of Functional Biomaterials, 15(9), 267. https://doi.org/10.3390/jfb15090267