Development of Prevascularized Synthetic Block Graft for Maxillofacial Reconstruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scaffold Fabrication
2.2. Scaffold Characterization
2.3. Cells and Growth Conditions
2.3.1. Human Alveolar Osteoblast Cells (aHOBs)
2.3.2. Human Umbilical Vein Endothelial Cells (HUVECs)
2.3.3. Human Bone Marrow Mesenchymal Stem Cells (hBMSCs)
2.4. Optimization of VEGF Concentration
2.5. Optimization of Co-Culture Media
2.6. VEGF Release from Co-Culture
2.7. Angiogenesis Assay (Endothelial Tube Formation)
2.8. Phenotypic Characterization of HUVEC and aHOB
2.9. Three-Dimensional Co-Cultures of HUVEC and aHOB on βCMP Scaffold
2.10. Scanning Electron Microscopy for Cell Morphology
2.11. Immunocytochemistry
2.12. Statistical Analysis
3. Results
3.1. Characterization of CMP Scaffold
3.1.1. X-Ray Diffraction
3.1.2. Infrared Spectroscopy
3.1.3. Morphology and Pore Structure of CMP Scaffold
3.1.4. Water Uptake
3.2. Optimization of VEGF Concentrations
3.3. Optimization of Co-Culture Media
3.4. VEGF Release from Co-Culture
3.5. Angiogenesis Assay
3.6. Phenotypic Characteristics of Co-Culture of HUVEC and aHOB
3.7. Prevascularization of 3D βCMP Scaffold
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Xie, C.; Lin, A.S.; Ito, H.; Awad, H.; Lieberman, J.R.; Rubery, P.T.; Schwarz, E.M.; O’Keefe, R.J.; Guldberg, R.E. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: Implications for functional tissue engineering. J. Bone Miner. Res. 2005, 20, 2124–2137. [Google Scholar] [CrossRef] [PubMed]
- Lambert, F.; Lecloux, G.; Léonard, A.; Sourice, S.; Layrolle, P.; Rompen, E. Bone regeneration using porous titanium particles versus bovine hydroxyapatite: A sinus lift study in rabbits. Clin. Implant Dent. Relat. Res. 2013, 15, 412–426. [Google Scholar] [CrossRef] [PubMed]
- White, A.A.; Best, S.M.; Kinloch, I.A. Hydroxyapatite–carbon nanotube composites for biomedical applications: A review. Int. J. Appl. Ceram. Technol. 2007, 4, 1–13. [Google Scholar] [CrossRef]
- Board, P. PDQ Cancer Information Summaries [Internet]; National Cancer Institute (US): Bethesda, MD, USA, 2019.
- Agarwal, R.; García, A.J. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv. Drug Deliv. Rev. 2015, 94, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Yang, B.; Duan, X.; Wang, F.; Zhang, Y.; Jin, X.; Dai, G.; Yang, L. The promotion of the vascularization of decalcified bone matrix in vivo by rabbit bone marrow mononuclear cell-derived endothelial cells. Biomaterials 2009, 30, 3560–3566. [Google Scholar] [CrossRef]
- Rady, A.A.; Hamdy, S.M.; Abdel-Hamid, M.A.; Hegazy, M.G.; Fathy, S.A.; Mostafa, A.A. The role of VEGF and BMP-2 in stimulation of bone healing with using hybrid bio-composite scaffolds coated implants in animal model. Bull. Natl. Res. Cent. 2020, 44, 1–9. [Google Scholar] [CrossRef]
- Jang, H.-J.; Yoon, J.-K. The Role of Vasculature and Angiogenic Strategies in Bone Regeneration. Biomimetics 2024, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Rouwkema, J.; Rivron, N.C.; van Blitterswijk, C.A. Vascularization in tissue engineering. Trends Biotechnol. 2008, 26, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, A.M. The mechanism of coupling: A role for the vasculature. Bone 2000, 26, 319–323. [Google Scholar] [CrossRef]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef]
- Asakawa, N.; Shimizu, T.; Tsuda, Y.; Sekiya, S.; Sasagawa, T.; Yamato, M.; Fukai, F.; Okano, T. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials 2010, 31, 3903–3909. [Google Scholar] [CrossRef] [PubMed]
- Madri, J.A.; Pratt, B.M.; Tucker, A.M. Phenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix. J. Cell Biol. 1988, 106, 1375–1384. [Google Scholar] [CrossRef]
- Padmanaban, A.M.; Ganesan, K.; Ramkumar, K.M. A Co-Culture System for Studying Cellular Interactions in Vascular Disease. Bioengineering 2024, 11, 1090. [Google Scholar] [CrossRef] [PubMed]
- Black, A.F.; Berthod, F.; L’heureux, N.; Germain, L.; Auger, F.A. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 1998, 12, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, P.-L.; Hudon, V.; Berthod, F.; Germain, L.; Auger, F.A. Inosculation of Tissue-Engineered Capillaries with the Host’s Vasculature in a Reconstructed Skin Transplanted on Mice. Am. J. Transplant. 2005, 5, 1002–1010. [Google Scholar] [CrossRef]
- Huang, J.; Liao, C.; Yang, J.; Zhang, L. The role of vascular and lymphatic networks in bone and joint homeostasis and pathology. Front. Endocrinol. 2024, 15, 1465816. [Google Scholar] [CrossRef]
- Liao, L.; Chen, L.; Chen, A.-Z.; Pu, X.-M.; Kang, Y.-Q.; Yao, Y.-D.; Liao, X.-M.; Huang, Z.-b.; Yin, G.-F. Preparation and characteristics of novel poly-L-lactide/β-calcium metaphosphate fracture fixation composite rods. J. Mater. Res. 2007, 22, 3324–3329. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, S.-S.; Kim, Y.H.; Kim, S.-H.; Kim, B.-S.; Kim, S.; Choi, C.Y.; Kim, S.H. A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials 2005, 26, 6314–6322. [Google Scholar] [CrossRef]
- Gauthier, O.; Bouler, J.-M.; Aguado, E.; Pilet, P.; Daculsi, G. Macroporous biphasic calcium phosphate ceramics: Influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 1998, 19, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Di Silvio, L. Osteoblasts in bone tissue engineering. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2010, 224, 1415–1440. [Google Scholar]
- Di-Silvo, L. A Novel Application of Two Biomaterials for the Delivery of Growth Hormone and Its Effect on Osteoblasts; University of London: London, UK, 1995. [Google Scholar]
- Tsiridis, E.; Ali, Z.; Bhalla, A.; Heliotis, M.; Gurav, N.; Deb, S.; DiSilvio, L. In vitro and in vivo optimization of impaction allografting by demineralization and addition of rh-OP-1. J. Orthop. Res. 2007, 25, 1425–1437. [Google Scholar] [CrossRef] [PubMed]
- Jaw, K. The effects on the devitrification mechanism for a certain composition of CaO/P2O5 glasswith additives of HAp, TCP and β-CaP2O6 whisker. J. Therm. Anal. Calorim. 2006, 83, 151–156. [Google Scholar] [CrossRef]
- McIntosh, A.O.; Jablonski, W.L. X-Ray Diffraction Powder Patterns of Calcium Phosphates. Anal. Chem. 1956, 28, 1424–1427. [Google Scholar] [CrossRef]
- Briche, S.; Zambon, D.; Boyer, D.; Chadeyron, G.; Mahiou, R. Sol–gel derived Y(PO3)3 polyphosphate: Synthesis and characterization. Opt. Mater. 2006, 28, 615–620. [Google Scholar] [CrossRef]
- Fuchs, S.; Ghanaati, S.; Orth, C.; Barbeck, M.; Kolbe, M.; Hofmann, A.; Eblenkamp, M.; Gomes, M.; Reis, R.L.; Kirkpatrick, C.J. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials 2009, 30, 526–534. [Google Scholar] [CrossRef]
- Ghanaati, S.; Unger, R.E.; Webber, M.J.; Barbeck, M.; Orth, C.; Kirkpatrick, J.A.; Booms, P.; Motta, A.; Migliaresi, C.; Sader, R.A.; et al. Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells. Biomaterials 2011, 32, 8150–8160. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V.; Epple, M. Biological and Medical Significance of Calcium Phosphates. Angew. Chem. Int. Ed. 2002, 41, 3130–3146. [Google Scholar] [CrossRef]
- Asahara, T.; Takahashi, T.; Masuda, H.; Kalka, C.; Chen, D.; Iwaguro, H.; Inai, Y.; Silver, M.; Isner, J.M. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999, 18, 3964–3972. [Google Scholar] [CrossRef]
- Zambarakji, H.J.; Nakazawa, T.; Connolly, E.; Lane, A.M.; Mallemadugula, S.; Kaplan, M.; Michaud, N.; Hafezi-Moghadam, A.; Gragoudas, E.S.; Miller, J.W. Dose-Dependent Effect of Pitavastatin on VEGF and Angiogenesis in a Mouse Model of Choroidal Neovascularization. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2623–2631. [Google Scholar] [CrossRef]
- Sarkanen, J.-R.; Mannerstrom, M.; Vuorenpaa, H.; Uotila, J.; Ylikomi, T.; Heinonen, T. Intra-laboratory pre-validation of a human cell based in vitro angiogenesis assay for testing angiogenesis modulators. Front. Pharmacol. 2011, 1, 147. [Google Scholar] [CrossRef] [PubMed]
- Kaigler, D.; Cirelli, J.A.; Giannobile, W.V. Growth factor delivery for oral and periodontal tissue engineering. Expert Opin. Drug Deliv. 2006, 3, 647–662. [Google Scholar] [CrossRef]
- Unger, R.E.; Sartoris, A.; Peters, K.; Motta, A.; Migliaresi, C.; Kunkel, M.; Bulnheim, U.; Rychly, J.; James Kirkpatrick, C. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 2007, 28, 3965–3976. [Google Scholar] [CrossRef]
- Gauvin, R.; Guillemette, M.; Dokmeci, M.; Khademhosseini, A. Application of microtechnologies for the vascularization of engineered tissues. Vasc. Cell 2011, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Donovan, D.; Brown, N.J.; Bishop, E.T.; Lewis, C.E. Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis 2001, 4, 113–121. [Google Scholar] [CrossRef]
- Montesano, R.; Orci, L.; Vassalli, P. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell Biol. 1983, 97, 1648–1652. [Google Scholar] [CrossRef]
- Glowacki, J.; Mizuno, S. Collagen scaffolds for tissue engineering. Biopolymers 2008, 89, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Schultz, G.S.; Wysocki, A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009, 17, 153–162. [Google Scholar] [CrossRef]
HOB or hBMSC Medium (%) | HUVEC Medium (%) |
---|---|
100 | 0 |
70 | 30 |
60 | 40 |
50 | 50 |
40 | 60 |
0 | 100 |
Target Gene | Sequence (5’→3’) | Product Size |
---|---|---|
GAPDH | ||
Forward Reverse | ACC ACA GTC CAT GCC ATC AC TCC ACC ACC CTG TTG CTG TA | 452 bp |
VEGFR-2 | ||
Forward Reverse | GTG ACC AAC ATG GAG TCG TG CCA GAG ATT CCA TGC CAC TT | 660 bp |
Angiopoietin 1 | ||
Forward Reverse | AGA GGC ACG GAA GGA GTG TG CTA TCT CCA GCA TGG TAG CCG | 410 bp |
Tie 2 | ||
Forward Reverse | CGA GTT CGA GGA GAG GCA ATC TCA GGT ACT TCA TGC CGG G | 148 bp |
ALP | ||
Forward Reverse | CCA CGT CTT CAC ATT TGG TG AGA CTG CGC CTG GTA GTT GT | 196 bp |
Runx2 | ||
Forward Reverse | CAG ACC AGC AGC ACT CCA TA CAG CGT CAA CAC CAT CAT TC | 178 bp |
Col1 | ||
Forward Reverse | CCA AAT CTG TCT CCC CAG A TCA AAA ACG AAG GGG AGA T | 213 bp |
Antibodies | Dilution Used | |
---|---|---|
Primary | Secondary | |
PECAM-1, CD31 | 1:50 | 1:1000 |
Von Willebrand (vWF) | 1:8000 | 1:1000 |
Phalloidin (direct staining) | 1:100 | |
Vimentin | 1:100 | 1:1000 |
Description | Abbreviation | Value | Unit |
---|---|---|---|
Structure thickness | St.Th | 0.0353 | Mm |
Structure separation | St.Sp | 0.072 | Mm |
Number of objects | Obj.N | 4675 | |
Number of closed pores | Po.N(cl) | 336 | |
Volume of closed pores | Po.V(cl) | 0.000256 | mm3 |
Surface of closed pores | Po.S(cl) | 0.14 | mm2 |
Closed porosity | Po(cl) | 0.00769 | % |
Open porosity | PO(op) | 68.93 | % |
Total volume of pore space | Po.V(tot) | 7.28 | mm3 |
Total porosity | Po(tot) | 68.6 | % |
Connectivity | Conn | 42748 | |
Connectivity density | Conn.Dn | 4030 | 1/mm3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buranawat, B.; Shaalan, A.; Garna, D.F.; Di Silvio, L. Development of Prevascularized Synthetic Block Graft for Maxillofacial Reconstruction. J. Funct. Biomater. 2025, 16, 18. https://doi.org/10.3390/jfb16010018
Buranawat B, Shaalan A, Garna DF, Di Silvio L. Development of Prevascularized Synthetic Block Graft for Maxillofacial Reconstruction. Journal of Functional Biomaterials. 2025; 16(1):18. https://doi.org/10.3390/jfb16010018
Chicago/Turabian StyleBuranawat, Borvornwut, Abeer Shaalan, Devy F. Garna, and Lucy Di Silvio. 2025. "Development of Prevascularized Synthetic Block Graft for Maxillofacial Reconstruction" Journal of Functional Biomaterials 16, no. 1: 18. https://doi.org/10.3390/jfb16010018
APA StyleBuranawat, B., Shaalan, A., Garna, D. F., & Di Silvio, L. (2025). Development of Prevascularized Synthetic Block Graft for Maxillofacial Reconstruction. Journal of Functional Biomaterials, 16(1), 18. https://doi.org/10.3390/jfb16010018