Comparative In Vitro Study of Sol–Gel-Derived Bioactive Glasses Incorporated into Dentin Adhesives: Effects on Remineralization and Mechanical Properties of Dentin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. BAG Characterization
2.2.2. XRD Analysis
2.2.3. Surface Analysis of Dentin Adhesives
2.2.4. Surface Analysis of Bonding Interface Dentin
2.2.5. Measurement of Elastic Modulus of Dentin
2.2.6. Statistical Analysis
3. Results
3.1. BAG Characterization
3.2. XRD Analysis
3.3. Surface Analysis of Dentin Adhesive
3.4. Surface Analysis of Demineralized Dentin
3.5. Measurement of Elastic Modulus
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pashley, D.H. Dynamics of the Pulpo-Dentin Complex. Crit. Rev. Oral Biol. Med. 1996, 7, 104–133. [Google Scholar] [CrossRef] [PubMed]
- Pashley, D.H. The Effects of Acid Etching on the Pulpodentin Complex. Oper. Dent. 1992, 17, 229–242. [Google Scholar] [PubMed]
- Ito, S.; Hashimoto, M.; Wadgaonkar, B.; Svizero, N.; Carvalho, R.M.; Yiu, C.; Rueggeberg, F.A.; Foulger, S.; Saito, T.; Nishitani, Y. Effects of Resin Hydrophilicity on Water Sorption and Changes in Modulus of Elasticity. Biomaterials 2005, 26, 6449–6459. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tjäderhane, L.; Breschi, L.; Mazzoni, A.; Li, N.; Mao, J.; Pashley, D.H.; Tay, F.R. Limitations in Bonding to Dentin and Experimental Strategies to Prevent Bond Degradation. J. Dent. Res. 2011, 90, 953–968. [Google Scholar] [CrossRef]
- Mazzoni, A.; Mannello, F.; Tay, F.R.; Tonti, G.A.M.; Papa, S.; Mazzotti, G.; Di Lenarda, R.; Pashley, D.H.; Breschi, L. Zymographic Analysis and Characterization of MMP-2 and-9 Forms in Human Sound Dentin. J. Dent. Res. 2007, 86, 436–440. [Google Scholar] [CrossRef]
- Perdigão, J.; Denehy, G.E.; Swift, E.J., Jr. Effects of Chlorhexidine on Dentin Surfaces and Shear Bond strengths. Am. J. Dent. 1994, 7, 81–84. [Google Scholar]
- Breschi, L.; Martin, P.; Mazzoni, A.; Nato, F.; Carrilho, M.; Tjäderhane, L.; Visintini, E.; Cadenaro, M.; Tay, F.R.; Dorigo, E.D.S. Use of a Specific MMP-Inhibitor (Galardin) for Preservation of Hybrid Layer. Dent. Mater. 2010, 26, 571–578. [Google Scholar] [CrossRef]
- Stanislawczuk, R.; da Costa, J.A.; Polli, L.G.; Reis, A.; Loguercio, A.D. Effect of Tetracycline on the Bond Performance of Etch-and-Rinse Adhesives to Dentin. Braz. Oral Res. 2011, 25, 459–465. [Google Scholar] [CrossRef]
- Tezvergil-Mutluay, A.; Agee, K.A.; Uchiyama, T.; Imazato, S.; Mutluay, M.M.; Cadenaro, M.; Breschi, L.; Nishitani, Y.; Tay, F.R.; Pashley, D.H. The Inhibitory Effects of Quaternary Ammonium Methacrylates on Soluble and Matrix-Bound MMPs. J. Dent. Res. 2011, 90, 535–540. [Google Scholar] [CrossRef]
- Munksgaard, E.C.; Asmussen, E. Materials Science Bond Strength between Dentin and Restorative Resins Mediated by Mixtures of HEMA and Glutaraldehyde. J. Dent. Res. 1984, 63, 1087–1089. [Google Scholar] [CrossRef]
- Cova, A.; Breschi, L.; Nato, F.; Ruggeri, A., Jr.; Carrilho, M.; Tjäderhane, L.; Prati, C.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H. Effect of UVA-Activated Riboflavin on Dentin Bonding. J. Dent. Res. 2011, 90, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Hiraishi, N.; Nassar, M.; Yiu, C.; Otsuki, M.; Tagami, J. Effect of Hesperidin Incorporation into a Self-Etching Primer on Durability of Dentin Bond. Dent. Mater. 2014, 30, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Balalaie, A.; Rezvani, M.B.; Mohammadi Basir, M. Dual Function of Proanthocyanidins as Both MMP Inhibitor and Crosslinker in Dentin Biomodification: A Literature Review. Dent. Mater. J. 2018, 37, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Brackett, M.G.; Li, N.; Brackett, W.W.; Sword, R.J.; Qi, Y.P.; Niu, L.N.; Pucci, C.R.; Dib, A.; Pashley, D.H.; Tay, F.R. The Critical Barrier to Progress in Dentine Bonding with the Etch-and-Rinse Technique. J. Dent. 2011, 39, 238–248. [Google Scholar] [CrossRef]
- Tay, F.R.; Pashley, D.H. Biomimetic Remineralization of Resin-Bonded Acid-Etched Dentin. J. Dent. Res. 2009, 88, 719–724. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, N.-Z.; Anusavice, K.J. Fluoride and Chlorhexidine Release from Filled Resins. J. Dent. Res. 2010, 89, 1002–1006. [Google Scholar] [CrossRef]
- Xu, H.H.; Moreau, J.L.; Sun, L.; Chow, L.C. Nanocomposite Containing Amorphous Calcium Phosphate Nanoparticles for Caries Inhibition. Dent. Mater. 2011, 27, 762–769. [Google Scholar] [CrossRef]
- Sauro, S.; Osorio, R.; Watson, T.F.; Toledano, M. Therapeutic Effects of Novel Resin Bonding Systems Containing Bioactive Glasses on Mineral-Depleted Areas within the Bonded-Dentine Interface. J. Mater. Sci. Mater. Med. 2012, 23, 1521–1532. [Google Scholar] [CrossRef]
- Hench, L.L. The Story of Bioglass®. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef]
- Hench, L.L.; Splinter, R.J.; Allen, W.C.; Greenlee, T.K. Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials. J. Biomed. Mater. Res. 1971, 5, 117–141. [Google Scholar] [CrossRef]
- Skallevold, H.E.; Rokaya, D.; Khurshid, Z.; Zafar, M.S. Bioactive Glass Applications in Dentistry. Int. J. Mol. Sci. 2019, 20, 5960. [Google Scholar] [CrossRef] [PubMed]
- Vollenweider, M.; Brunner, T.J.; Knecht, S.; Grass, R.N.; Zehnder, M.; Imfeld, T.; Stark, W.J. Remineralization of Human Dentin Using Ultrafine Bioactive Glass Particles. Acta Biomater. 2007, 3, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L.; West, J.K. The Sol-Gel Process. Chem. Rev. 1990, 90, 33–72. [Google Scholar] [CrossRef]
- Jokinen, M.; Rahiala, H.; Rosenholm, J.B.; Peltola, T.; Kangasniemi, I. Relation between Aggregation and Heterogeneity of Obtained Structure in Sol-Gel Derived CaO-P2O5-SiO2. J. Sol-Gel Sci. Technol. 1998, 12, 159–167. [Google Scholar] [CrossRef]
- Yan, X.; Huang, X.; Yu, C.; Deng, H.; Wang, Y.; Zhang, Z.; Qiao, S.; Lu, G.; Zhao, D. The In-Vitro Bioactivity of Mesoporous Bioactive Glasses. Biomaterials 2006, 27, 3396–3403. [Google Scholar] [CrossRef]
- Fiume, E.; Migneco, C.; Verné, E.; Baino, F. Comparison between Bioactive Sol-Gel and Melt-Derived Glasses/Glass-Ceramics Based on the Multicomponent SiO2–P2O5–CaO–MgO–Na2O–K2O System. Materials 2020, 13, 540. [Google Scholar] [CrossRef]
- Khvostenko, D.; Hilton, T.J.; Ferracane, J.L.; Mitchell, J.C.; Kruzic, J.J. Bioactive Glass Fillers Reduce Bacterial Penetration into Marginal Gaps for Composite Restorations. Dent. Mater. 2016, 32, 73–81. [Google Scholar] [CrossRef]
- Jang, J.-H.; Lee, M.G.; Ferracane, J.L.; Davis, H.; Bae, H.E.; Choi, D.; Kim, D.-S. Effect of Bioactive Glass-Containing Resin Composite on Dentin Remineralization. J. Dent. 2018, 75, 58–64. [Google Scholar] [CrossRef]
- Tezvergil-Mutluay, A.; Seseogullari-Dirihan, R.; Feitosa, V.P.; Cama, G.; Brauer, D.S.; Sauro, S. Effects of Composites Containing Bioactive Glasses on Demineralized Dentin. J. Dent. Res. 2017, 96, 999–1005. [Google Scholar] [CrossRef]
- Kim, H.-J.; Bae, H.E.; Lee, J.-E.; Park, I.-S.; Kim, H.-G.; Kwon, J.; Kim, D.-S. Effects of Bioactive Glass Incorporation into Glass Ionomer Cement on Demineralized Dentin. Sci. Rep. 2021, 11, 7016. [Google Scholar] [CrossRef]
- Yun, H.; Kim, S.; Lee, S.; Song, I. Synthesis of High Surface Area Mesoporous Bioactive Glass Nanospheres. Mater. Lett. 2010, 64, 1850–1853. [Google Scholar] [CrossRef]
- Garcia-Godoy, F.; Tay, F.R.; Pashley, D.H.; Feilzer, A.; Tjaderhane, L.; Pashley, E.L. Degradation of Resin-Bonded Human Dentin after 3 Years of Storage. Am. J. Dent. 2007, 20, 109. [Google Scholar] [PubMed]
- Perdigao, J.; Lambrechts, P.; Van Meerbeek, B.; Vanherle, G.; Lopes, A.L.B. Field Emission SEM Comparison of Four Postfixation Drying Techniques for Human Dentin. J. Biomed. Mater. Res. 1995, 29, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.S.; Alabbas, M.S.; Alsomaly, K.U.; AlMansour, A.A.; Aljouie, A.A.; Alzahrani, M.M.; Asseri, A.A.; AlHumaid, J. Flexural Strength, Elastic Modulus and Remineralizing Abilities of Bioactive Resin-Based Dental Sealants. Polymers 2021, 14, 61. [Google Scholar] [CrossRef]
- Yasuda, G.; Inage, H.; Takamizawa, T.; Kurokawa, H.; Rikuta, A.; Miyazaki, M. Determination of Elastic Modulus of Demineralized Resin-infiltrated Dentin by Self-etch Adhesives. Eur. J Oral Sci. 2007, 115, 87–91. [Google Scholar] [CrossRef]
- LeGeros, R.Z. Calcium Phosphates in Enamel, Dentin and Bone. In Monographs in Oral Science; S. Karger AG: Basel, Switzerland, 1991; Volume 15, pp. 108–129. ISBN 978-3-8055-5236-3. [Google Scholar]
- Khoroushi, M.; Mousavinasab, S.M.; Keshani, F.; Hashemi, S. Effect of Resin-Modified Glass Ionomer Containing Bioactive Glass on the Flexural Strength and Morphology of Demineralized Dentin. Oper. Dent. 2013, 38, E21–E30. [Google Scholar] [CrossRef]
- Yli-Urpo, H.; Närhi, M.; Närhi, T. Compound Changes and Tooth Mineralization Effects of Glass Ionomer Cements Containing Bioactive Glass (S53P4), an in Vivo Study. Biomaterials 2005, 26, 5934–5941. [Google Scholar] [CrossRef]
- Khvostenko, D.; Mitchell, J.C.; Hilton, T.J.; Ferracane, J.L.; Kruzic, J.J. Mechanical Performance of Novel Bioactive Glass Containing Dental Restorative Composites. Dent. Mater. 2013, 29, 1139–1148. [Google Scholar] [CrossRef]
- Sano, H.; Takatsu, T.; Ciucchi, B.; Horner, J.A.; Matthews, W.G.; Pashley, D.H. Nanoleakage: Leakage within the Hybrid Layer. Oper. Dent. 1995, 20, 18–25. [Google Scholar]
- Zheng, K.; Boccaccini, A.R. Sol-Gel Processing of Bioactive Glass Nanoparticles: A Review. Adv. Colloid Interface Sci. 2017, 249, 363–373. [Google Scholar] [CrossRef]
- Hu, Q.; Li, Y.; Zhao, N.; Ning, C.; Chen, X. Facile Synthesis of Hollow Mesoporous Bioactive Glass Sub-Micron Spheres with a Tunable Cavity Size. Mater. Lett. 2014, 134, 130–133. [Google Scholar] [CrossRef]
- Legeros, R.Z. Apatites in Biological Systems. Prog. Cryst. Growth Charact. 1981, 4, 1–45. [Google Scholar] [CrossRef]
- Chen, X.; Meng, Y.; Li, Y.; Zhao, N. Investigation on Bio-Mineralization of Melt and Sol–Gel Derived Bioactive Glasses. Appl. Surf. Sci. 2008, 255, 562–564. [Google Scholar] [CrossRef]
- Balamurugan, A.; Balossier, G.; Kannan, S.; Michel, J.; Rebelo, A.H.; Ferreira, J.M. Development and in Vitro Characterization of Sol–Gel Derived CaO–P2O5–SiO2–ZnO Bioglass. Acta Biomater. 2007, 3, 255–262. [Google Scholar] [CrossRef]
- Mozafari, M.; Banijamali, S.; Baino, F.; Kargozar, S.; Hill, R.G. Calcium Carbonate: Adored and Ignored in Bioactivity Assessment. Acta Biomater. 2019, 91, 35–47. [Google Scholar] [CrossRef]
- Filip, G.A.; Achim, M.; Mihalte, P.; Miclaus, M.O.; Cristea, C.; Melinte, G.; Gheban, B.; Munteanu, D.M.; Cadar, O.; Simon, I.; et al. Design, in Vitro Bioactivity and in Vivo Influence on Oxidative Stress and Matrix Metalloproteinases of Bioglasses in Experimental Skin Wound. J. Trace Elem. Med. Biol. 2021, 68, 126846. [Google Scholar] [CrossRef]
Materials | Composition |
---|---|
BAG45 | 24.5%Ca, 6%P, 45%Si, and 24.5%Na |
BAG79 | 16%Ca, 5%P, and 79%Si |
BAG87 | 8%Ca, 5%P, and 87%Si |
BAG91 | 4%Ca, 5%P, and 91%Si |
BAG79F | 13%Ca, 5%P, 79%Si, and 3%F |
Artificial saliva | CaCl2 (0.7 mM), MgCl2·6H2O (0.2 mM), KH2PO4 (4.0 mM), KCl (30 mM), NaN3 (0.3 mM), and HEPES buffer (20 mM) |
Dentin adhesive (DA) | bis-GMA, UDMA, HEMA, GPDM, photoinitiators, and EtOH |
Group | Description |
---|---|
DA | Dentin adhesive only |
DA45 | 3wt% BAG45 added to dentin adhesive |
DA79 | 3wt% BAG79 added to dentin adhesive |
DA87 | 3wt% BAG87 added to dentin adhesive |
DA91 | 3wt% BAG91 added to dentin adhesive |
DA79F | 3wt% BAG79F added to dentin adhesive |
BAG Type | Surface Area (m2/g) |
---|---|
BAG45 | 1.0111 |
BAG79 | 572.2671 |
BAG87 | 665.0911 |
BAG91 | 441.8647 |
BAG79F | 544.3679 |
Group | Ca/P Ratio | |
---|---|---|
Dentin Adhesive | Demineralized Dentin | |
DA | – | – * |
DA45 | 1.46 | 1.31 |
DA79 | 1.45 | 1.69 |
DA87 | 1.76 | 1.80 |
DA91 | 1.40 | 1.12 |
DA79F | 1.64 | 1.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, I.-S.; Kim, H.-J.; Kwon, J.; Kim, D.-S. Comparative In Vitro Study of Sol–Gel-Derived Bioactive Glasses Incorporated into Dentin Adhesives: Effects on Remineralization and Mechanical Properties of Dentin. J. Funct. Biomater. 2025, 16, 29. https://doi.org/10.3390/jfb16010029
Park I-S, Kim H-J, Kwon J, Kim D-S. Comparative In Vitro Study of Sol–Gel-Derived Bioactive Glasses Incorporated into Dentin Adhesives: Effects on Remineralization and Mechanical Properties of Dentin. Journal of Functional Biomaterials. 2025; 16(1):29. https://doi.org/10.3390/jfb16010029
Chicago/Turabian StylePark, In-Seong, Hyun-Jung Kim, Jiyoung Kwon, and Duck-Su Kim. 2025. "Comparative In Vitro Study of Sol–Gel-Derived Bioactive Glasses Incorporated into Dentin Adhesives: Effects on Remineralization and Mechanical Properties of Dentin" Journal of Functional Biomaterials 16, no. 1: 29. https://doi.org/10.3390/jfb16010029
APA StylePark, I.-S., Kim, H.-J., Kwon, J., & Kim, D.-S. (2025). Comparative In Vitro Study of Sol–Gel-Derived Bioactive Glasses Incorporated into Dentin Adhesives: Effects on Remineralization and Mechanical Properties of Dentin. Journal of Functional Biomaterials, 16(1), 29. https://doi.org/10.3390/jfb16010029