Keratoconus: Tissue Engineering and Biomaterials
Abstract
:1. Introduction
2. Pathophysiology and Etiology
3. Clinical Characteristics and Management
3.1. Penetrating Keratoplasty (PKP)
3.2. Deep Anterior Lamellar Keratoplasty (DALK)
3.3. Intrastromal Ring Segments (INTACS)
3.4. Corneal Crosslinking (CXL)
4. In Vitro Strategies
5. Tissue Engineering Materials
5.1. Acellular Corneal Stroma
5.2. Collagen Equivalents
5.3. Polymers
6. Future
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jensen, L.B.; Hjortdal, J.; Ehlers, N. Longterm follow-up of penetrating keratoplasty for keratoconus. Acta Ophthalmol. 2010, 88, 347–351. [Google Scholar]
- Nielsen, K.; Hjortdal, J.; Aagaard Nohr, E.; Ehlers, N. Incidence and prevalence of keratoconus in denmark. Acta Ophthalmol. Scand. 2007, 85, 890–892. [Google Scholar] [CrossRef]
- Rabinowitz, Y.S. Keratoconus. Surv. Ophthalmol. 1998, 42, 297–319. [Google Scholar] [CrossRef]
- Zadnik, K.; Barr, J.T.; Edrington, T.B.; Everett, D.F.; Jameson, M.; McMahon, T.T.; Shin, J.A.; Sterling, J.L.; Wagner, H.; Gordon, M.O. Baseline findings in the collaborative longitudinal evaluation of keratoconus (clek) study. Investig. Ophthalmol. Vis. Sci. 1998, 39, 2537–2546. [Google Scholar]
- Owens, H.; Gamble, G. A profile of keratoconus in New Zealand. Cornea 2003, 22, 122–125. [Google Scholar] [CrossRef]
- Grunauer-Kloevekorn, C.; Duncker, G.I. Keratoconus: Epidemiology, risk factors and diagnosis. Klin. Monbl. Augenheilkd 2006, 223, 493–502. [Google Scholar] [CrossRef]
- Georgiou, T.; Funnell, C.L.; Cassels-Brown, A.; O’Conor, R. Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in asians and white patients. Eye 2004, 18, 379–383. [Google Scholar]
- McGhee, C.N. 2008 sir norman mcalister gregg lecture: 150 years of practical observations on the conical cornea—What have we learned? Clin. Exp. Ophthalmol. 2009, 37, 160–176. [Google Scholar] [CrossRef]
- Kennedy, R.H.; Bourne, W.M.; Dyer, J.A. A 48-year clinical and epidemiologic study of keratoconus. Am. J. Ophthalmol. 1986, 101, 267–273. [Google Scholar]
- Tan, B.; Baker, K.; Chen, Y.L.; Lewis, J.W.L.; Shi, L.; Swartz, T.; Wang, M. How keratoconus influences optical performance of the eye. J. Vis. 2008, 8, 1–10. [Google Scholar]
- Karamichos, D. Keratoconus: In vitro and in vivo. Clin. J. Ophthalmol. 2014, 1, 2. [Google Scholar]
- Cingu, A.K.; Cinar, Y.; Turkcu, F.M.; Sahin, A.; Ari, S.; Yuksel, H.; Sahin, M.; Caca, I. Effects of vernal and allergic conjunctivitis on severity of keratoconus. Int. J. Ophthalmol. 2013, 6, 370–374. [Google Scholar]
- Colby, K.; Dohlman, C. Vernal keratoconjunctivitis. Int. Ophthalmol. Clin. 1996, 36, 15–20. [Google Scholar]
- Chaerkady, R.; Shao, H.; Scott, S.G.; Pandey, A.; Jun, A.S.; Chakravarti, S. The keratoconus corneal proteome: Loss of epithelial integrity and stromal degeneration. J. Proteomics 2013, 87, 122–131. [Google Scholar] [CrossRef]
- Contact lenses for Keratoconus. National Keratoconus Foundation Website. Available online: http://www.nkcf.org/contact-lenses-for-kc/ (accessed on 5 September 2014).
- Vazirani, J.; Basu, S. Keratoconus: Current perspectives. Clin. Ophthalmol. 2013, 7, 2019–2030. [Google Scholar]
- Karamichos, D.; Zareian, R.; Guo, X.; Hutcheon, A.E.; Ruberti, J.W.; Zieske, J.D. Novel in vitro model for keratoconus disease. J. Funct. Biomater. 2012, 3, 760–775. [Google Scholar] [CrossRef]
- Kenney, M.C.; Chwa, M.; Escobar, M.; Brown, D.J. Altered gelatinolytic activity by keratoconus corneal cells. Biochem. Biophys. Res. Commun. 1989, 161, 353–357. [Google Scholar] [CrossRef]
- Sharma, M.; Boxer Wachler, B.S. Comparison of single-segment and double-segment intacs for keratoconus and post-lasik ectasia. Am. J. Ophthalmol. 2006, 141, 891–895. [Google Scholar] [CrossRef]
- Feder, R.; Kshettry, P. Non-inflammatory ectactic disorders. In Cornea; Krachmer, J., Ed.; Elsevier: Philadelphia, PA, USA, 2005. [Google Scholar]
- Vinciguerra, P.; Epstein, D.; Albè, E.; Spada, F.; Incarnato, N.; Orzalesi, N.; Rosetta, P. Corneal topography-guided penetrating keratoplasty and suture adjustment: New approach for astigmatism control. Cornea 2007, 26, 675–682. [Google Scholar] [CrossRef]
- Pantanelli, S.; MacRae, S.; Jeong, T.M.; Yoon, G. Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor. Ophthalmology 2007, 114, 2013–2021. [Google Scholar] [CrossRef]
- Nakagawa, T.; Maeda, N.; Kosaki, R.; Hori, Y.; Inoue, T.; Saika, M.; Mihashi, T.; Fujikado, T.; Tano, Y. Higher-order aberrations due to the posterior corneal surface in patients with keratoconus. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2660–2665. [Google Scholar] [CrossRef]
- Tian, C.; Peng, X.; Fan, Z.; Zhang, X.; Zhou, F. Corneal collagen cross-linking in keratoconus: A systematic review and meta-analysis. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef]
- O’Brart, D.P. Corneal collagen cross-linking: A review. J. Optom. 2014, 7, 113–124. [Google Scholar] [CrossRef]
- Craig, J.A.; Mahon, J.; Yellowlees, A.; Barata, T.; Glanville, J.; Arber, M.; Mandava, L.; Powell, J.; Figueiredo, F. Epithelium-off photochemical corneal collagen cross-linkage using riboflavin and ultraviolet a for keratoconus and keratectasia: A systematic review and meta-analysis. Ocul. Surf. 2014, 12, 202–214. [Google Scholar] [CrossRef]
- Girard, M.J.; Dupps, W.J.; Baskaran, M.; Scarcelli, G.; Yun, S.H.; Quigley, H.A.; Sigal, I.A.; Strouthidis, N.G. Translating ocular biomechanics into clinical practice: Current state and future prospects. Curr. Eye Res. 2014. [Google Scholar] [CrossRef]
- Sorkin, N.; Varssano, D. Corneal collagen crosslinking: A systematic review. Ophthalmologica 2014, 232, 10–27. [Google Scholar] [CrossRef]
- Romero-Jimenez, M.; Santodomingo-Rubido, J.; Wolffsohn, J.S. Keratoconus: A review. Contact Lens Anterior Eye 2010, 33, 157–166. [Google Scholar] [CrossRef]
- Wojcik, K.A.; Kaminska, A.; Blasiak, J.; Szaflik, J.; Szaflik, J.P. Oxidative stress in the pathogenesis of keratoconus and fuchs endothelial corneal dystrophy. Int. J. Mol. Sci. 2013, 14, 19294–19308. [Google Scholar] [CrossRef]
- Kanellopoulos, A.J. Comparison of sequential vs. same-day simultaneous collagen cross-linking and topography-guided PRK for treatment of keratoconus. J. Refract. Surg. 2009, 25, S812–S818. [Google Scholar] [CrossRef]
- Wittig-Silva, C.; Whiting, M.; Lamoureux, E.; Lindsay, R.G.; Sullivan, L.J.; Snibson, G.R. A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: Preliminary results. J. Refract. Surg. 2008, 24, S720–S725. [Google Scholar]
- Boxer Wachler, B.S. Corneal crosslinking with riboflavin. A new treatment to strengthen the cornea for keratoectasia and keratoconus. Cataract Refract. Surg. Today 2005, 73–74. [Google Scholar]
- Hasson, M. FDA backs launch of collagen cross-linking clinical trials. Ocular Surgery News, 25 January 2008. [Google Scholar]
- Avedro Becomes Sponsor of US FDA Clinical Trials of Corneal Collagen Crosslinking. Business Wire Website. Available online: http://www.businesswire.com/news/home/20100316006968/en/Avedro-Sponsor-FDA-Clinical-Trials-Corneal-Collagen (accessed on 5 September 2014).
- Rabinowitz, Y.S.; Garbus, J.; McDonnell, P.J. Computer-assisted corneal topography in family members of patients with keratoconus. Arch. Ophthalmol. 1990, 108, 365–371. [Google Scholar] [CrossRef]
- Falls, H.F.; Allen, A.W. Dominantly inherited keratoconus—Report of a family. J. Genetique Hum. 1969, 17, 317–324. [Google Scholar]
- Redmond, K.B. The role of heredity in keratoconus. Trans. Ophthalmol. Soc. Aust. 1968, 27, 52–54. [Google Scholar]
- Rabinowitz, Y.S.; Nesburn, A.B.; McDonnell, P.J. Videokeratography of the fellow eye in unilateral keratoconus. Ophthalmology 1993, 100, 181–186. [Google Scholar] [CrossRef]
- Krachmer, J.H.; Feder, R.S.; Belin, M.W. Keratoconus and related noninflammatory corneal thinning disorders. Surv. Ophthalmol. 1984, 28, 293–322. [Google Scholar] [CrossRef]
- Bleckmann, H.; Kresse, H. Studies on the glycosaminoglycan metabolism of cultured fibroblasts from human keratoconus corneas. Exp. Eye Res. 1980, 30, 215–219. [Google Scholar] [CrossRef]
- Meek, K.M.; Elliott, G.F.; Gyi, T.J.; Wall, R.S. The structure of normal and keratoconus human corneas. Ophthalmic Res. 1987, 19, 6–7. [Google Scholar]
- Kao, W.W.; Vergnes, J.P.; Ebert, J.; Sundar-Raj, C.V.; Brown, S.I. Increased collagenase and gelatinase activities in keratoconus. Biochem. Biophys. Res. Commun. 1982, 107, 929–936. [Google Scholar] [CrossRef]
- Rehany, U.; Lahav, M.; Shoshan, S. Collagenolytic activity in keratoconus. Ann. Ophthalmol. 1982, 14, 751–754. [Google Scholar]
- Cannon, D.J.; Foster, C.S. Collagen crosslinking in keratoconus. Investig. Ophthalmol. Vis. Sci. 1978, 171, 63–65. [Google Scholar]
- Austin, M.G.; Schaefer, R.F. Marfan’s syndrome, with unusual blood vessel manifestations. A.M.A. Arch. Pathol. 1957, 64, 205–209. [Google Scholar]
- Judisch, G.F.; Waziri, M.; Krachmer, J.H. Ocular ehlers-danlos syndrome with normal lysyl hydroxylase activity. Arch. Ophthalmol. 1976, 94, 1489–1491. [Google Scholar] [CrossRef]
- Meek, K.M.; Tuft, S.J.; Huang, Y.; Gill, P.S.; Hayes, S.; Newton, R.H.; Bron, A.J. Changes in collagen orientation and distribution in keratoconus corneas. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1948–1956. [Google Scholar] [CrossRef]
- Hayes, S.; Khan, S.; Boote, C.; Kamma-Lorger, C.S.; Dooley, E.; Lewis, J.; Hawksworth, N.; Sorensen, T.; Daya, S.; Meek, K.M. Depth profile study of abnormal collagen orientation in keratoconus corneas. Arch. Ophthalmol. 2012, 130, 251–252. [Google Scholar] [CrossRef]
- Donnenfeld, E.D.; Kanellopoulos, A.J.; Perry, H.D. Keratoconus: Advances in diagnosis, etiology and treatment. Laser Vison Website. Available online: http://www.laservision.gr/en/%CE%B5%CF%80%CE%B5%CE%BC%CE%B2%CE%AC%CF%83%CE%B5%CE%B9%CF%82/%CE%BA%CE%B5%CF%81%CE%B1%CF%84%CE%BF%CE%B5%CE%B9%CE%B4%CE%AE%CF%82/english-keratoconus-advances-in-diagnosis-etiology-and-treatment (accessed on 5 September 2014).
- Alstrom, C.H.; Olson, O. Heredo-retinopathia congenitalis. Monohybride recessiva autosomalis. Hered. Genttiskt 1957, 43, 1–177. [Google Scholar]
- Cullen, J.F.; Butler, H.G. Mongolism (down’s syndrome) and keratoconus. Br. J. Ophthalmol. 1963, 47, 321–330. [Google Scholar] [CrossRef]
- Shapiro, M.B.; France, T.D. The ocular features of down’s syndrome. Am. J. Ophthalmol. 1985, 99, 659–663. [Google Scholar]
- Tretter, T.; Rabinowitz, Y.S.; Yang, H. Aetiological factors in keratoconus. Ophthalmology 1995, 102, 156. [Google Scholar]
- Nielsen, K.; Hjortdal, J.; Pihlmann, M.; Corydon, T.J. Update on the keratoconus genetics. Acta Ophthalmol. 2013, 91, 106–113. [Google Scholar] [CrossRef]
- Gordon-Shaag, A.; Millodot, M.; Shneor, E. The epidemiology and etiology of keratoconus. Int. J. Keratoconus Ectatic Corneal Dis. 2012, 1, 7–15. [Google Scholar] [CrossRef]
- Ertan, A.; Muftuoglu, O. Keratoconus clinical findings according to different age and gender groups. Cornea 2008, 27, 1109–1113. [Google Scholar] [CrossRef]
- Millodot, M.; Shneor, E.; Albou, S.; Atlani, E.; Gordon-Shaag, A. Prevalence and associated factors of keratoconus in jerusalem: A cross-sectional study. Ophthalmic Epidemiol. 2011, 18, 91–97. [Google Scholar]
- Bawazeer, A.M.; Hodge, W.G.; Lorimer, B. Atopy and keratoconus: A multivariate analysis. Br. J. Ophthalmol. 2000, 84, 834–836. [Google Scholar] [CrossRef]
- Ljubic, A.D. Keratoconus and its prevalence in macedonia. Maced. J. Med. Sci. 2009, 2, 58–62. [Google Scholar] [CrossRef]
- Pearson, A.R.; Soneji, B.; Sarvananthan, N.; Sandford-Smith, J.H. Does ethnic origin influence the incidence or severity of keratoconus? Eye 2000, 14, 625–628. [Google Scholar] [CrossRef]
- Wang, Y.; Rabinowitz, Y.S.; Rotter, J.I.; Yang, H. Genetic epidemiological study of keratoconus: Evidence for major gene determination. Am. J. Med. Genet. 2000, 93, 403–409. [Google Scholar] [CrossRef]
- Weed, K.H.; MacEwen, C.J.; Giles, T.; Low, J.; McGhee, C.N. The dundee university scottish keratoconus study: Demographics, corneal signs, associated diseases, and eye rubbing. Eye 2008, 22, 534–541. [Google Scholar] [CrossRef]
- Koenig, S.B. Bilateral recurrent self-induced keratoconus. Eye Contact Lens 2008, 34, 343–344. [Google Scholar] [CrossRef]
- McMonnies, C.W.; Boneham, G.C. Keratoconus, allergy, itch, eye-rubbing and hand-dominance. Clin. Exp. Optom. 2003, 86, 376–384. [Google Scholar] [CrossRef]
- Jafri, B.; Lichter, H.; Stulting, R.D. Asymmetric keratoconus attributed to eye rubbing. Cornea 2004, 23, 560–564. [Google Scholar] [CrossRef]
- Ioannidis, A.S.; Speedwell, L.; Nischal, K.K. Unilateral keratoconus in a child with chronic and persistent eye rubbing. Am. J. Ophthalmol. 2005, 139, 356–357. [Google Scholar] [CrossRef]
- Lindsay, R.G.; Bruce, A.S.; Gutteridge, I.F. Keratoconus associated with continual eye rubbing due to punctal agenesis. Cornea 2000, 19, 567–569. [Google Scholar]
- Ridley, F. Scleral contact lenses in keratoconus. In Contact Lenses: Symposium in Munich-Feldafing; Dabezies, O., Ed.; Karger: Basel, Switzerland, 1967; pp. 163–173. [Google Scholar]
- Karseras, A.G.; Ruben, M. Aetiology of keratoconus. Br. J. Ophthalmol. 1976, 60, 522–525. [Google Scholar] [CrossRef]
- Brightbill, F.S.; Stainer, G.A. Previous hard contact lens wear in keratoconus. Contact Intraocular Lenses Med. J. 1979, 5, 43–46. [Google Scholar]
- Mannis, M.J.; Zadnik, K. Contact lens fitting in keratoconus. Eye Contact Lens 1989, 15, 282–289. [Google Scholar]
- Fowler, W.C.; Belin, M.W.; Chambers, W.A. Contact lenses in the visual correction of keratoconus. Eye Contact Lens 1988, 14, 203–206. [Google Scholar]
- Karamichos, D.; Hutcheon, A.E.; Rich, C.B.; Trinkaus-Randall, V.; Asara, J.M.; Zieske, J.D. In vitro model suggests oxidative stress involved in keratoconus disease. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef]
- Kenney, M.C.; Brown, D.J.; Rajeev, B. Everett Kinsey lecture. The elusive causes of keratoconus: A working hypothesis. CLAO J. 2000, 26, 10–13. [Google Scholar]
- Greiner, J.V.; Kopp, S.J.; Glonek, T. Phosphorus nuclear magnetic resonance and ocular metabolism. Surv. Ophthalmol. 1985, 30, 189–202. [Google Scholar] [CrossRef]
- Risa, O.; Saether, O.; Lofgren, S.; Soderberg, P.G.; Krane, J.; Midelfart, A. Metabolic changes in rat lens after in vivo exposure to ultraviolet irradiation: Measurements by high resolution MAS 1H NMR spectroscopy. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1916–1921. [Google Scholar] [CrossRef]
- Holland, E.J.; Mannis, M.J. Ocular Surface Disease Medical and surgical management. In Grayson’s Diseases of the Cornea; Holland, E.J., Mannis, M.J., Eds.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Corneal dystrophies. Royal National Institute of Blind People Website. Available online: http://www.rnib.org.uk/eye-health-eye-conditions-z-eye-conditions/corneal-dystrophies (accessed on 5 September 2014).
- Rubinstein, M.P.; Sud, S. The use of hybrid lenses in management of the irregular cornea. Contact Lens Anterior Eye 1999, 22, 87–90. [Google Scholar] [CrossRef]
- Carracedo, G.; González-Méijome, J.M.; Lopes-Ferreira, D.; Carballo, J.; Batres, L. Clinical performance of a new hybrid contact lens for keratoconus. Eye Contact Lens 2014, 40, 2–6. [Google Scholar]
- Rathi, V.M.; Mandathara, P.S.; Dumpati, S. Contact lens in keratoconus. Indian J. Ophthalmol. 2013, 61, 410–415. [Google Scholar] [CrossRef]
- Downie, L.E. Predictive value of corneal topography for ClearKone hybrid contact lenses. Optom. Vis. Sci. 2013, 90, 191–197. [Google Scholar] [CrossRef]
- Yanoff, M.; Duker, J. Ophthalmology, 2nd ed.; Mosby: St. Louis, Mo, USA, 2004; pp. 315–325. [Google Scholar]
- INTACS® Prescription Inserts for Keratoconus. U.S. Food and Drug Administration Website. Available online: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/Recently-ApprovedDevices/ucm080953.htm (accessed on 5 September 2014).
- Jorge, L.A. Keratoconus treatment. Ophthalmol. Times Eur. 2013, 9. Available online: http://www.oteurope.com/ophthalmologytimeseurope/CatRef+features/Keratoconus-treatment/ArticleStandard/Article/detail/820252 (accessed on 5 September 2014).
- New Humanitarian Device Approval INTACS® Prescription Inserts for Keratoconus Services. Available online: http://www.accessdata.fda.gov/cdrh_docs/pdf4/h040002a.pdf (accessed on 5 September 2014).
- Keraflex Clinical Trial Starts in the US. National Keratoconus Foundation Wetsite. Available online: http://www.nkcf.org/keraflex-kxl/ (accessed on 5 September 2014).
- Vega-Estrada, A.; Alio, J.L.; Plaza Puche, A.B.; Marshall, J. Outcomes of a new microwave procedure followed by accelerated cross-linking for the treatment of keratoconus: A pilot study. J. Refract. Surg. 2012, 28, 787–793. [Google Scholar] [CrossRef]
- Keraflex Treatment for Keratoconus. Istituto Laser Microchirurgia Oculare Website. Available online: http://www.ilmo.it/en/solutions/surgery-at-ilmo/keraflex-for-keratoconus (accessed on 5 September 2014).
- Jabbur, N.S.; Stark, W.J.; Green, W.R. Corneal ectasia after laser-assisted in situ keratomileusis. Arch. Ophthalmol. 2001, 119, 1714–1716. [Google Scholar] [CrossRef]
- Colin, J.; Velou, S. Current surgical options for keratoconus. J. Cataract Refract. Surg. 2003, 29, 379–386. [Google Scholar] [CrossRef]
- Bergmanson, J.P.; Farmer, E.J. A return to primitive practice? Radial keratotomy revisited. Contact Lens Anterior Eye 1999, 22, 2–10. [Google Scholar]
- Lombardi, M.; Abbondanza, M. Asymmetric radial keratotomy for the correction of keratoconus. J. Refract. Surg. 1997, 13, 302–307. [Google Scholar]
- Mini ark surgery: Modified Asymmetric Radial Keratomy known as Mini ARK Surgery. Lombardi Clinic Website. Available online: http://www.lombardieyeclinic.com/keratoconus/mini-ark-surgery.htm (accessed on 5 September 2014).
- Sab, F.D. La curva pericolosa della cornea. Available online: http://www.ilgiornale.it/news/curva-pericolosa-cornea.html (accessed on 5 September 2014).
- Kohlhaas, M.; Draeger, J.; Bohm, A.; Lombardi, M.; Abbondanza, M.; Zuppardo, M.; Gorne, M. Aesthesiometry of the cornea after refractive corneal surgery. Klin. Monbl. Augenheilkd 1992, 201, 221–223. [Google Scholar] [CrossRef]
- Refractive Changes Following CXL. Cataract and Refractive Surgery Today Website. Available online: http://bmctoday.net/crstodayeurope/2009/08/article.asp?f=0709_12.php (accessed on 5 September 2014).
- Come curare il cheratocono a “Vivere meglio”. Available online: http://www.mediaset.it/quimediaset/comunicati/comunicato_3124.shtml (accessed on 5 September 2014).
- Schirmbeck, T.; Paula, J.S.; Martin, L.F.; Crosio Filho, H.; Romao, E. Efficacy and low cost in keratoconus treatment with rigid gas-permeable contact lens. Arq. Bras. Oftalmol. 2005, 68, 219–222. [Google Scholar] [CrossRef]
- Javadi, M.A.; Motlagh, B.F.; Jafarinasab, M.R.; Rabbanikhah, Z.; Anissian, A.; Souri, H.; Yazdani, S. Outcomes of penetrating keratoplasty in keratoconus. Cornea 2005, 24, 941–946. [Google Scholar] [CrossRef]
- Sugita, J. Advances in Corneal Research: Selected Transactions of the World Congress on the Cornea IV; Springer: New York, NY, USA, 1997; pp. 163–166. [Google Scholar]
- Wagoner, M.D.; Smith, S.D.; Rademaker, W.J.; Mahmood, M.A. Penetrating keratoplasty vs. Epikeratoplasty for the surgical treatment of keratoconus. J. Refract. Surg. 2001, 17, 138–146. [Google Scholar]
- Brown, D. Research Overview. National Keratoconus Foundation Website. Available online: http://www.nkcf.org/keratoconus-research (accessed on 5 September 2014).
- Mamalis, N.; Anderson, C.W.; Kreisler, K.R.; Lundergan, M.K.; Olson, R.J. Changing trends in the indications for penetrating keratoplasty. Arch. Ophthalmol. 1992, 110, 1409–1411. [Google Scholar] [CrossRef]
- Muraine, M.; Sanchez, C.; Watt, L.; Retout, A.; Brasseur, G. Long-term results of penetrating keratoplasty—A 10-year-plus retrospective study. Graef Arch. Clin. Exp. 2003, 241, 571–576. [Google Scholar]
- Claesson, M.; Armitage, W.J. Ten-year follow-up of graft survival and visual outcome after penetrating keratoplasty in sweden. Cornea 2009, 28, 1124–1129. [Google Scholar]
- Niziol, L.M.; Musch, D.C.; Gillespie, B.W.; Marcotte, L.M.; Sugar, A. Long-term outcomes in patients who received a corneal graft for keratoconus between 1980 and 1986. Am. J. Ophthalmol. 2013, 155, 213–219. [Google Scholar] [CrossRef]
- Choi, J.A.; Lee, M.A.; Kim, M.S. Long-term outcomes of penetrating keratoplasty in keratoconus: Analysis of the factors associated with final visual acuities. Int. J. Ophthalmol. 2014, 7, 517–521. [Google Scholar]
- Lim, L.; Pesudovs, K.; Coster, D.J. Penetrating keratoplasty for keratoconus: Visual outcome and success. Ophthalmology 2000, 107, 1125–1131. [Google Scholar] [CrossRef]
- Keates, R.H.; Falkenstein, S. Keratoplasty in keratoconus. Am. J. Ophthalmol. 1972, 74, 442–444. [Google Scholar]
- Troutman, R.C.; Lawless, M.A. Penetrating keratoplasty for keratoconus. Cornea 1987, 6, 298–305. [Google Scholar] [CrossRef]
- Kirkness, C.M.; Ficker, L.A.; Steele, A.D.; Rice, N.S. The success of penetrating keratoplasty for keratoconus. Eye 1990, 4, 673–688. [Google Scholar] [CrossRef]
- Epstein, R.J.; Seedor, J.A.; Dreizen, N.G.; Stulting, R.D.; Waring, G.O., III; Wilson, L.A.; Cavanagh, H.D. Penetrating keratoplasty for herpes simplex keratitis and keratoconus. Allograft rejection and survival. Ophthalmology 1987, 94, 935–944. [Google Scholar] [CrossRef]
- Chandler, J.W.; Kaufman, H.E. Graft reactions after keratoplasty for keratoconus. Am. J. Ophthalmol. 1974, 77, 543–547. [Google Scholar]
- Malbran, E.S.; Fernandez-Meijide, R.E. Bilateral versus unilateral penetrating graft in keratoconus. Ophthalmology 1982, 89, 38–40. [Google Scholar] [CrossRef]
- Ficker, L.A.; Kirkness, C.M.; Rice, N.S.; Steele, A.D. The changing management and improved prognosis for corneal grafting in herpes simplex keratitis. Ophthalmology 1989, 96, 1587–1596. [Google Scholar] [CrossRef]
- Melles, G.R.; Lander, F.; Rietveld, F.J.; Remeijer, L.; Beekhuis, W.H.; Binder, P.S. A new surgical technique for deep stromal, anterior lamellar keratoplasty. Br. J. Ophthalmol. 1999, 83, 327–333. [Google Scholar] [CrossRef]
- Fogla, R. Deep anterior lamellar keratoplasty in the management of keratoconus. Indian J. Ophthalmol. 2013, 61, 465–468. [Google Scholar] [CrossRef]
- Malbran, E.; Stefani, C. Lamellar keratoplasty in corneal ectasias. Ophthalmologica 1972, 164, 50–58. [Google Scholar] [CrossRef]
- Price, F.W., Jr. Air lamellar keratoplasty. Refract. Corneal Surg. 1989, 5, 240–243. [Google Scholar]
- Sugita, J.; Kondo, J. Deep lamellar keratoplasty with complete removal of pathological stroma for vision improvement. Br. J. Ophthalmol. 1997, 81, 184–188. [Google Scholar] [CrossRef]
- Edwards, M.; Clover, G.M.; Brookes, N.; Pendergrast, D.; Chaulk, J.; McGhee, C.N. Indications for corneal transplantation in New Zealand: 1991–1999. Cornea 2002, 21, 152–155. [Google Scholar] [CrossRef]
- Legeais, J.M.; Parc, C.; d’Hermies, F.; Pouliquen, Y.; Renard, G. Nineteen years of penetrating keratoplasty in the hotel-dieu hospital in paris. Cornea 2001, 20, 603–606. [Google Scholar] [CrossRef]
- Yahalom, C.; Mechoulam, H.; Solomon, A.; Raiskup, F.D.; Peer, J.; Frucht-Pery, J. Forty years of changing indications in penetrating keratoplasty in israel. Cornea 2005, 24, 256–258. [Google Scholar]
- Kanavi, M.R.; Javadi, M.A.; Sanagoo, M. Indications for penetrating keratoplasty in iran. Cornea 2007, 26, 561–563. [Google Scholar]
- Feizi, S.; Javadi, M.A.; Jamali, H.; Mirbabaee, F. Deep anterior lamellar keratoplasty in patients with keratoconus: Big-bubble technique. Cornea 2010, 29, 177–182. [Google Scholar] [CrossRef]
- Anwar, M.; Teichmann, K.D. Deep lamellar keratoplasty: Surgical techniques for anterior lamellar keratoplasty with and without baring of descemet’s membrane. Cornea 2002, 21, 374–383. [Google Scholar] [CrossRef]
- Fogla, R.; Padmanabhan, P. Results of deep lamellar keratoplasty using the big-bubble technique in patients with keratoconus. Am. J. Ophthalmol. 2006, 141, 254–259. [Google Scholar]
- Coombes, A.G.; Kirwan, J.F.; Rostron, C.K. Deep lamellar keratoplasty with lyophilised tissue in the management of keratoconus. Br. J. Ophthalmol. 2001, 85, 788–791. [Google Scholar] [CrossRef]
- Tsubota, K.; Kaido, M.; Monden, Y.; Satake, Y.; Bissen-Miyajima, H.; Shimazaki, J. A new surgical technique for deep lamellar keratoplasty with single running suture adjustment. Am. J. Ophthalmol. 1998, 126, 1–8. [Google Scholar] [CrossRef]
- Melles, G.R.; Remeijer, L.; Geerards, A.J.; Beekhuis, W.H. The future of lamellar keratoplasty. Curr. Opin. Ophthalmol. 1999, 10, 253–259. [Google Scholar] [CrossRef]
- Bhojwani, R.D.; Noble, B.; Chakrabarty, A.K.; Stewart, O.G. Sequestered viscoelastic after deep lamellar keratoplasty using viscodissection. Cornea 2003, 22, 371–373. [Google Scholar] [CrossRef]
- Kanavi, M.R.; Foroutan, A.R.; Kamel, M.R.; Afsar, N.; Javadi, M.A. Candida interface keratitis after deep anterior lamellar keratoplasty: Clinical, microbiologic, histopathologic, and confocal microscopic reports. Cornea 2007, 26, 913–916. [Google Scholar] [CrossRef]
- Colin, J. European clinical evaluation: Use of intacs for the treatment of keratoconus. J. Cataract Refract. Surg. 2006, 32, 747–755. [Google Scholar] [CrossRef]
- Schanzlin, D.J.; Asbell, P.A.; Burris, T.E.; Durrie, D.S. The intrastromal corneal ring segments. Phase ii results for the correction of myopia. Ophthalmology 1997, 104, 1067–1078. [Google Scholar] [CrossRef]
- Nose, W.; Neves, R.A.; Burris, T.E.; Schanzlin, D.J.; Belfort Junior, R. Intrastromal corneal ring: 12-month sighted myopic eyes. J. Refract. Surg. 1996, 12, 20–28. [Google Scholar]
- Fleming, J.F.; Wan, W.L.; Schanzlin, D.J. The theory of corneal curvature change with the intrastromal corneal ring. Eye Contact Lens 1989, 15, 146–150. [Google Scholar]
- Cochener, B.; Le Floch, G.; Colin, J. Intra-corneal rings for the correction of weak myopias. J. Fr. Ophtalmol. 1998, 21, 191–208. [Google Scholar]
- Asbell, P.A.; Ucakhan, O.O.; Durrie, D.S.; Lindstrom, R.L. Adjustability of refractive effect for corneal ring segments. J. Refract. Surg. 1999, 15, 627–631. [Google Scholar]
- Burris, T.E.; Ayer, C.T.; Evensen, D.A.; Davenport, J.M. Effects of intrastromal corneal ring size and thickness on corneal flattening in human eyes. Refract. Corneal Surg. 1991, 7, 46–50. [Google Scholar]
- Burris, T.E.; Baker, P.C.; Ayer, C.T.; Loomas, B.E.; Mathis, M.L.; Silvestrini, T.A. Flattening of central corneal curvature with intrastromal corneal rings of increasing thickness: An eye-bank eye study. J. Cataract Refract. Surg. 1993, 19, 182–187. [Google Scholar] [CrossRef]
- Shetty, R.; Kurian, M.; Anand, D.; Mhaske, P.; Narayana, K.M.; Shetty, B.K. Intacs in advanced keratoconus. Cornea 2008, 27, 1022–1029. [Google Scholar] [CrossRef]
- Ertan, A.; Ozkilic, E. Effect of age on outcomes in patients with keratoconus treated by intacs using a femtosecond laser. J. Refract.Surg. 2008, 24, 690–695. [Google Scholar]
- Ertan, A.; Kamburoglu, G. Intacs implantation using a femtosecond laser for management of keratoconus: Comparison of 306 cases in different stages. J. Cataract Refract. Surg. 2008, 34, 1521–1526. [Google Scholar] [CrossRef]
- Shabayek, M.H.; Alio, J.L. Intrastromal corneal ring segment implantation by femtosecond laser for keratoconus correction. Ophthalmology 2007, 114, 1643–1652. [Google Scholar] [CrossRef]
- Zare, M.A.; Hashemi, H.; Salari, M.R. Intracorneal ring segment implantation for the management of keratoconus: Safety and efficacy. J. Cataract Refract. Surg. 2007, 33, 1886–1891. [Google Scholar] [CrossRef]
- Kymionis, G.D.; Siganos, C.S.; Tsiklis, N.S.; Anastasakis, A.; Yoo, S.H.; Pallikaris, A.I.; Astyrakakis, N.; Pallikaris, I.G. Long-term follow-up of intacs in keratoconus. Am. J. Ophthalmol. 2007, 143, 236–244. [Google Scholar] [CrossRef]
- Alio, J.L.; Shabayek, M.H.; Artola, A. Intracorneal ring segments for keratoconus correction: Long-term follow-up. J. Cataract Refract. Surg. 2006, 32, 978–985. [Google Scholar] [CrossRef]
- Alio, J.L.; Shabayek, M.H.; Belda, J.I.; Correas, P.; Feijoo, E.D. Analysis of results related to good and bad outcomes of intacs implantation for keratoconus correction. J. Cataract Refract. Surg. 2006, 32, 756–761. [Google Scholar] [CrossRef]
- Ertan, A.; Kamburoglu, G.; Bahadir, M. Intacs insertion with the femtosecond laser for the management of keratoconus: One-year results. J. Cataract Refract. Surg. 2006, 32, 2039–2042. [Google Scholar] [CrossRef]
- Kanellopoulos, A.J.; Pe, L.H.; Perry, H.D.; Donnenfeld, E.D. Modified intracorneal ring segment implantations (intacs) for the management of moderate to advanced keratoconus: Efficacy and complications. Cornea 2006, 25, 29–33. [Google Scholar] [CrossRef]
- Hellstedt, T.; Makela, J.; Uusitalo, R.; Emre, S.; Uusitalo, R. Treating keratoconus with intacs corneal ring segments. J. Refract. Surg. 2005, 21, 236–246. [Google Scholar]
- Kwitko, S.; Severo, N.S. Ferrara intracorneal ring segments for keratoconus. J. Cataract Refract. Surg. 2004, 30, 812–820. [Google Scholar] [CrossRef]
- Miranda, D.; Sartori, M.; Francesconi, C.; Allemann, N.; Ferrara, P.; Campos, M. Ferrara intrastromal corneal ring segments for severe keratoconus. J. Refract. Surg. 2003, 19, 645–653. [Google Scholar]
- Siganos, C.S.; Kymionis, G.D.; Kartakis, N.; Theodorakis, M.A.; Astyrakakis, N.; Pallikaris, I.G. Management of keratoconus with intacs. Am. J. Ophthalmol. 2003, 135, 64–70. [Google Scholar] [CrossRef]
- Boxer Wachler, B.S.; Christie, J.P.; Chandra, N.S.; Chou, B.; Korn, T.; Nepomuceno, R. Intacs for keratoconus. Ophthalmology 2003, 110, 1031–1040. [Google Scholar] [CrossRef]
- Ruckhofer, J.; Stoiber, J.; Twa, M.D.; Grabner, G. Correction of astigmatism with short arc-length intrastromal corneal ring segments: Preliminary results. Ophthalmology 2003, 110, 516–524. [Google Scholar] [CrossRef]
- Colin, J.; Cochener, B.; Savary, G.; Malet, F.; Holmes-Higgin, D. Intacs inserts for treating keratoconus: One-year results. Ophthalmology 2001, 108, 1409–1414. [Google Scholar] [CrossRef]
- Burris, T.E. Intrastromal corneal ring technology: Results and indications. Curr. Opin. Ophthalmol. 1998, 9, 9–14. [Google Scholar] [CrossRef]
- Colin, J.; Cochener, B.; Savary, G.; Malet, F. Correcting keratoconus with intracorneal rings. J. Cataract Refract. Surg. 2000, 26, 1117–1122. [Google Scholar] [CrossRef]
- Kamburoglu, G.; Ertan, A. Intacs implantation with sequential collagen cross-linking treatment in postoperative lasik ectasia. J. Refract. Surg. 2008, 24, S726–S729. [Google Scholar]
- Meek, K.M.; Hayes, S. Corneal cross-linking–A review. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. 2013, 33, 78–93. [Google Scholar] [CrossRef]
- Abad, J.; Panesso, J. Corneal collagen cross-linking induced by UVA and riboflavin (CXL). Tech. Ophthalmol. 2008, 6, 8–12. [Google Scholar] [CrossRef]
- Baiocchi, S.; Mazzotta, C.; Cerretani, D.; Caporossi, T.; Caporossi, A. Corneal crosslinking: Riboflavin concentration in corneal stroma exposed with and without epithelium. J. Cataract Refract. Surg. 2009, 35, 893–899. [Google Scholar] [CrossRef]
- Samaras, K.E.; Lake, D.B. Corneal collagen cross linking (CXL): A review. Int. Ophthalmol. Clin. 2010, 50, 89–100. [Google Scholar] [CrossRef]
- Hayes, S.; Boote, C.; Kamma-Lorger, C.S.; Rajan, M.S.; Harris, J.; Dooley, E.; Hawksworth, N.; Hiller, J.; Terill, N.J.; Hafezi, F.; et al. Riboflavin/uva collagen cross-linking-induced changes in normal and keratoconus corneal stroma. PLoS One 2011, 6. [Google Scholar] [CrossRef]
- Koller, T.; Mrochen, M.; Seiler, T. Complication and failure rates after corneal crosslinking. J. Cataract Refract. Surg. 2009, 35, 1358–1362. [Google Scholar] [CrossRef]
- Caporossi, A.; Mazzotta, C.; Baiocchi, S.; Caporossi, T.; Denaro, R. Age-related long-term functional results after riboflavin UV a corneal cross-linking. J. Ophthalmol. 2011, 2011. [Google Scholar] [CrossRef]
- Raiskup-Wolf, F.; Hoyer, A.; Spoerl, E.; Pillunat, L.E. Collagen crosslinking with riboflavin and ultraviolet-a light in keratoconus: Long-term results. J. Cataract Refract. Surg. 2008, 34, 796–801. [Google Scholar]
- Caporossi, A.; Baiocchi, S.; Mazzotta, C.; Traversi, C.; Caporossi, T. Parasurgical therapy for keratoconus by riboflavin-ultraviolet type a rays induced cross-linking of corneal collagen: Preliminary refractive results in an italian study. J. Cataract Refract. Surg. 2006, 32, 837–845. [Google Scholar] [CrossRef]
- Coskunseven, E.; Jankov, M.R., II; Hafezi, F. Contralateral eye study of corneal collagen cross-linking with riboflavin and uva irradiation in patients with keratoconus. J. Refract. Surg. 2009, 25, 371–376. [Google Scholar] [CrossRef]
- Derakhshan, A.; Shandiz, J.H.; Ahadi, M.; Daneshvar, R.; Esmaily, H. Short-term outcomes of collagen crosslinking for early keratoconus. J. Ophthalmic Vis. Res. 2011, 6, 155–159. [Google Scholar]
- Ivarsen, A.; Hjortdal, J. Collagen cross-linking for advanced progressive keratoconus. Cornea 2013, 32, 903–906. [Google Scholar] [CrossRef]
- Wollensak, G.; Iomdina, E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J. Cataract Refract. Surg. 2009, 35, 540–546. [Google Scholar] [CrossRef]
- Yuen, L.; Chan, C.; Boxer Wachler, B.S. Effect of epithelial debridement in corneal collagen crosslinking therapy in porcine and human eyes. J. Cataract Refract. Surg. 2008, 34, 1815–1816. [Google Scholar] [CrossRef]
- Hatch, K.M. Corneal crosslinking: Epi-on or epi-off? In Program and abstracts of the American Society of Cataract and Refractive Surgery (ASCRS) 2012 Symposium on Cataract, IOL and Refractive Surgery, Chicago, IL, USA, 20–24 April 2012.
- Leccisotti, A.; Islam, T. Transepithelial corneal collagen cross-linking in keratoconus. J. Refract. Surg. 2010, 26, 942–948. [Google Scholar] [CrossRef]
- Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926. [Google Scholar]
- MacArthur, B.D.; Oreffo, R.O. Bridging the gap. Nature 2005, 433, 19. [Google Scholar] [CrossRef]
- Whitney, G.A.; Mera, H.; Weidenbecher, M.; Awadallah, A.; Mansour, J.M.; Dennis, J.E. Methods for producing scaffold-free engineered cartilage sheets from auricular and articular chondrocyte cell sources and attachment to porous tantalum. BioRes. Open Access 2012, 1, 157–165. [Google Scholar] [CrossRef]
- Macchiarini, P.; Jungebluth, P.; Go, T.; Asnaghi, M.A.; Rees, L.E.; Cogan, T.A.; Dodson, A.; Martorell, J.; Bellini, S.; Parnigotto, P.P.; et al. Clinical transplantation of a tissue-engineered airway. Lancet 2008, 372, 2023–2030. [Google Scholar] [CrossRef]
- Zilla, P.; Greisler, H.P. Tissue engineering of vascular prosthetic grafts. Nat. Med. 1999, 5. [Google Scholar] [CrossRef]
- Prestwich, G.D. Evaluating drug efficacy and toxicology in three dimensions: Using synthetic extracellular matrices in drug discovery. Accounts Chem. Res. 2008, 41, 139–148. [Google Scholar] [CrossRef]
- Myung, D.; Duhamel, P.E.; Cochran, J.R.; Noolandi, J.; Ta, C.N.; Frank, C.W. Development of hydrogel-based keratoprostheses: A materials perspective. Biotechnol. Progr. 2008, 24, 735–741. [Google Scholar] [CrossRef]
- Princz, M.A.; Sheardown, H.; Griffith, M. Corneal Tissue Engineering Versus Synthetic Artificial Corneas Inbiomaterials and Regenerative Medicine in Ophthalmology; CRC Press/Woodhead Publishing: Cambridge, UK, 2009. [Google Scholar]
- Li, F.F.; Carlsson, D.; Lohmann, C.; Suuronen, E.; Vascotto, S.; Kobuch, K.; Sheardown, H.; Munger, R.; Nakamura, M.; Griffith, M. Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation. Proc. Natl. Acad. Sci. USA 2003, 100, 15346–15351. [Google Scholar] [CrossRef]
- McLaughlin, C.R.; Acosta, M.C.; Luna, C.; Liu, W.G.; Belmonte, C.; Griffith, M.; Gallar, J. Regeneration of functional nerves within full thickness collagen-phosphorylcholine corneal substitute implants in guinea pigs. Biomaterials 2010, 31, 2770–2778. [Google Scholar] [CrossRef]
- Nishida, T. Cornea: Fundamentals of Cornea and External Disease. In Cornea; Mosby-Year Book: St. Louis, MO, USA, 1997. [Google Scholar]
- Olsen, D.; Yang, C.; Bodo, M.; Chang, R.; Leigh, S.; Baez, J.; Carmichael, D.; Perala, M.; Hamalainen, E.R.; Jarvinen, M.; et al. Recombinant collagen and gelatin for drug delivery. Adv. Drug Deliv. Rev. 2003, 55, 1547–1567. [Google Scholar] [CrossRef]
- Yang, C.; Hillas, P.J.; Baez, J.A.; Nokelainen, M.; Balan, J.; Tang, J.; Spiro, R.; Polarek, J.W. The application of recombinant human collagen in tissue engineering. BioDrugs 2004, 18, 103–119. [Google Scholar] [CrossRef]
- Merrett, K.; Fagerholm, P.; McLaughlin, C.R.; Dravida, S.; Lagali, N.; Shinozaki, N.; Watsky, M.A.; Munger, R.; Kato, Y.; Li, F.; et al. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: Performance of type I versus type III collagen. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3887–3894. [Google Scholar] [CrossRef]
- Fagerholm, P.; Lagali, N.S.; Merrett, K.; Jackson, W.B.; Munger, R.; Liu, Y.; Polarek, J.W.; Soderqvist, M.; Griffith, M. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci. Transl. Med. 2010, 2, 46–61. [Google Scholar]
- van Essen, T.H.; Lin, C.C.; Hussain, A.K.; Maas, S.; Lai, H.J.; Linnartz, H.; van den Berg, T.J.T.P.; Salvatori, D.C.F.; Luyten, G.P.M.; Jager, M.J. A fish scale-derived collagen matrix as artificial cornea in rats: Properties and potential. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3224–3233. [Google Scholar] [CrossRef]
- Chen, M.H.; Li, Y.H.; Chang, Y.; Hu, S.Y.; Gong, H.Y.; Lin, G.H.; Chen, T.T.; Wu, J.L. Co-induction of hepatic IGF-I and progranulin mrna by growth hormone in tilapia, oreochromis mossambiccus. Gen. Comp. Endocrinol. 2007, 150, 212–218. [Google Scholar] [CrossRef]
- Okuda, M.; Ogawa, N.; Takeguchi, M.; Hashimoto, A.; Tagaya, M.; Chen, S.; Hanagata, N.; Ikoma, T. Minerals and aligned collagen fibrils in tilapia fish scales: Structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography. Microsc. Microanal. 2011, 17, 788–798. [Google Scholar]
- Lin, C.C.; Ritch, R.; Lin, S.M.; Ni, M.H.; Chang, Y.C.; Lu, Y.L.; Lai, H.J.; Lin, F.H. A new fish scale-derived scaffold for corneal regeneration. Eur. Cells Mater. 2010, 19, 50–57. [Google Scholar]
- Sugiura, H.; Yunoki, S.; Kondo, E.; Ikoma, T.; Tanaka, J.; Yasuda, K. In vivo biological responses and bioresorption of tilapia scale collagen as a potential biomaterial. J. Biomat. Sci.-Polym. E 2009, 20, 1353–1368. [Google Scholar] [CrossRef]
- Matsusaki, M.; Amekawa, R.; Matsumoto, M.; Tanaka, Y.; Kubota, A.; Nishida, K.; Akashi, M. Physical and specific crosslinking of collagen fibers by supramolecular nanogelators. Adv. Mater. 2011, 23, 2957–2961. [Google Scholar] [CrossRef]
- Orwin, E.J.; Hubel, A. In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte cells in a native collagen matrix. Tissue Eng. 2000, 6, 307–319. [Google Scholar] [CrossRef]
- Parnigotto, P.P.; Bassani, V.; Montesi, F.; Conconi, M.T. Bovine corneal stroma and epithelium reconstructed in vitro: Characterisation and response to surfactants. Eye 1998, 12, 304–310. [Google Scholar]
- Germain, L.; Auger, F.A.; Grandbois, E.; Guignard, R.; Giasson, M.; Boisjoly, H.; Guerin, S.L. Reconstructed human cornea produced in vitro by tissue engineering. Pathobiol. J. Immunopathol. Mol. Cell. Biol. 1999, 67, 140–147. [Google Scholar]
- Germain, L.; Carrier, P.; Auger, F.A.; Salesse, C.; Guerin, S.L. Can we produce a human corneal equivalent by tissue engineering? Prog. Retin. Eye Res. 2000, 19, 497–527. [Google Scholar] [CrossRef]
- Minami, Y.; Sugihara, H.; Oono, S. Reconstruction of cornea in three-dimensional collagen gel matrix culture. Investig. Ophthalmol. Vis. Sci. 1993, 34, 2316–2324. [Google Scholar]
- Tegtmeyer, S.; Reichl, S.; Muller-Goymann, C.C. Cultivation and characterization of a bovine in vitro model of the cornea. Die Pharmazie 2004, 59, 464–471. [Google Scholar]
- Tegtmeyer, S.; Papantoniou, I.; Muller-Goymann, C.C. Reconstruction of an in vitro cornea and its use for drug permeation studies from different formulations containing pilocarpine hydrochloride. Eur. J. Pharm. Biopharm. 2001, 51, 119–125. [Google Scholar] [CrossRef]
- Zieske, J.D.; Mason, V.S.; Wasson, M.E.; Meunier, S.F.; Nolte, C.J.; Fukai, N.; Olsen, B.R.; Parenteau, N.L. Basement membrane assembly and differentiation of cultured corneal cells: Importance of culture environment and endothelial cell interaction. Exp. Cell Res. 1994, 214, 621–633. [Google Scholar] [CrossRef]
- Schneider, A.I.; Maier-Reif, K.; Graeve, T. The use of an in vitro cornea for predicting ocular toxicity. In vitro Toxicol. 1997, 10, 309–318. [Google Scholar]
- Schneider, A.I.; Maier-Reif, K.; Graeve, T. Constructing an in vitro cornea from cultures of the three specific corneal cell types. In vitro Cell. Dev. Biol. Anim. 1999, 35, 515–526. [Google Scholar] [CrossRef]
- Reichl, S.; Muller-Goymann, C.C. Development of an organotypic corneal construction as an in vitro model for permeability studies. Ophthalmologe 2001, 98, 853–858. [Google Scholar]
- Reichl, S.; Muller-Goymann, C.C. The use of a porcine organotypic cornea construct for permeation studies from formulations containing befunolol hydrochloride. Int. J. Pharm. 2003, 250, 191–201. [Google Scholar] [CrossRef]
- Zieske, J.D.; Chung, E.H.; Guo, X.Q.; Hutcheon, A.E.K. Human corneal organotypic cultures. J. Toxicol.-Cutan. Ocul. 2004, 23, 19–28. [Google Scholar]
- Reichl, S.; Bednarz, J.; Müller-Goymann, C.C. Human corneal equivalent as cell culture model for in vitro drug permeation studies. Br. J. Ophthalmol. 2004, 88, 560–565. [Google Scholar] [CrossRef]
- Zorn-Kruppa, M.; Tykhonova, S.; Belge, G.; Bednarz, J.; Diehl, H.A.; Engelke, M. A human corneal equivalent constructed from sv40-immortalised corneal cell lines. Altern. Lab. Anim. 2005, 33, 37–45. [Google Scholar]
- Reichl, S.; Dohring, S.; Bednarz, J.; Muller-Goymann, C.C. Human cornea construct HCC—An alternative for in vitro permeation studies? A comparison with human donor corneas. Eur. J. Pharm. Biopharm. 2005, 60, 305–308. [Google Scholar] [CrossRef]
- Andrew, J.P.; Allison, R.C. Polymer chemistry: Properties and Applications; Hanser Gardner Publications: Cincinatti, OH, USA, 2006. [Google Scholar]
- Stupp, S.I.; Braun, P.V. Molecular Manipulation of Microstructures: Biomaterials, ceramics and semiconductors. Science 1997, 277, 1242–1248. [Google Scholar] [CrossRef]
- Pilla, S. Handbook of Bioplastics and Biocomposites Engineering Applications; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Jenkins, A.D.; Kratochvìl, P.; Stepto, R.F.T.; Suter, U.W. Glossary of basic terms in polymer science. In Pure and Applied Chemistry; International Union of Pure and Applied Chemistry: Oxford, UK, 1996; Volume 68, pp. 2287–2301. [Google Scholar]
- Meyers, M.A.; Chen, P.Y.; Yu-Min Lin, A.; Seki, Y. Biological materials: Structure & mechanical properties. Progr. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef]
- Dohlman, C.; Harissi-Dagher, M. The boston keratoprosthesis: A new threadless design. Dig. J. Opthalmol. 2007, 13. Available online: http://www.djo.harvard.edu/print.php?url=/physicians/oa/1055&print=1 (accessed on 5 September 2014).
- Ament, J.D.; Stryjewski, T.P.; Ciolino, J.B.; Todani, A.; Chodosh, J.; Dolhman, C.H. Cost-effectiveness of the Boston Keratoprosthesis. Am. J. Ophthalmol. 2010, 149, 221–228. [Google Scholar] [CrossRef]
- Klufas, M.A.; Colby, K.A. The Boston Keratoprosthesis. Int. Ophthalmol. Clin. 2010, 50, 161–175. [Google Scholar] [CrossRef]
- Harissi-Dagher, M.; Dohlman, C.H. The boston keratoprosthesis in severe ocular trauma. Can. J. Ophthalmol. 2008, 43, 165–169. [Google Scholar] [CrossRef]
- Dohlman, C.H.; Harissi-Dagher, M.; Khan, F.B.; Sippel, K.; Aquavella, V.J.; Graney, M.J. Introduction to the use of the boston keratoprosthesis. Expert Rev. Ophthalmol. 2006, 1, 41–48. [Google Scholar] [CrossRef]
- Chew, H.F.; Ayres, B.D.; Hammersmith, K.M.; Rapuano, C.J.; Laibson, P.R.; Myers, J.S.; Jin, Y.P.; Cohen, E.J. Boston keratoprosthesis outcomes and complications. Cornea 2009, 28, 989–996. [Google Scholar] [CrossRef]
- Khan, B.F.; Harissi-Dagher, M.; Khan, D.M.; Dohlman, C.H. Advances in boston keratoprosthesis: Enhancing retention and prevention of infection and inflammation. Int. Ophthalmol. Clin. 2007, 47, 61–71. [Google Scholar] [CrossRef]
- Eguchi, H.; Hicks, C.R.; Crawford, G.J.; Tan, D.T.; Sutton, G.R. Cataract surgery with the alphacor artificial cornea. J. Cataract Refract. Surg. 2004, 30, 1486–1491. [Google Scholar] [CrossRef]
- Hicks, C.R.; Crawford, G.J.; Tan, D.T.; Snibson, G.R.; Sutton, G.L.; Gondhowiardjo, T.D.; Lam, D.S.; Downie, N. Outcomes of implantation of an artificial cornea, alphacor: Effects of prior ocular herpes simplex infection. Cornea 2002, 21, 685–690. [Google Scholar] [CrossRef]
- Hicks, C.R.; Hamilton, S. Retroprosthetic membranes in alphacor patients: Risk factors and prevention. Cornea 2005, 24, 692–698. [Google Scholar] [CrossRef]
- Bruining, M.J.; Pijpers, A.P.; Kingshott, P.; Koole, L.H. Studies on new polymeric biomaterials with tunable hydrophilicity, and their possible utility in corneal repair surgery. Biomaterials 2002, 23, 1213–1219. [Google Scholar] [CrossRef]
- Griffith, M.; Osborne, R.; Munger, R.; Xiong, X.J.; Doillon, C.J.; Laycock, N.L.C.; Hakim, M.; Song, Y.; Watsky, M.A. Functional human corneal equivalents constructed from cell lines. Science 1999, 286, 2169–2172. [Google Scholar] [CrossRef]
- Griffith, M.; Hakim, M.; Shimmura, S.; Watsky, M.A.; Li, F.; Carlsson, D.; Doillon, C.J.; Nakamura, M.; Suuronen, E.; Shinozaki, N.; et al. Artificial human corneas: Scaffolds for transplantation and host regeneration. Cornea 2002, 21, S54–S61. [Google Scholar] [CrossRef]
- Li, F.; Griffith, M.; Li, Z.; Tanodekaew, S.; Sheardown, H.; Hakim, M.; Carlsson, D.J. Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration. Biomaterials 2005, 26, 3093–3104. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Karamichos, D.; Hjortdal, J. Keratoconus: Tissue Engineering and Biomaterials. J. Funct. Biomater. 2014, 5, 111-134. https://doi.org/10.3390/jfb5030111
Karamichos D, Hjortdal J. Keratoconus: Tissue Engineering and Biomaterials. Journal of Functional Biomaterials. 2014; 5(3):111-134. https://doi.org/10.3390/jfb5030111
Chicago/Turabian StyleKaramichos, Dimitrios, and Jesper Hjortdal. 2014. "Keratoconus: Tissue Engineering and Biomaterials" Journal of Functional Biomaterials 5, no. 3: 111-134. https://doi.org/10.3390/jfb5030111
APA StyleKaramichos, D., & Hjortdal, J. (2014). Keratoconus: Tissue Engineering and Biomaterials. Journal of Functional Biomaterials, 5(3), 111-134. https://doi.org/10.3390/jfb5030111