Combined AOPs for Formaldehyde Degradation Using Heterogeneous Nanostructured Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Nanostructured Catalytic Systems
2.3. Testing of the Catalytic Systems in the Degradation of Aqueous Formaldehyde Solution
2.4. Characterization
3. Results and Discussion
3.1. Catalytic Membranes Characterization
3.2. Photocatalytic Degradation of the Formaldehyde
3.3. Photo-Fenton Degradation of Formaldehyde
3.4. Photo-Catalytic-Fenton Degradation of Formaldehyde
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bennett, M. TICs, TIMs, and Terrorists. Today’s Chem. Work 2003, 12, 21–25. [Google Scholar]
- Raja Priya, K.; Sandhya, S.; Swaminathan, K. Kinetic analysis of treatment of formaldehyde containing wastewater in UAFB reactor. Chem. Eng. J. 2009, 148, 212–216. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.P.H.C.; Tang, Z. Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment. Waste Manag. 1993, 13, 361–377. [Google Scholar]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Shin, E.M.; Senthurchelvan, R.; Munoz, J.; Basak, S.; Rajeshwar, K.; Benglas-Smith, G.; Howell, B.C. Photolytic and photocatalytic destruction of formaldehyde in aqueous media. J. Electrochem. Soc. 1996, 143, 1562–1570. [Google Scholar] [CrossRef]
- Guimarães, J.R.; Turato Farah, C.R.; Maniero, M.G.; Fadini, P.S. Degradation of formaldehyde by advanced oxidation processes. J. Environ. Manag. 2012, 107, 96–101. [Google Scholar] [CrossRef]
- Sifang, L.; Guoliang, Y.; Guoqin, C. Low-temperature preparation and characterization of nanocrystalline anatase TiO2. J. Phys. Chem. C 2009, 113, 4031–4037. [Google Scholar]
- Shiraishi, F.; Nakasako, T.; Hua, Z. Formation of Hydrogen Peroxide in Photocatalytic Reactions. J. Phys. Chem. A 2003, 107, 11072–11081. [Google Scholar] [CrossRef]
- Kabra, K.; Chaudhary, R.; Sawhney, R.L. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review. Ind. Eng. Chem. Res. 2004, 43, 7683–7696. [Google Scholar] [CrossRef]
- Liang, J.; Liu, X.; Zhang, Z.; Wang, Y. Kinetics and Reaction Mechanism for Formaldehyde Wastewater Using UV-Fenton Oxidation. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering (CBBE), Chengdu, China, 18–20 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–5. [Google Scholar]
- Kajitvichyanukul, P.; Lu, M.C.; Jamroensan, A. Formaldehyde degradation in the presence of methanol by photo-Fenton process. J. Environ. Manag. 2008, 86, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.C.; Fu, H.Y.; Gao, T.Z. Treatment of high concentration wastewater containing phenols and aldehyde from a small Phenolic resin plant. Adv. Mater. Res. 2014, 864–867, 1552–1555. [Google Scholar] [CrossRef]
- Lazar, M.A.; Varghese, S.; Nair, S.S. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates. Catalysts 2012, 2, 572–601. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Meng, L.; Zhang, X.; Mei, X.; Guo, X.; Li, W.; Wang, P.; Gan, L. Promoting Fe3+/Fe2+ cycling under visible light by synergistic interactions between P25 and small amount of Fenton reagents. J. Hazard. Mater. 2019, 379, 120795. [Google Scholar] [CrossRef] [PubMed]
- Gogate, P.R.; Pandit, A.B. A review of imperative technologies for wastewater treatment II: Hybrid methods. Adv. Environ. Res. 2004, 8, 553–597. [Google Scholar] [CrossRef]
- Adewu-Yi, Y.G. Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environ. Sci. Technol. 2005, 39, 8557–8570. [Google Scholar] [CrossRef]
- Mokhbi, Y.; Korichi, M.; Akchiche, Z. Combined photocatalytic and Fenton oxidation for oily wastewater treatment. Appl. Water Sci. 2019, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.E.; Lee, J.; Lee, H.; Lee, C. Synergistic effects of TiO2 photocatalysis in combination with Fenton-like reactions on oxidation of organic compounds at circumneutral pH. Appl. Catal. B Environ. 2012, 115–116, 219–224. [Google Scholar] [CrossRef]
- Khanmohammadi, M.; Bagheri, A.; Elmizadeh, H. Spectrophotometric evaluation of the photocatalytic degradation of formaldehyde by Fe2O3–TiO2 nano hybrid. J. Ind. Eng. Chem. 2014, 20, 1841–1844. [Google Scholar] [CrossRef]
- Siddhapara, K.; Shah, D. Study of photocatalytic activity and magnetic properties of Co, Mn metal ions doped nanocrystalline TiO2 prepared by Sol–Gel method. J. Cryst. Growth 2016, 452, 158–161. [Google Scholar] [CrossRef]
- Li, J.; Ren, D.; Wu, Z.; Xu, J.; Bao, Y.; He, S.; Chen, Y. Flame retardant and visible light-activated Fe-doped TiO2 thin films anchored to wood surfaces for the photocatalytic degradation of gaseous formaldehyde. J. Colloid Interface Sci. 2018, 530, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.W.; Li, Y.H.; Yuan, C.S.; Tsai, P.Y.; Shen, H.Z.; Hung, C.H. An innovative advanced oxidation technology for effective decomposition of formaldehyde by combining iron modified nano-TiO2 (Fe/TiO2) photocatalytic degradation with ozone oxidation. Aerosol Air Qual. Res. 2018, 18, 3220–3233. [Google Scholar] [CrossRef]
- Chun, H.H.; Lee, J.Y.; Jo, W.K. Photocatalysis of low-concentration gaseous organic pollutants over electrospun iron-doped titanium dioxide nanofibers. Solid State Sci. 2013, 25, 103–109. [Google Scholar] [CrossRef]
- Bouras, P.; Lianos, P. Synergy effect in the combined photodegradation of an azo dye by titanium dioxide photocatalysis and photo-fenton oxidation. Catal. Lett. 2008, 123, 220–225. [Google Scholar] [CrossRef]
- Quici, N.; Morgada, M.E.; Piperata, G.; Babay, P.; Gettar, R.T.; Litter, M.I. Oxalic acid destruction at high concentrations by combined heterogeneous photocatalysis and photo-Fenton processes. Catal. Today 2005, 101, 253–260. [Google Scholar] [CrossRef]
- Shao, L.; Hu, B.; Dong, P.; Ji, W.; Qi, C. Electrospinning Fe(III)porphyrin/TiO2/poly(styrene) mixture:formation of a novel nanofiber photocatalyst for the photodegradation of methyl orange. J. Porphyr. Phthalocyanines 2010, 14, 993–999. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Ma, L.L.; Li, J.L.; Yu, Y. In situ Fenton reagent generated from TiO2/Cu2O composite film: A new way to utilize TiO2 under visible light irradiation. Environ. Sci. Technol. 2007, 41, 6264–6269. [Google Scholar] [CrossRef]
- Zhu, T.; Ong, W.L.; Zhu, L.; Ho, G.W. TiO2 fibers supported β-FeOOH nanostructures as efficient visible light photocatalyst and room temperature sensor. Sci. Rep. 2015, 5, 10601. [Google Scholar] [CrossRef] [Green Version]
- Keulemans, M.; Verbruggen, S.W.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. Activity versus selectivity in photocatalysis: Morphological or electronic properties tipping the scale. J. Catal. 2016, 344, 221–228. [Google Scholar] [CrossRef]
- Kete, M.; Pavlica, E.; Fresno, F.; Bratina, G.; Štangar, U.L. Highly active photocatalytic coatings prepared by a low-temperature method. Environ. Sci. Pollut. Res. 2014, 21, 11238–11249. [Google Scholar] [CrossRef]
- Modesti, M.; Roso, M.; Boaretti, C.; Besco, S.; Hrelja, D.; Sgarbossa, P.; Lorenzetti, A. Preparation of smart nano-engineered electrospun membranes for methanol gas-phase photoxidation. Appl. Catal. B Environ. 2014, 144, 216–222. [Google Scholar] [CrossRef]
- Yang, J.; Li, D.; Zhang, Z.; Li, Q.; Wang, H. A study of the photocatalytic oxidation of formaldehyde on Pt/Fe2O3/TiO2. J. Photochem. Photobiol. A Chem. 2000, 137, 197–202. [Google Scholar] [CrossRef]
- Arana, J.; Nieto Martinez, J.A.; Herrera Melian, J.A.; Dona Rodrıguez, J.M.; Gonzalez Dıaz, O.; Perez Pena, J.; Bergasa, O.; Alvarez, C.; Mendez, J. Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories endez. Chemosphere 2004, 55, 893–904. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Vogelpohl, A. Degradation of Organic Pollutants by the Photo-Fenton-Process. Chem. Eng. Technol. 1998, 21, 187–191. [Google Scholar] [CrossRef]
- Ameta, R.; Chohadia, A.K.; Jain, A.; Punjabi, P.B. Fenton and Photo-Fenton Processes. In Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, 1st ed.; Ameta, S., Ameta, R., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 49–87. ISBN 9780128105252. [Google Scholar]
- Ghaly, M.Y.; Härtel, G.; Mayer, R.; Haseneder, R. Photochemical oxidation of p -chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study. Waste Manag. 2001, 21, 41–47. [Google Scholar] [CrossRef]
- Augugliaro, V.; Litter, M.; Palmisano, L.; Soria, J. The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance. J. Photochem. Photobiol. C Photochem. Rev. 2006, 7, 127–144. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Keenan, C.R.; Sedlak, D.L. Polyoxometalate-Enhanced Oxidation of Organic Compounds by Nanoparticulate Zero-Valent Iron and Ferrous Ion in the Presence of Oxygen. Environ. Sci. Technol. 2008, 42, 4921–4926. [Google Scholar] [CrossRef] [Green Version]
- Benkelberg, H.; Warneck, P.; Chemie, M. Photodecomposition of Iron (III) Hydroxo and Sulfato Complexes in Aqueous Solution: Wavelength Dependence of OH and SO4-Quantum Yields. J. Phys. Chem. 1995, 99, 5214–5221. [Google Scholar] [CrossRef]
- Kowalik, P. Chemical pretreatment of formaldehyde wastewater by selected Advanced Oxidation Processes (AOPs). Chall. Mod. Technol. 2011, 2, 42–48. [Google Scholar]
Materials | Flow Rate (mL/h) | Voltage (kV) | Electrode Distance (cm) | Relative Humidity (%) | Deposition Time (min) |
---|---|---|---|---|---|
PAN support | 2 | 15 ÷ 20 | 20 ÷ 25 | 30 ÷ 40 | 120 |
Catalysts deposition | 2 | 23 ÷ 25 | 15 | 20 ÷ 30 | 60 |
Membrane | Catalyst Content (mg/cm2) |
---|---|
PAN_TiO2 | 0.14 |
PAN_Fe | 0.12 |
PAN_TiO2_Fe | 0.19 |
(53% TiO2 + 47% FeSO4) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonora, R.; Boaretti, C.; Campea, L.; Roso, M.; Martucci, A.; Modesti, M.; Lorenzetti, A. Combined AOPs for Formaldehyde Degradation Using Heterogeneous Nanostructured Catalysts. Nanomaterials 2020, 10, 148. https://doi.org/10.3390/nano10010148
Bonora R, Boaretti C, Campea L, Roso M, Martucci A, Modesti M, Lorenzetti A. Combined AOPs for Formaldehyde Degradation Using Heterogeneous Nanostructured Catalysts. Nanomaterials. 2020; 10(1):148. https://doi.org/10.3390/nano10010148
Chicago/Turabian StyleBonora, Renato, Carlo Boaretti, Laura Campea, Martina Roso, Alessandro Martucci, Michele Modesti, and Alessandra Lorenzetti. 2020. "Combined AOPs for Formaldehyde Degradation Using Heterogeneous Nanostructured Catalysts" Nanomaterials 10, no. 1: 148. https://doi.org/10.3390/nano10010148
APA StyleBonora, R., Boaretti, C., Campea, L., Roso, M., Martucci, A., Modesti, M., & Lorenzetti, A. (2020). Combined AOPs for Formaldehyde Degradation Using Heterogeneous Nanostructured Catalysts. Nanomaterials, 10(1), 148. https://doi.org/10.3390/nano10010148