Resonant and Sensing Performance of Volume Waveguide Structures Based on Polymer Nanomaterials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Holographic Fabrication and Characterization of Resonant Waveguide Structures (RWS)
2.3. Reflection Spectra Measurements
3. Results
3.1. Theoretical Analysis of Resonant Properties of RWS
3.1.1. Development of the Approximate Theoretical Model
3.1.2. Results of the Numerical Modeling of the Waveguide Resonance
3.2. Fabrication of Photosensitive Nanocomposite Waveguide Layers and Resonant Structures
3.3. Resonant Properties of Nanocomposite RWS
3.4. Investigation of the Sensing Properties of RWS
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Saveleva, M.S.; Eftekhari, K.; Abalymov, A.; Douglas, T.E.L.; Volodkin, D.; Parakhonskiy, B.V.; Skirtach, A.G. Hierarchy of Hybrid Materials—The Place of Inorganics-in-Organics in it, Their Composition and Applications. Front. Chem. 2019, 7, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobin, R.; Rangreez, T.A.; Chisti, H.T.; Rezakazemi, M. Organic-Inorganic Hybrid Materials and Their Applications. In Functional Polymers; Jafar Mazumder, M.A., Sheardown, H., Al-Ahmed, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1135–1156. ISBN 978-3-319-95986-3. [Google Scholar]
- Parola, S.; Julián-López, B.; Carlos, L.D.; Sanchez, C. Optical Properties of Hybrid Organic-Inorganic Materials and their Applications. Adv. Funct. Mater. 2016, 26, 6506–6544. [Google Scholar] [CrossRef]
- Said, R.A.M.; Hasan, M.A.; Abdelzaher, A.M.; Abdel-Raoof, A.M. Review—Insights into the Developments of Nanocomposites for Its Processing and Application as Sensing Materials. J. Electrochem. Soc. 2020, 167, 037549. [Google Scholar] [CrossRef]
- Oliveira, M.; Machado, A.V. Preparation of polymer-based nanocomposites by different routes. In Nanocomposites: Synthesis, Characterization and Applications; Wang, X., Ed.; Nova Science Publishers: Zurich, Switzerland, 2013; pp. 1–22. ISBN 978-1-62948-227-9. [Google Scholar]
- Zaikov, G.E.; Bazylyak, L.I.; Aneli, J.N. Polymers for Advanced Technologies: Processing, Characterization and Applications; Apple Academic Press: Oakville, ON, Canada, 2013; p. 286. ISBN 978-1-926895-3-45. [Google Scholar]
- Zhao, G.; Mouroulis, P. Diffusion Model of Hologram Formation in Dry Photopolymer Materials. J. Mod. Opt. 1994, 41, 1929–1939. [Google Scholar] [CrossRef]
- Colvin, V.L.; Larson, R.G.; Harris, A.L.; Schilling, M.L. Quantitative model of volume hologram formation in photopolymers. J. Appl. Phys. 1997, 81, 5913–5923. [Google Scholar] [CrossRef] [Green Version]
- Karpov, G.M.; Obukhovsky, V.V.; Smirnova, T.N.; Lemeshko, V.V. Spatial transfer of matter as a method of holographic recording in photoformers. Opt. Commun. 2000, 174, 391–404. [Google Scholar] [CrossRef]
- Sheridan, J.T.; Lawrence, J.R. Nonlocal-response diffusion model of holographic recording in photopolymer. J. Opt. Soc. Am. A 2000, 17, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Juhl, A.T.; Busbee, J.D.; Koval, J.J.; Natarajan, L.V.; Tondiglia, V.P.; Vaia, R.A.; Bunning, T.J.; Braun, P.V. Holographically Directed Assembly of Polymer Nanocomposites. ACS Nano 2010, 4, 5953–5961. [Google Scholar] [CrossRef] [Green Version]
- Tomita, Y.; Hata, E.; Momose, K.; Takayama, S.; Liu, X.; Chikama, K.; Klepp, J.; Pruner, C.; Fally, M. Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics. J. Mod. Opt. 2016, 63, S1–S31. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.H.; Ford, J.; Yang, S. Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography. Polym. Adv. Technol. 2006, 17, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Lowell, D.; Lutkenhaus, J.; George, D.; Philipose, U.; Chen, B.; Lin, Y. Simultaneous direct holographic fabrication of photonic cavity and graded photonic lattice with dual periodicity, dual basis, and dual symmetry. Opt. Express 2017, 25, 14444–14452. [Google Scholar] [CrossRef] [PubMed]
- Hryn, V.O.; Yezhov, P.V.; Smirnova, T.N. Two-Dimensional Periodic Structures Recorded in Nanocomposites by Holographic Method: Features of Formation, Applications. In Nanophysics, Nanomaterials, Interface Studies, and Applications; Fesenko, O., Yatsenko, L., Eds.; Springer: Cham, Switzerland, 2017; Volume 195, pp. 293–304. ISBN 978-3-319-56244-5. [Google Scholar]
- Vorzobova, N.; Sokolov, P. Application of Photopolymer Materials in Holographic Technologies. Polymers 2019, 11, 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakhno, O.V.; Goldenberg, L.M.; Stumpe, J.; Smirnova, T.N. Effective volume holographic structures based on organic–inorganic photopolymer nanocomposites. J. Opt. A Pure Appl. Opt. 2009, 11, 024013. [Google Scholar] [CrossRef]
- Sakhno, O.; Yezhov, P.; Hryn, V.; Rudenko, V.; Smirnova, T. Optical and Nonlinear Properties of Photonic Polymer Nanocomposites and Holographic Gratings Modified with Noble Metal Nanoparticles. Polymers 2020, 12, 480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ninjbadgar, T.; Garnweitner, G.; Börger, A.; Goldenberg, L.M.; Sakhno, O.V.; Stumpe, J. Synthesis of Luminescent ZrO2:Eu3+ Nanoparticles and Their Holographic Sub-Micrometer Patterning in Polymer Composites. Adv. Funct. Mater. 2009, 19, 1819–1825. [Google Scholar] [CrossRef]
- Ditlbacher, H.; Krenn, J.R.; Schider, G.; Leitner, A.; Aussenegg, F.R. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 2002, 81, 1762–1764. [Google Scholar] [CrossRef]
- Mikhailov, V.; Wurtz, G.A.; Elliott, J.; Bayvel, P.; Zayats, A.V. Dispersing Light with Surface Plasmon Polaritonic Crystals. Phys. Rev. Lett. 2007, 99, 083901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smirnova, T.N.; Sakhno, O.V.; Fitio, V.M.; Gritsai, Y.; Stumpe, J. Simple and high performance DFB laser based on dye-doped nanocomposite volume gratings. Laser Phys. Lett. 2014, 11, 125804. [Google Scholar] [CrossRef]
- Smirnova, T.N.; Sakhno, O.V.; Stumpe, J.; Fitio, V.M. Polymer distributed feedback dye laser with an external volume Bragg grating inscribed in a nanocomposite by holographic technique. J. Opt. Soc. Am. B 2016, 33, 202–210. [Google Scholar] [CrossRef]
- Fally, M.; Klepp, J.; Tomita, Y.; Nakamura, T.; Pruner, C.; Ellabban, M.A.; Rupp, R.A.; Bichler, M.; Drevenšek-Olenik, I.; Kohlbrecher, J.; et al. Neutron Optical Beam Splitter from Holographically Structured Nanoparticle-Polymer Composites. Phys. Rev. Lett. 2010, 105, 123904. [Google Scholar] [CrossRef] [Green Version]
- Kraiski, A.V.; Postnikov, V.A.; Mironova, T.V.; Kraiski, A.A.; Shevchenko, M.A.; Kazaryan, M.A. Holographic Sensors for Diagnostics of Components in Aqueous Solutions and Biological Fluids. Altern. Energy Ecol. (ISJAEE) 2018, 105–124. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Naydenova, I.; da Cruz Vasconcellos, F.; Blyth, J.; Lowe, C.R. Holographic Sensors: Three-Dimensional Analyte-Sensitive Nanostructures and Their Applications. Chem. Rev. 2014, 114, 10654–10696. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, R.; Yu, D.; Luo, S.; Li, L.; Wang, W.; Song, Q. Direct light written holographic volume grating as a novel optical platform for sensing characterization of solution. Opt. Laser Technol. 2019, 109, 510–517. [Google Scholar] [CrossRef]
- Naydenova, I. Chapter 7—Holographic Sensors. In Optical Holography; Blanche, P.-A., Ed.; Elsevier: St. Louis, MO, USA, 2020; pp. 165–190. ISBN 978-0-12-815467-0. [Google Scholar]
- Quaranta, G.; Basset, G.; Martin, O.J.F.; Gallinet, B. Recent Advances in Resonant Waveguide Gratings. Laser Photon Rev. 2018, 12, 1800017. [Google Scholar] [CrossRef]
- Anderson, B.B.; Brodsky, A.M.; Burgess, L.W. Threshold effects in light scattering from a binary diffraction grating. Phys. Rev. E 1996, 54, 912–923. [Google Scholar] [CrossRef]
- Rosenblatt, D.; Sharon, A.; Friesem, A.A. Resonant grating waveguide structures. IEEE J. Quantum Electron. 1997, 33, 2038–2059. [Google Scholar] [CrossRef]
- Chaudhery, V.; George, S.; Lu, M.; Pokhriyal, A.; Cunningham, B.T. Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence. Sensors 2013, 13, 5561–5584. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, Y.; Cunningham, B.T. Label-Free Biosensor Imaging on Photonic Crystal Surfaces. Sensors 2015, 15, 21613–21635. [Google Scholar] [CrossRef]
- Luan, E.; Shoman, H.; Ratner, D.M.; Cheung, K.C.; Chrostowski, L. Silicon Photonic Biosensors Using Label-Free Detection. Sensors 2018, 18, 3519. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Bai, P.; Zhou, X.; Akimov, Y.; Png, C.E.; Ang, L.-K.; Knoll, W.; Wu, L. Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth. Adv. Opt. Mater. 2019, 7, 1801433. [Google Scholar] [CrossRef]
- Norton, S.M.; Morris, G.M.; Erdogan, T. Experimental investigation of resonant-grating filter lineshapes in comparison with theoretical models. J. Opt. Soc. Am. A 1998, 15, 464–472. [Google Scholar] [CrossRef]
- Shin, D.; Tibuleac, S.; Maldonado, T.A.; Magnusson, R. Thin-film optical filters with diffractive elements and waveguides. Opt. Eng. 1998, 37, 2634–2646. [Google Scholar] [CrossRef]
- Lan, G.; Zhang, S.; Zhang, H.; Zhu, Y.; Qing, L.; Li, D.; Nong, J.; Wang, W.; Chen, L.; Wei, W. High-performance refractive index sensor based on guided-mode resonance in all-dielectric nano-silt array. Phys. Lett. A 2019, 383, 1478–1482. [Google Scholar] [CrossRef]
- Sakhno, O.V.; Smirnova, T.N.; Goldenberg, L.M.; Stumpe, J. Holographic patterning of luminescent photopolymer nanocomposites. Mater. Sci. Eng. C 2008, 28, 28–35. [Google Scholar] [CrossRef]
- Kogelnik, H. Coupled Wave Theory for Thick Hologram Gratings. Bell Syst. Tech. J. 1969, 48, 2909–2947. [Google Scholar] [CrossRef]
- Wang, S.S.; Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 1993, 32, 2606–2613. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J.D. Optical Waveguide Theory; Chapman and Hall: London, UK; New York, NY, USA, 1983; ISBN 978-0-412-09950-2. [Google Scholar]
- Fitio, V.M.; Romakh, V.V.; Bobitski, Y.V. Numerical Method for Analysis of Waveguide Modes in Planar Gradient Waveguides. Mater. Sci. 2014, 20, 256–261. [Google Scholar] [CrossRef]
- Fitio, V.M.; Romakh, V.V.; Bartkiv, L.V.; Bobitski, Y.V. The accuracy of computation of mode propagation constants for planar gradient waveguides in the frequency domain. Mater. Sci. Eng. Technol. 2016, 47, 237–245. [Google Scholar] [CrossRef]
- Fitio, V.M.; Romakh, V.V.; Bobitski, Y.V. Search of mode wavelengths in planar waveguides by using the wave equation Fourier transform method. Semicond. Phys. Quantum Electron. Optoelectron. 2016, 19, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Karpov, H.M.; Obukhovsky, V.V.; Smirnova, T.N. Generalized model of holographic recording in photopolymer materials. Semicond. Phys. Quantum Electron. Optoelectron. 1999, 2, 66–70. [Google Scholar] [CrossRef]
- Sabel, T.; de Vicente Lucas, G.; Lensen, M.C. Simultaneous formation of holographic surface relief gratings and volume phase gratings in photosensitive polymer. Mater. Res. Lett. 2019, 7, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Yih, J.-N.; Chu, Y.-M.; Mao, Y.-C.; Wang, W.-H.; Chien, F.-C.; Lin, C.-Y.; Lee, K.-L.; Wei, P.-K.; Chen, S.-J. Optical waveguide biosensors constructed with subwavelength gratings. Appl. Opt. 2006, 45, 1938–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnusson, R.; Wawro, D.; Zimmerman, S.; Ding, Y. Resonant Photonic Biosensors with Polarization-Based Multiparametric Discrimination in Each Channel. Sensors 2011, 11, 1476–1488. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wang, B.; Guo, Z.; Wu, X. Guided Mode Resonance Sensors with Optimized Figure of Merit. Nanomaterials 2019, 9, 837. [Google Scholar] [CrossRef] [Green Version]
- Quan, Q.; Loncar, M. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. Opt. Express 2011, 19, 18529–18542. [Google Scholar] [CrossRef] [Green Version]
- Deotare, P.B.; McCutcheon, M.W.; Frank, I.W.; Khan, M.; Lončar, M. High quality factor photonic crystal nanobeam cavities. Appl. Phys. Lett. 2009, 94, 121106. [Google Scholar] [CrossRef] [Green Version]
- Quan, Q.; Burgess, I.B.; Tang, S.K.Y.; Floyd, D.L.; Lončar, M. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities. Opt. Express 2011, 19, 22191. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, H.-M.; Lee, Y.-H. Single nanobeam optical sensor with a high Q-factor and high sensitivity. Opt. Lett. 2015, 40, 5351–5354. [Google Scholar] [CrossRef]
λres, nm | Sn, μm−1 | Sλ, μm−2 | S, nm/RIU | FoM, RIU−1 | Sθ, deg/RIU | |
---|---|---|---|---|---|---|
1.000 | 804.0984 | 0.0157 | –14.791 | 0.80 | 267 | 0.133 |
1.332 | 804.2528 | 0.0186 | –14.798 | 0.95 | 317 | 0.158 |
1.350 | 804.2730 | 0.0216 | –14.798 | 1.10 | 367 | 0.183 |
1.400 | 804.3505 | 0.0361 | –14.795 | 1.80 | 600 | 0.306 |
1.450 | 804.4959 | 0.0778 | –14.791 | 3.96 | 1320 | 0.659 |
1.500 | 804.9512 | 0.3973 | –14.775 | 20.20 | 6733 | 3.368 |
* 1.500 | 802.7418 | 1.2490 | –14.900 | 63.90 | 21300 | 10.090 |
Sample | θ = 0°, TE | θ = 10°, TE | ||||
---|---|---|---|---|---|---|
λres, nm | , nm | λres1, nm | , nm | λres2, nm | , nm | |
S1 | 605.342 | 0.003 | 536.559 | 0.002 | 674.459 | 0.002 |
S2 | 606.300 | 0.002 | 537.330 | 0.0009 | 675.308 | 0.001 |
Analyte | Refractive Index, na |
---|---|
Water | 1.3321 |
60 vol.% ethanol-water mixture | 1.3532 |
Ethanol | 1.3611 |
Isopropanol | 1.3776 |
Toluene | 1.4970 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smirnova, T.; Fitio, V.; Sakhno, O.; Yezhov, P.; Bendziak, A.; Hryn, V.; Bellucci, S. Resonant and Sensing Performance of Volume Waveguide Structures Based on Polymer Nanomaterials. Nanomaterials 2020, 10, 2114. https://doi.org/10.3390/nano10112114
Smirnova T, Fitio V, Sakhno O, Yezhov P, Bendziak A, Hryn V, Bellucci S. Resonant and Sensing Performance of Volume Waveguide Structures Based on Polymer Nanomaterials. Nanomaterials. 2020; 10(11):2114. https://doi.org/10.3390/nano10112114
Chicago/Turabian StyleSmirnova, Tatiana, Volodymyr Fitio, Oksana Sakhno, Pavel Yezhov, Andrii Bendziak, Volodymyr Hryn, and Stefano Bellucci. 2020. "Resonant and Sensing Performance of Volume Waveguide Structures Based on Polymer Nanomaterials" Nanomaterials 10, no. 11: 2114. https://doi.org/10.3390/nano10112114
APA StyleSmirnova, T., Fitio, V., Sakhno, O., Yezhov, P., Bendziak, A., Hryn, V., & Bellucci, S. (2020). Resonant and Sensing Performance of Volume Waveguide Structures Based on Polymer Nanomaterials. Nanomaterials, 10(11), 2114. https://doi.org/10.3390/nano10112114