Molecular Dynamics Simulation of Calcium-Silicate-Hydrate for Nano-Engineered Cement Composites—A Review
Abstract
:1. Introduction
2. Background on C-S-H
2.1. Formation and Classification of C-S-H
2.2. Structural Models of C-S-H
3. Molecular Dynamics Simulation of C-S-H
3.1. MD Models of C-S-H
3.2. Water Dynamics in C-S-H
3.3. Nanoscale Mechanical Properties and Performance of C-S-H
4. MD Simulations on Nano-Engineered Cement Materials
4.1. Carbon-Based Nanomaterials
4.1.1. Carbon-Based Nanomaterials-Reinforced Cement Composite
4.1.2. MD Simulation on CNT/Graphene/GO-Reinforced C-S-H
4.2. Cement–Polymer Nanocomposite
4.3. Chloride Ion Binding on Cement Hydrates
5. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scrivener, K.L.; Kirkpatrick, R.J. Innovation in use and research on cementitious material. Cem. Concr. Res. 2008, 38, 128–136. [Google Scholar] [CrossRef]
- Selvam, R.P.; Subramani, V.J.; Murray, S.; Hall, K.D. Potential Application of Nanotechnology on Cement Based Materials; No. MBTC DOT 2095/3004; Arkansas State Highway and Transportation Department: Little Rock, AR, USA, 2009.
- Bittnar, Z.; Bartos, P.J.; Nemecek, J.; Smilauer, V.; Zeman, J. Nanotechnology in Construction: Proceedings of the NICOM3. In Proceedings of the 3rd International Symposium on Nanotechnology in Construction, Prague, Czech Republic, 31 May–2 June 2009; Springer: Berlin, Germany, 2009; p. 438. [Google Scholar]
- Jennings, H.M.; Bullard, J.W.; Thomas, J.J.; Andrade, J.E.; Chen, J.J.; Scherer, G.W. Characterization and modeling of pores and surfaces in cement paste. J. Adv. Concr. Technol. 2008, 6, 5–29. [Google Scholar] [CrossRef] [Green Version]
- Garboczi, E.; Bentz, D. Modelling of the microstructure and transport properties of concrete. Constr. Build. Mater. 1996, 10, 293–300. [Google Scholar] [CrossRef]
- Raki, L.; Beaudoin, J.; Alizadeh, R. Nanotechnology applications for sustainable cement-based products. In Nanotechnology in Construction 3; Springer: Berlin/Heidelberg, Germany, 2009; pp. 119–124. [Google Scholar]
- Scrivener, K. Nanotechnology and cementitious materials. In Nanotechnology in Construction 3; Springer: Berlin/Heidelberg, Germany, 2009; pp. 37–42. [Google Scholar]
- Garboczi, E. Concrete nanoscience and nanotechnology: Definitions and applications. In Nanotechnology in Construction 3; Springer: Berlin/Heidelberg, Germany, 2009; pp. 81–88. [Google Scholar]
- Sanchez, F.; Sobolev, K. Nanotechnology in concrete—A review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Papatzani, S.; Paine, K.; Calabria-Holley, J. A comprehensive review of the models on the nanostructure of calcium silicate hydrates. Constr. Build. Mater. 2015, 74, 219–234. [Google Scholar] [CrossRef]
- Odelius, M.; Bernasconi, M.; Parrinello, M. Two dimensional ice adsorbed on mica surface. Phys. Rev. Lett. 1997, 78, 2855. [Google Scholar] [CrossRef]
- Marx, D. Throwing tetrahedral dice. Science 2004, 303, 634–636. [Google Scholar] [CrossRef]
- Guillot, B. A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 2002, 101, 219–260. [Google Scholar] [CrossRef]
- Cygan, R.T.; Liang, J.-J.; Kalinichev, A.G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 2004, 108, 1255–1266. [Google Scholar] [CrossRef]
- Du, S.; Wu, J.; AlShareedah, O.; Shi, X. Nanotechnology in Cement-Based Materials: A Review of Durability, Modeling, and Advanced Characterization. Nanomaterials 2019, 9, 1213. [Google Scholar] [CrossRef] [Green Version]
- Sha, S.; Wang, M.; Shi, C.; Xiao, Y. Influence of the structures of polycarboxylate superplasticizer on its performance in cement-based materials-A review. Constr. Build. Mater. 2020, 233, 117257. [Google Scholar] [CrossRef]
- Vollpracht, A.; Lothenbach, B.; Snellings, R.; Haufe, J. The pore solution of blended cements: A review. Mater. Struct. 2016, 49, 3341–3367. [Google Scholar] [CrossRef] [Green Version]
- Taylor, H.F. Cement Chemistry; Thomas Telford London: London, UK, 1997. [Google Scholar]
- Neville, A.M. Properties of Concrete; Longman London: London, UK, 1995. [Google Scholar]
- Thomas, J.J.; Biernacki, J.J.; Bullard, J.W.; Bishnoi, S.; Dolado, J.S.; Scherer, G.W.; Luttge, A. Modeling and simulation of cement hydration kinetics and microstructure development. Cem. Concr. Res. 2011, 41, 1257–1278. [Google Scholar] [CrossRef]
- Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. Mechanisms of cement hydration. Cem. Concr. Res. 2011, 41, 1208–1223. [Google Scholar] [CrossRef]
- Kurdowski, W. Cement and Concrete Chemistry; Springer Science & Business: Berlin, Germany, 2014. [Google Scholar]
- Bensted, J. Hydration of Portland Cement, Advances in Cement Technology; Ghosh, S.N., Ed.; Pergamon Press: Oxford, UK, 1983; pp. 307–347. [Google Scholar]
- Alizadeh, R.A. Nanostructure and Engineering Properties of Basic and Modified Calcium-Silicate-Hydrate Systems. Doctoral Dissertation, University of Ottawa, Ottawa, ON, Canada, 2009. [Google Scholar]
- Yang, T. AFM Study of the Interactions between Moisture and the Surface of Cementitious Materials; ETH: Zurich, Switzerland, 2006. [Google Scholar]
- Lothenbach, B.; Scrivener, K.; Hooton, R. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Qomi, M.A.; Krakowiak, K.; Bauchy, M.; Stewart, K.; Shahsavari, R.; Jagannathan, D.; Brommer, D.B.; Baronnet, A.; Buehler, M.J.; Yip, S. Combinatorial molecular optimization of cement hydrates. Nat. Commun. 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Taylor, H.W. 726. Hydrated calcium silicates. Part I. Compound formation at ordinary temperatures. J. Chem. Soc. (Resumed.) 1950, 3682–3690. [Google Scholar] [CrossRef]
- Nonat, A.; Lecoq, X. The Structure, Stoichiometry and Properties of CSH Prepared by C3S Hydration Under Controlled Condition. In Nuclear Magnetic Resonance Spectroscopy of Cement-Based Materials; Springer: Berlin/Heidelberg, Germany, 1998; pp. 197–207. [Google Scholar]
- Fonseca, P.; Jennings, H.M. The effect of drying on early-age morphology of C–S–H as observed in environmental SEM. Cem. Concr. Res. 2010, 40, 1673–1680. [Google Scholar] [CrossRef]
- Powers, T.C.; Brownyard, T.L. Studies of the physical properties of hardened Portland cement paste. In Journal Proceedings; American Concrete Institute: Farmington Hills, MI, USA, 1946; pp. 101–132. [Google Scholar]
- Powers, T.C. Structure and physical properties of hardened Portland cement paste. J. Am. Ceram. Soc. 1958, 41, 1–6. [Google Scholar] [CrossRef]
- Taplin, J. A method for following the hydration reaction in portland cement paste. Aust. J. Appl. Sci. 1959, 10, 329–345. [Google Scholar]
- Diamond, S. Cement Paste Microstructure—An Overview at Several Levels. In Hydtaulic Cement Paste—Their Structure and Properties; Cement and Concrete Association: Slough, UK, 1976; pp. 5–31. [Google Scholar]
- Aquino, R.J. Conceptual modelling of CSH formation and the occurrence of Hadley grains in hardened cement paste. In Proceedings of the 9th fib International PhD Symposium in Civil Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 22–25 July 2012; KIT Scientific Publishing: Karlsruhe, Germany, 2012. [Google Scholar]
- Richardson, I.G. The nature of CSH in hardened cements. Cem. Concr. Res. 1999, 29, 1131–1147. [Google Scholar] [CrossRef]
- Tennis, P.D.; Jennings, H.M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cem. Concr. Res. 2000, 30, 855–863. [Google Scholar] [CrossRef]
- Jennings, H.M. Colloid model of C–S–H and implications to the problem of creep and shrinkage. Mater. Struct. 2004, 37, 59–70. [Google Scholar] [CrossRef]
- Jennings, H.M. Refinements to colloid model of CSH in cement: CM-II. Cem. Concr. Res. 2008, 38, 275–289. [Google Scholar] [CrossRef]
- Nicoleau, L. New calcium silicate hydrate network. Transp. Res. Rec. 2010, 2142, 42–51. [Google Scholar] [CrossRef]
- Pellenq, R.-M.; Lequeux, N.; Van Damme, H. Engineering the bonding scheme in C–S–H: The iono-covalent framework. Cem. Concr. Res. 2008, 38, 159–174. [Google Scholar] [CrossRef]
- Pelisser, F.; Gleize, P.J.P.; Mikowski, A. Effect of the Ca/Si molar ratio on the micro/nanomechanical properties of synthetic CSH measured by nanoindentation. J. Phys. Chem. C 2012, 116, 17219–17227. [Google Scholar] [CrossRef]
- Richardson, I.; Groves, G. Microstructure and microanalysis of hardened ordinary Portland cement pastes. J. Mater. Sci. 1993, 28, 265–277. [Google Scholar] [CrossRef]
- Richardson, I. The nature of the hydration products in hardened cement pastes. Cem. Concr. Compos. 2000, 22, 97–113. [Google Scholar] [CrossRef]
- Taylor, H.F. Proposed structure for calcium silicate hydrate gel. J. Am. Ceram. Soc. 1986, 69, 464–467. [Google Scholar] [CrossRef]
- Wieker, W.; Grimmer, A.-R.; Winkler, A.; Mägi, M.; Tarmak, M.; Lippmaa, E. Solid-state high-resolution 29Si NMR spectroscopy of synthetic 14 Å, 11 Å and 9 Å tobermorites. Cem. Concr. Res. 1982, 12, 333–339. [Google Scholar] [CrossRef]
- Komarneni, S.; Roy, D.; Fyfe, C.; Kennedy, G. Naturally occurring 1.4 nm tobermorite and synthetic jennite: Characterization by 27Al and 29Si MASNMR spectroscopy and cation exchange properties. Cem. Concr. Res. 1987, 17, 891–895. [Google Scholar] [CrossRef]
- Hamid, S. The crystal structure of the 11 Ä natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·1H2O. Z. Für Krist. Cryst. Mater. 1981, 154, 189–198. [Google Scholar] [CrossRef]
- Hoffmann, C.; Armbruster, T. Clinotobermorite, Ca5[Si308(OH)]2 4H20-Ca5[Si6Oi7] 5H20, CSH (I) type cement mineral: Determination of the substructure. Z. Fur Krist. 1997, 212, 864–873. [Google Scholar] [CrossRef]
- Bonaccorsi, E.; Merlino, S.; Taylor, H. The crystal structure of jennite, Ca9Si6O18(OH)6 8H2O. Cem. Concr. Res. 2004, 34, 1481–1488. [Google Scholar] [CrossRef]
- Carpenter, A.; Chalmers, R.; Gard, J.; Speakman, K.; Taylor, H. Jennite, a new mineral. Am. Mineral. J. Earth Planet. Mater. 1966, 51, 56–74. [Google Scholar]
- Taylor, H.F.W. Nanostructure of CSH: Current status. Adv. Cem. Based Mater. 1993, 1, 38–46. [Google Scholar] [CrossRef]
- Cong, X.; Kirkpatrick, R.J. 29Si MAS NMR study of the structure of calcium silicate hydrate. Adv. Cem. Based Mater. 1996, 3, 144–156. [Google Scholar] [CrossRef]
- Richardson, I. Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of CSH: Applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem. Concr. Res. 2004, 34, 1733–1777. [Google Scholar] [CrossRef]
- Shahsavari, R.; Buehler, M.J.; Pellenq, R.J.M.; Ulm, F.J. First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite. J. Am. Ceram. Soc. 2009, 92, 2323–2330. [Google Scholar] [CrossRef]
- Shahsavari, R.; Pellenq, R.J.-M.; Ulm, F.-J. Empirical force fields for complex hydrated calcio-silicate layered materials. Phys. Chem. Chem. Phys. 2011, 13, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Merlino, S.; Bonaccorsi, E.; Armbruster, T. The real structure of tobermorite 11 Å: Normal and anomalous forms, OD character and polytypic modifications. Eur. J. Mineral. 2001, 13, 577–590. [Google Scholar] [CrossRef] [Green Version]
- Faucon, P.; Delaye, J.; Virlet, J.; Jacquinot, J.; Adenot, F. Study of the structural properties of the C–S–H (I) BY molecular dynamics simulation. Cem. Concr. Res. 1997, 27, 1581–1590. [Google Scholar] [CrossRef]
- Allen, A.J.; Thomas, J.J.; Jennings, H.M. Composition and density of nanoscale calcium–silicate–hydrate in cement. Nat. Mater. 2007, 6, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Thomas, J.J.; Taylor, H.F.; Jennings, H.M. Solubility and structure of calcium silicate hydrate. Cem. Concr. Res. 2004, 34, 1499–1519. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, R.J.; Yarger, J.; McMillan, P.F.; Ping, Y.; Cong, X. Raman spectroscopy of CSH, tobermorite, and jennite. Adv. Cem. Based Mater. 1997, 5, 93–99. [Google Scholar] [CrossRef]
- Cong, X.; Kirkpatrick, R.J. 29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrates. Adv. Cem. Based Mater. 1996, 3, 133–143. [Google Scholar] [CrossRef]
- Bonaccorsi, E.; Merlino, S.; Kampf, A.R. The crystal structure of tobermorite 14 Å (plombierite), a C–S–H phase. J. Am. Ceram. Soc. 2005, 88, 505–512. [Google Scholar] [CrossRef]
- Jennings, H.M.; Thomas, J.J.; Gevrenov, J.S.; Constantinides, G.; Ulm, F.-J. A multi-technique investigation of the nanoporosity of cement paste. Cem. Concr. Res. 2007, 37, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Constantinides, G.; Ulm, F.-J. The effect of two types of CSH on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cem. Concr. Res. 2004, 34, 67–80. [Google Scholar] [CrossRef]
- Jennings, H.M. A model for the microstructure of calcium silicate hydrate in cement paste. Cem. Concr. Res. 2000, 30, 101–116. [Google Scholar] [CrossRef]
- Dai, Y.; Post, J.E. Crystal structure of hillebrandite: A natural analogue of calcium silicate hydrate (CSH) phases in Portland cement. Am. Mineral. 1995, 80, 841–844. [Google Scholar] [CrossRef]
- Fu, J.; Bernard, F.; Kamali-Bernard, S. Assessment of the elastic properties of amorphous calcium silicates hydrates (I) and (II) structures by molecular dynamics simulation. Mol. Simul. 2018, 44, 285–299. [Google Scholar] [CrossRef]
- Pellenq, R.J.-M.; Kushima, A.; Shahsavari, R.; Van Vliet, K.J.; Buehler, M.J.; Yip, S.; Ulm, F.-J. A realistic molecular model of cement hydrates. Proc. Natl. Acad. Sci. USA 2009, 106, 16102–16107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merlin, F.; Lombois, H.; Joly, S.; Lequeux, N.; Halary, J.-L.; Van Damme, H. Cement-polymer and clay-polymer nano-and meso-composites: Spotting the difference. J. Mater. Chem. 2002, 12, 3308–3315. [Google Scholar] [CrossRef]
- Buehler, M.J.; van Duin, A.C.; Goddard III, W.A. Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. Phys. Rev. Lett. 2006, 96, 095505. [Google Scholar] [CrossRef] [Green Version]
- Manzano, H.; Moeini, S.; Marinelli, F.; Van Duin, A.C.; Ulm, F.-J.; Pellenq, R.J.-M. Confined water dissociation in microporous defective silicates: Mechanism, dipole distribution, and impact on substrate properties. J. Am. Chem. Soc. 2012, 134, 2208–2215. [Google Scholar] [CrossRef]
- Van Duin, A.C.; Dasgupta, S.; Lorant, F.; Goddard, W.A. ReaxFF: A reactive force field for hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409. [Google Scholar] [CrossRef] [Green Version]
- Hou, D. The Future and Development Trends of Computational Chemistry Applied in Concrete Science. In Molecular Simulation on Cement-Based Materials; Springer: Berlin/Heidelberg, Germany, 2020; pp. 187–197. [Google Scholar]
- Bonnaud, P.; Ji, Q.; Coasne, B.; Pellenq, R.-M.; Van Vliet, K. Thermodynamics of water confined in porous calcium-silicate-hydrates. Langmuir 2012, 28, 11422–11432. [Google Scholar] [CrossRef]
- Dolado, J.S.; Griebel, M.; Hamaekers, J. A molecular dynamic study of cementitious calcium silicate hydrate (C–S–H) gels. J. Am. Ceram. Soc. 2007, 90, 3938–3942. [Google Scholar] [CrossRef]
- Kalinichev, A.G.; Wang, J.; Kirkpatrick, R.J. Molecular dynamics modeling of the structure, dynamics and energetics of mineral–water interfaces: Application to cement materials. Cem. Concr. Res. 2007, 37, 337–347. [Google Scholar] [CrossRef]
- Murray, S.J.; Subramani, V.J.; Selvam, R.P.; Hall, K.D. Molecular dynamics to understand the mechanical behavior of cement paste. Transp. Res. Rec. 2010, 2142, 75–82. [Google Scholar] [CrossRef]
- Pan, T.; Xia, K.; Wang, L. Chloride binding to calcium silicate hydrates (CSH) in cement paste: A molecular dynamics analysis. Int. J. Pavement Eng. 2010, 11, 367–379. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, X. Molecular dynamics study of interaction between corrosion inhibitors, nanoparticles, and other minerals in hydrated cement. Transp. Res. Rec. 2010, 2142, 58–66. [Google Scholar] [CrossRef]
- Hu, P.; Dai, W. Study on Molecular Dynamics Simulation of Calcium Silicate Hydrate (CSH) Gels. In Proceedings of International Conference on Intelligent Computing and Information Science; Springer: Berlin, Germany; pp. 142–147.
- Dai, W.; Shui, Z.; Duan, P. Molecular dynamics simulation on calcium silicate hydrate doped organic molecules. In Proceedings of International Conference on Intelligent Computing and Information Science; Springer: Berlin, Germany, 2011; pp. 155–160. [Google Scholar]
- Abdolhosseini Qomi, M.J.; Ulm, F.J.; Pellenq, R.J.M. Evidence on the dual nature of aluminum in the calcium-silicate-hydrates based on atomistic simulations. J. Am. Ceram. Soc. 2012, 95, 1128–1137. [Google Scholar] [CrossRef]
- Fu, J.; Kamali-Bernard, S.; Bernard, F.; Cornen, M. Comparison of mechanical properties of CSH and portlandite between nano-indentation experiments and a modeling approach using various simulation techniques. Compos. Part B Eng. 2018, 151, 127–138. [Google Scholar] [CrossRef]
- Cao, Q.; Xu, Y.; Fang, J.; Song, Y.; Wang, Y.; You, W. Influence of Pore Size and Fatigue Loading on NaCl Transport Properties in CSH Nanopores: A Molecular Dynamics Simulation. Materials 2020, 13, 700. [Google Scholar] [CrossRef] [Green Version]
- Sindu, B.; Sasmal, S. Molecular dynamics simulations for evaluation of surfactant compatibility and mechanical characteristics of carbon nanotubes incorporated cementitious composite. Constr. Build. Mater. 2020, 253, 119190. [Google Scholar] [CrossRef]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [Green Version]
- Bordallo, H.N.; Aldridge, L.P.; Desmedt, A. Water dynamics in hardened ordinary portland cement paste or concrete: From quasielastic neutron scattering. J. Phys. Chem. B 2006, 110, 17966–17976. [Google Scholar] [CrossRef] [PubMed]
- Packer, K.J. The dynamics of water in heterogeneous systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1977, 278, 59–87. [Google Scholar] [CrossRef] [PubMed]
- Israelachvili, J.N.; Pashley, R.M. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 1983, 306, 249–250. [Google Scholar] [CrossRef]
- Israelachvili, J.; Wennerström, H. Role of hydration and water structure in biological and colloidal interactions. Nature 1996, 379, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Kalinichev, A.G.; Kirkpatrick, R.J.; Cygan, R.T. Molecular modeling of the structure and dynamics of the interlayer and surface species of mixed-metal layered hydroxides: Chloride and water in hydrocalumite (Friedel’s salt). Am. Mineral. 2000, 85, 1046–1052. [Google Scholar] [CrossRef] [Green Version]
- Fenter, P.; Geissbühler, P.; DiMasi, E.; Srajer, G.; Sorensen, L.; Sturchio, N. Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity. Geochim. Cosmochim. Acta 2000, 64, 1221–1228. [Google Scholar] [CrossRef]
- Raviv, U.; Laurat, P.; Klein, J. Fluidity of water confined to subnanometre films. Nature 2001, 413, 51–54. [Google Scholar] [CrossRef]
- Brown, G.E. How minerals react with water. Science 2001, 294, 67–69. [Google Scholar] [CrossRef]
- Sakuma, H.; Tsuchiya, T.; Kawamura, K.; Otsuki, K. Large self-diffusion of water on brucite surface by ab initio potential energy surface and molecular dynamics simulations. Surf. Sci. 2003, 536, L396–L402. [Google Scholar] [CrossRef]
- Hou, D.; Li, Z.; Zhao, T. Reactive force field simulation on polymerization and hydrolytic reactions in calcium aluminate silicate hydrate (C–A–S–H) gel: Structure, dynamics and mechanical properties. Rsc Adv. 2015, 5, 448–461. [Google Scholar] [CrossRef]
- Hou, D.; Li, Z. Large-scale simulation of calcium silicate hydrate by molecular dynamics. Adv. Cem. Res. 2015, 27, 278–288. [Google Scholar] [CrossRef]
- Hou, D.; Zhu, Y.; Lu, Y.; Li, Z. Mechanical properties of calcium silicate hydrate (C–S–H) at nano-scale: A molecular dynamics study. Mater. Chem. Phys. 2014, 146, 503–511. [Google Scholar] [CrossRef]
- Hou, D.; Zhao, T.; Wang, P.; Li, Z.; Zhang, J. Molecular dynamics study on the mode I fracture of calcium silicate hydrate under tensile loading. Eng. Fract. Mech. 2014, 131, 557–569. [Google Scholar] [CrossRef]
- Hou, D.; Ma, H.; Zhu, Y.; Li, Z. Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties. Acta Mater. 2014, 67, 81–94. [Google Scholar] [CrossRef]
- Major, R.; Houston, J.; McGrath, M.; Siepmann, J.; Zhu, X.-Y. Viscous water meniscus under nanoconfinement. Phys. Rev. Lett. 2006, 96, 177803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, M.; Pellenq, R.J.-M.; Yildiz, B. Glassy nature of water in an ultraconfining disordered material: The case of calcium–silicate–hydrate. J. Am. Chem. Soc. 2011, 133, 2499–2510. [Google Scholar] [CrossRef] [PubMed]
- Manzano, H.; Dolado, J.; Guerrero, A.; Ayuela, A. Mechanical properties of crystalline calcium-silicate-hydrates: Comparison with cementitious C-S-H gels. Phys. Status Solidi 2007, 204, 1775–1780. [Google Scholar] [CrossRef]
- Tarighat, A.; Tavakoli, D. Estimation of the elastic properties of important calcium silicate hydrates in nano scale—A molecular dynamics approach. J. Rehabil. Civ. Eng. 2019, 7, 18–36. [Google Scholar] [CrossRef]
- Nonat, A. (Ed.) PRO 13: 2nd International RILEM Symposium on Hydration and Setting—Why Does Cement Set? An Interdisciplinary Approach; RILEM Publications: Paris, France, 2000. [Google Scholar]
- Acker, P. Swelling, shrinkage and creep: A mechanical approach to cement hydration. Mater. Struct. 2004, 37, 237–243. [Google Scholar] [CrossRef]
- Ulm, F.-J.; Constantinides, G.; Heukamp, F.H. Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties. Mater. Struct. 2004, 37, 43–58. [Google Scholar] [CrossRef]
- Manzano Moro, H. Atomistic Simulation Studies of the Cement Paste Components; Servicio Editorial de la Universidad del País Vasco/Euskal Herriko Unibertsitatearen Argitalpen Zerbitzua: Biscay, Spain, 2009. [Google Scholar]
- Hajilar, S.; Shafei, B. Nano-scale investigation of elastic properties of hydrated cement paste constituents using molecular dynamics simulations. Comput. Mater. Sci. 2015, 101, 216–226. [Google Scholar] [CrossRef]
- Dharmawardhana, C.; Misra, A.; Aryal, S.; Rulis, P.; Ching, W. Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals. Cem. Concr. Res. 2013, 52, 123–130. [Google Scholar] [CrossRef]
- Vandamme, M.; Ulm, F.-J.; Fonollosa, P. Nanogranular packing of C–S–H at substochiometric conditions. Cem. Concr. Res. 2010, 40, 14–26. [Google Scholar] [CrossRef]
- Richardson, I.; Groves, G. Models for the composition and structure of calcium silicate hydrate (C–S–H) gel in hardened tricalcium silicate pastes. Cem. Concr. Res. 1992, 22, 1001–1010. [Google Scholar] [CrossRef]
- Al-Ostaz, A.; Wu, W.; Cheng, A.-D.; Song, C. A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement. Compos. Part B Eng. 2010, 41, 543–549. [Google Scholar] [CrossRef]
- Larcher, M. Development of discrete cracks in concrete loaded by shock waves. Int. J. Impact Eng. 2009, 36, 700–710. [Google Scholar] [CrossRef] [Green Version]
- Maurel, O.; Reess, T.; Matallah, M.; De Ferron, A.; Chen, W.; La Borderie, C.; Pijaudier-Cabot, G.; Jacques, A.; Rey-Bethbeder, F. Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar. Cem. Concr. Res. 2010, 40, 1631–1638. [Google Scholar] [CrossRef]
- Yan, D.; Lin, G. Dynamic properties of concrete in direct tension. Cem. Concr. Res. 2006, 36, 1371–1378. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, C.; Fu, J.; Xin, H. Dynamic mechanical behaviors of calcium silicate hydrate under shock compression loading using molecular dynamics simulation. J. Non Cryst. Solids 2018, 500, 482–486. [Google Scholar] [CrossRef]
- Camacho-Ballesta, C.; Galao, Ó.; Baeza, F.J.; Zornoza, E.; Garcés, P. Durability and Mechanical Properties of CNT Cement Composites. In Service Life and Durability of Reinforced Concrete Structures; Springer: Berlin/Heidelberg, Germany, 2019; pp. 31–41. [Google Scholar]
- Zhu, X.; Gao, Y.; Dai, Z.; Corr, D.J.; Shah, S.P. Effect of interfacial transition zone on the Young’s modulus of carbon nanofiber reinforced cement concrete. Cem. Concr. Res. 2018, 107, 49–63. [Google Scholar] [CrossRef]
- Alharbi, Y.; Cho, B.H.; An, J.; Nam, B.H. Rheological Behaviors of Edge-Oxidized Graphene Oxide Cement Composites. J. Mater. Civ. Eng. 2020, 32, 04020134. [Google Scholar] [CrossRef]
- Alharbi, Y.; An, J.; Cho, B.H.; Khawaji, M.; Chung, W.; Nam, B.H. Mechanical and sorptivity characteristics of edge-oxidized graphene oxide (EOGO)-cement composites: Dry- and wet-mix design methods. Nanomaterials 2018, 8, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metaxa, Z.S.; Konsta-Gdoutos, M.S.; Shah, S.P. Carbon nanofiber–reinforced cement-based materials. Transp. Res. Rec. 2010, 2142, 114–118. [Google Scholar] [CrossRef]
- Kis, A.; Csanyi, G.; Salvetat, J.-P.; Lee, T.-N.; Couteau, E.; Kulik, A.; Benoit, W.; Brugger, J.; Forro, L. Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 2004, 3, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Demczyk, B.G.; Wang, Y.M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 2002, 334, 173–178. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Khayat, K.H. Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers. Compos. Part B Eng. 2016, 107, 113–122. [Google Scholar] [CrossRef]
- Cwirzen, A.; Habermehl-Cwirzen, K.; Penttala, V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv. Cem. Res. 2008, 20, 65–73. [Google Scholar] [CrossRef]
- Musso, S.; Tulliani, J.-M.; Ferro, G.; Tagliaferro, A. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 2009, 69, 1985–1990. [Google Scholar] [CrossRef]
- Makar, J.M.; Chan, G.W. Growth of cement hydration products on single-walled carbon nanotubes. J. Am. Ceram. Soc. 2009, 92, 1303–1310. [Google Scholar] [CrossRef]
- Harris, P.J. Carbon nanotube composites. Int. Mater. Rev. 2004, 49, 31–43. [Google Scholar] [CrossRef]
- Raki, L.; Beaudoin, J.; Alizadeh, R.; Makar, J.; Sato, T. Cement and concrete nanoscience and nanotechnology. Materials 2010, 3, 918–942. [Google Scholar] [CrossRef] [Green Version]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Eftekhari, M.; Mohammadi, S. Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading. Int. J. Impact Eng. 2016, 87, 55–64. [Google Scholar] [CrossRef]
- Eftekhari, M.; Mohammadi, S.; Khoei, A.R. Effect of defects on the local shell buckling and post-buckling behavior of single and multi-walled carbon nanotubes. Comput. Mater. Sci. 2013, 79, 736–744. [Google Scholar] [CrossRef]
- Manzur, T. Nano-Modified Cement Composites and Its Applicability as Concrete Repair Material. Ph.D. Thesis, University of Texas at Arlington, Arlington, TX, USA, 2011. [Google Scholar]
- Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
- Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012, 57, 1061–1105. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Alkhateb, H.; Al-Ostaz, A.; Cheng, A.H.-D.; Li, X. Materials genome for graphene-cement nanocomposites. J. Nanomechanics Micromechanics 2013, 3, 67–77. [Google Scholar] [CrossRef]
- Chuah, S.; Pan, Z.; Sanjayan, J.G.; Wang, C.M.; Duan, W.H. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr. Build. Mater. 2014, 73, 113–124. [Google Scholar] [CrossRef]
- Ghazizadeh, S.; Duffour, P.; Skipper, N.T.; Bai, Y. Understanding the behaviour of graphene oxide in Portland cement paste. Cem. Concr. Res. 2018, 111, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Lv, S.; Liu, J.; Sun, T.; Ma, Y.; Zhou, Q. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Constr. Build. Mater. 2014, 64, 231–239. [Google Scholar] [CrossRef]
- Gong, K.; Pan, Z.; Korayem, A.H.; Qiu, L.; Li, D.; Collins, F.; Wang, C.M.; Duan, W.H. Reinforcing effects of graphene oxide on portland cement paste. J. Mater. Civ. Eng. 2015, 27, A4014010. [Google Scholar] [CrossRef]
- Babak, F.; Abolfazl, H.; Alimorad, R.; Parviz, G. Preparation and mechanical properties of graphene oxide: Cement nanocomposites. Sci. World J. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Devasena, M.; Karthikeyan, J. Investigation on strength properties of graphene oxide concrete. Int. J. Eng. Sci. Invent. Res. Dev. 2015, 1, 307–310. [Google Scholar]
- Li, W.; Li, X.; Chen, S.J.; Long, G.; Liu, Y.M.; Duan, W.H. Effects of nanoalumina and graphene oxide on early-age hydration and mechanical properties of cement paste. J. Mater. Civ. Eng. 2017, 29, 04017087. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.M.; Li, W.G.; Li, C.Y.; Sanjayan, J.G.; Duan, W.H.; Li, Z. Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste. Constr. Build. Mater. 2017, 145, 402–410. [Google Scholar] [CrossRef]
- Li, X.; Lu, Z.; Chuah, S.; Li, W.; Liu, Y.; Duan, W.H.; Li, Z. Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste. Compos. Part A Appl. Sci. Manuf. 2017, 100, 1–8. [Google Scholar] [CrossRef]
- Lu, L.; Ouyang, D. Properties of cement mortar and ultra-high strength concrete incorporating graphene oxide nanosheets. Nanomaterials 2017, 7, 187. [Google Scholar] [CrossRef]
- Mohammed, A.; Sanjayan, J.; Nazari, A.; Al-Saadi, N. Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature. Aust. J. Civ. Eng. 2017, 15, 61–71. [Google Scholar] [CrossRef]
- Mokhtar, M.; Abo-El-Enein, S.; Hassaan, M.; Morsy, M.; Khalil, M. Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement. Constr. Build. Mater. 2017, 138, 333–339. [Google Scholar] [CrossRef]
- Sharma, S.; Kothiyal, N. Influence of graphene oxide as dispersed phase in cement mortar matrix in defining the crystal patterns of cement hydrates and its effect on mechanical, microstructural and crystallization properties. RSC Adv. 2015, 5, 52642–52657. [Google Scholar] [CrossRef]
- Yang, H.; Monasterio, M.; Cui, H.; Han, N. Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite. Compos. Part A Appl. Sci. Manuf. 2017, 102, 263–272. [Google Scholar] [CrossRef]
- Lv, S.; Ma, Y.; Qiu, C.; Sun, T.; Liu, J.; Zhou, Q. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. J. Constr. Build. Mater. 2013, 49, 121–127. [Google Scholar] [CrossRef]
- Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W.; Collins, F.; Li, D.; Duan, W.H.; Wang, M.C. Mechanical properties and microstructure of a graphene oxide–cement composite. Cem. Concr. Compos. 2015, 58, 140–147. [Google Scholar] [CrossRef]
- Le, J.-L.; Du, H.; Dai Pang, S. Use of 2D Graphene Nanoplatelets (GNP) in cement composites for structural health evaluation. Compos. Part B Eng. 2014, 67, 555–563. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Mehrali, M.; Alengaram, U.J.; Jumaat, M.Z. Graphene nanoplatelet-fly ash based geopolymer composites. Cem. Concr. Res. 2015, 76, 222–231. [Google Scholar] [CrossRef]
- Horszczaruk, E.; Mijowska, E.; Kalenczuk, R.J.; Aleksandrzak, M.; Mijowska, S. Nanocomposite of cement/graphene oxide—Impact on hydration kinetics and Young’s modulus. Constr. Build. Mater. 2015, 78, 234–242. [Google Scholar] [CrossRef]
- Saafi, M.; Tang, L.; Fung, J.; Rahman, M.; Liggat, J. Enhanced properties of graphene/fly ash geopolymeric composite cement. Cem. Concr. Res. 2015, 67, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Sanjayan, J.G.; Duan, W.; Nazari, A. Incorporating graphene oxide in cement composites: A study of transport properties. Constr. Build. Mater. 2015, 84, 341–347. [Google Scholar] [CrossRef]
- Shang, Y.; Zhang, D.; Yang, C.; Liu, Y.; Liu, Y. Effect of graphene oxide on the rheological properties of cement pastes. Constr. Build. Mater. 2015, 96, 20–28. [Google Scholar] [CrossRef]
- Garmor. Technology. Available online: https://garmortech.com/#technology (accessed on 28 May 2020).
- Cho, B.H.; Khawaji, M.; Nam, B.H.; Alharbi, Y.; An, J. Static and Cyclic Flexural Behaviors of Edge-Oxidized Graphene Oxide Cement Composites. J. Mater. Civ. Eng. 2019, 31, 04019273. [Google Scholar] [CrossRef]
- Cho, B.H.; Khawaji, M.; Alharbi, Y.; An, J.; Nam, B.H. Effects of Edge-Oxidized Graphene Oxide (EOGO) on Flexural Fatigue Behaviors of Cement Mortar. In Proceedings of the Transportation Research Board 98th Annual Meeting, Washington, DC, USA, 13–17 January 2019. [Google Scholar]
- An, J.; Cho, B.H.; Alharbi, Y.; Khawaji, M.; McInnis, M.; Nam, B.H. Optimized mix design for graphene oxide nanoflake (GONF)–cement composite. In Proceedings of the Transportation Research Board 97th Annual Meeting, Washington, DC, USA, 7–11 January 2018. [Google Scholar]
- Khawaji, M.; Cho, B.H.; Nam, B.H.; Alharbi, Y.; An, J. Edge-Oxidized Graphene Oxide as Additive in Fiber-Reinforced Concrete: Effects on Fresh and Hardened Properties. J. Mater. Civ. Eng. 2020, 32, 04020028. [Google Scholar] [CrossRef]
- Khawaji, M.; Cho, B.H.; Alharbi, Y.; An, J.; Nam, B.H. Effects of Edge-Oxidized Graphene Oxide (EOGO) on Workability and Mechanical Strength of Steel Fiber Reinforced Concrete. In Proceedings of the Transportation Research Board 98th Annual Meeting, Washington, DC, USA, 13–17 January 2019. [Google Scholar]
- Eftekhari, M.; Mohammadi, S. Molecular dynamics simulation of the nonlinear behavior of the CNT-reinforced calcium silicate hydrate (C–S–H) composite. Int. J. Impact Eng. 2016, 82, 78–87. [Google Scholar] [CrossRef]
- Sanchez, F.; Zhang, L. Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium–silicate–hydrate: Interaction energies, structure, and dynamics. J. Colloid Interface Sci. 2008, 323, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Al-Muhit, B.; Sanchez, F. Nano-engineering of the mechanical properties of tobermorite 14 Å with graphene via molecular dynamics simulations. Constr. Build. Mater. 2020, 233, 117237. [Google Scholar] [CrossRef]
- Hou, D.; Lu, Z.; Li, X.; Ma, H.; Li, Z. Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms. Carbon 2017, 115, 188–208. [Google Scholar] [CrossRef]
- Kai, M.; Zhang, L.; Liew, K. Graphene and graphene oxide in calcium silicate hydrates: Chemical reactions, mechanical behaviors and interfacial sliding. Carbon 2019, 146, 181–193. [Google Scholar] [CrossRef]
- Hou, D.; Yang, T.; Tang, J.; Li, S. Reactive force-field molecular dynamics study on graphene oxide reinforced cement composite: Functional group de-protonation, interfacial bonding and strengthening mechanism. Phys. Chem. Chem. Phys. 2018, 20, 8773–8789. [Google Scholar] [CrossRef]
- Yang, T.; Jia, Y.; Hou, D.; Li, H.; Jiang, J.; Zhang, J. Molecular dynamics study on the weakening effect of moisture content on graphene oxide reinforced cement composite. Chem. Phys. Lett. 2018, 708, 177–182. [Google Scholar] [CrossRef]
- Han, F.; Lin, X.; Zhang, C. Effects of CMC polymer on mechanical properties of cement mortars. J. Build. Sci. 2015, 31, 70–74. [Google Scholar]
- Wang, Z. Performance of polymer cement concrete. J. Transp. Stand. 2014, 42, 88–90. [Google Scholar]
- Guo, X.H.; Zhang, X.L.; Cao, H. Experimental investigation on impact ductility of polymer-modified concrete subjected to falling weight loading. Adv. Mater. Res. 2014, 1030–1032, 770–773. [Google Scholar] [CrossRef]
- Xu, F.; Zhu, J.; Chen, J.; Zhou, M.; Liu, H. Study on the Interfacial Adhesive Performance and Enhancement Mechanism of Polymer Modified Cement Paste Interface Agent. Mater. Rev. 2012, 10, 119–122. [Google Scholar]
- Hou, D.; Yu, J.; Wang, P. Molecular dynamics modeling of the structure, dynamics, energetics and mechanical properties of cement-polymer nanocomposite. Compos. Part B Eng. 2019, 162, 433–444. [Google Scholar] [CrossRef]
- Wang, L.; Tian, Z.; Ma, G.; Zhang, M. Interlayer bonding improvement of 3D printed concrete with polymer modified mortar: Experiments and molecular dynamics studies. Cem. Concr. Compos. 2020, 103571. [Google Scholar] [CrossRef]
- Hosseini, E.; Zakertabrizi, M.; Korayem, A.H.; Xu, G. A novel method to enhance the interlayer bonding of 3D printing concrete: An experimental and computational investigation. Cem. Concr. Compos. 2019, 99, 112–119. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, D.; Jiang, J.; Liu, L.; She, W.; Yu, J. Experimental and molecular dynamics studies on the transport and adsorption of chloride ions in the nano-pores of calcium silicate phase: The influence of calcium to silicate ratios. Microporous Mesoporous Mater. 2018, 255, 23–35. [Google Scholar] [CrossRef]
Type of C-S-H Structure | Model Type | ||||
---|---|---|---|---|---|
Layer | Colloid | Crystal | Atomic | Chain | |
9 Å tobermorite | [55] | - | - | - | - |
11 Å tobermorite | [55,56,57,58] | - | - | - | [48] |
14 Å tobermorite | [53,55,56,59,60,61,62] | - | [63] | [45] | - |
Jennite | [53,54,60,61,62] | - | - | [45] | - |
LD C-S-H | - | [39,64,65,66] | - | - | - |
HD C-S-H | - | [65,66] | - | - | - |
Op C-S-H | [54] | - | - | - | - |
Hillebrandite (Ca2SiO3(OH)2) | - | - | [67] | - | - |
Author (Year) [Ref.] | C-S-H Model | Simulation Package | Experimental Validation | Temp. (K) | # of Atoms | Ensemble Used | Energy Potential Used | Calculated Items |
---|---|---|---|---|---|---|---|---|
Faucon et al. (1997) [58] | Tobermorite 11 Å Ca/Si = 0.66 and 0.83 | - | 29Si-MAS NMR | 800 | 2500 | - | - | Structural reorganization due to cationic substitution in C-S-H |
Dolado et al. (2007) [76] | Ca/Si = 0.7, 1.0, 1.4, 2.0 | TREMOLO | 29Si-MAS NMR | 300–1800 | 6304–7448 | NVT | Custom | Density |
Kalinichev et al. (2007) [77] | Tobermorite 9 Å (Merlino’s model) | - | 1H NMR | - | 3646 | NPT, NVT | CLAYFF | Diffusion coefficients of H2O molecules, Behavior of water in C-S-H and near the interface |
Pellenq et al. (2008) [41] | Tobermorite | GULP, CRYSTAL | AFM | 310 | - | NVT | Empirical/transferable interatomic potential | Mean square displacement (MSD), self-diffusion |
Pellenq (2009) [69] | Tobermorite 11 Å | GULP | SANS, NMR | 300 | - | NVT | - | Moduli, plane stress, strength |
Murray et al. (2010) [78] | Tobermorite 9 Å (Hamid’s model) | LAMMPS | - | 300 | - | NPT | FF (Buckingham, Coulomb and Stillinger-Weber) | Tensile/compressive strength and elastic modulus of C-S-H |
Pan (2010) [79] | Ca/Si = 1.7~1.8 | - | 35Cl NMR, 23Na NMR | 298 | - | NVT | Coulombic, LJ | Chloride diffusion in C-S-H |
Liu and Shi (2010) [80] | Tobermorite | LAMMPS | RDF | 300 | Vario-us | NVT | Custom potential (Buckingham, LJ) | Diffusion coefficient, structure at minimized energy |
Dai and Hu (2011) [81] | Tobermorite 11 Å (Hamid’s) | Materials studio | XRD, RDF | 300 | - | NVT, NVE | Universal force field (UFF) | Distance between atomic and coordination number |
Dai et al. (2011) [82] | Tobermorite (Hamid’s model) | Materials studio | - | 300 | - | NVT | COMPASS FF | Bulk modulus Shear Modulus, compressibility of C-S-H |
Qomi et al. (2012) [83] | Tobermorite 14 Å and 11 Å | GULP | NMR | 300 | - | NPT, NVT | Custom potential (Buckingham, Coulomb, Morse, LJ) | Indentation modulus, Gibbs free energy, Young modulus |
Fu et al. (2018) [84] | (CaO)1.67(SiO2)(H2O)1.7 | LAMMPS | AFM, Nanoindentation | - | - | NPT | CLAYFF | Elastic modulus |
Cao et al. (2020) [85] | Tobermorite 11 Å | Materials studio | NMR | 298 | - | NPT, NVT | Interatomic potential | Influence of pore size and fatigue loading |
Sindu and Sasmal (2020) [86] | Tobermorite 11 Å | LAMMPS NAMD [87] | 300 | - | NPT, NVT | CSHFF | Behaviors of carbon nanotubes (CNT)-reinforced C-S-H |
C-S-H Model | Force Field | K (GPa) | G (GPa) | E (GPa) | Poisson’s Ratio |
---|---|---|---|---|---|
Tobermorite 9 Å | Others | 53.36–86.25 | 26.72–37.44 | 72.38–112.72 | 0.23–0.35 |
[105,109,110] | CLAYFF | 135.93 | 68.83 | 176.67 | 0.28 |
Tobermorite 11 Å | Others | 38.45–77.19 | 17.91–40.42 | 46.5–103.25 | 0.27–0.33 |
[56,105,111] | CLAYFF | 125.70 | 53.78 | 141.20 | 0.31 |
Tobermorite 14 Å | Others | 20.7–56.42 | 15.33–31.65 | 41.47–80.00 | 0.24–0.35 |
[41,105,112,113,114] | CLAYFF | 80.79 | 42.30 | 108.04 | 0.27 |
Clinotobermorite | Others | 40.98–81.00 | 19.84–35.00 | 39.45–91.78 | 0.29–0.34 |
[105,109] | CLAYFF | 104.12 | 47.59 | 123.89 | 0.3 |
Property | C-S-H | C-S-H/PEG | C-S-H/PVA | C-S-H/PAA |
---|---|---|---|---|
Young’s modulus (GPa) | 37.59 | 37.83 | 41.52 | 45.96 |
Tensile strength (GPa) | 1.77 | 1.80 | 1.97 | 2.11 |
Failure strain | 0.21 | 0.25 | 0.30 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, B.H.; Chung, W.; Nam, B.H. Molecular Dynamics Simulation of Calcium-Silicate-Hydrate for Nano-Engineered Cement Composites—A Review. Nanomaterials 2020, 10, 2158. https://doi.org/10.3390/nano10112158
Cho BH, Chung W, Nam BH. Molecular Dynamics Simulation of Calcium-Silicate-Hydrate for Nano-Engineered Cement Composites—A Review. Nanomaterials. 2020; 10(11):2158. https://doi.org/10.3390/nano10112158
Chicago/Turabian StyleCho, Byoung Hooi, Wonseok Chung, and Boo Hyun Nam. 2020. "Molecular Dynamics Simulation of Calcium-Silicate-Hydrate for Nano-Engineered Cement Composites—A Review" Nanomaterials 10, no. 11: 2158. https://doi.org/10.3390/nano10112158
APA StyleCho, B. H., Chung, W., & Nam, B. H. (2020). Molecular Dynamics Simulation of Calcium-Silicate-Hydrate for Nano-Engineered Cement Composites—A Review. Nanomaterials, 10(11), 2158. https://doi.org/10.3390/nano10112158