Photons to Formate: A Review on Photocatalytic Reduction of CO2 to Formic Acid
Abstract
:1. Introduction
2. Fundamentals of Photocatalytic CO2 Reduction
Thermodynamics of CO2 Reduction
3. The Case for Photons to Formate
Techno-Economic Analysis
4. Photocatalytic CO2 Reduction to Formic Acid
4.1. Semiconductors
4.2. Phthalocyanine-Semiconductor Composites
4.3. Metal-Organic Frameworks
5. Future Perspectives and Outlook
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 2009, 38, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Sayigh, A. Comprehensive Renewable Energy; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Hammarström, L.; Hammes-Schiffer, S. Artificial photosynthesis and solar fuels. Acc. Chem. Res. 2009, 42, 1859–1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- British Petroleum (BP). Statistical Review of World Energy; BP plc: London, UK, 2020. [Google Scholar]
- Kannan, N.; Vakeesan, D. Solar energy for future world—A review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Olah, G.A.; Goeppert, A.; Surya Prakash, G.K. Beyond Oil and Gas: The Methanol Economy; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Olah, G.A.; Mathew, T.; Goeppert, A.; Surya Prakash, G.K. Difference and significance of regenerative vs. renewable carbon fuels and products. Top. Catal. 2018, 61, 522–529. [Google Scholar] [CrossRef]
- Yue, D.; You, F.; Snyder, S.W. Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Comput. Chem. Eng. 2014, 66, 36–56. [Google Scholar] [CrossRef]
- Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372–7408. [Google Scholar] [CrossRef]
- Windle, C.D.; Perutz, R.N. Advances in molecular photocatalytic and electrocatalytic CO2 reduction. Coord. Chem. Rev. 2012, 256, 2562–2570. [Google Scholar] [CrossRef]
- Nitopi, S.; Bertheussen, E.; Scott, S.B.; Liu, X.; Engstfeld, A.K.; Horch, S.; Seger, B.; Stephens, I.E.L.; Chan, K.; Hahn, C.; et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-Y.; Park, K.T.; Lee, W.; Lim, H.; Kwon, Y.; Kang, S. Current achievements and the future direction of electrochemical CO2 reduction: A short review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 769–815. [Google Scholar] [CrossRef]
- Chang, X.; Wang, T.; Gong, J. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196. [Google Scholar] [CrossRef]
- Morris, A.J.; Meyer, G.J.; Fujita, E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 2009, 42, 1983–1994. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Zhang, W.; Ren, J.; Xu, R. Photocatalytic reduction of CO2: A brief review on product analysis and systematic methods. Anal. Methods 2013, 5, 1086–1097. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, Q.; Liu, G.; Wang, Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. 2016, 52, 35–59. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C.P. Photochemical and Photoelectrochemical Reduction of CO2. Annu. Rev. Phys. Chem. 2012, 63, 541–569. [Google Scholar] [CrossRef] [Green Version]
- Song, C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 2006, 115, 2–32. [Google Scholar] [CrossRef]
- Janáky, C.; Hursán, D.; Endrődi, B.; Chanmanee, W.; Roy, D.; Liu, D.; de Tacconi, N.R.; Dennis, B.H.; Rajeshwar, K. Electro- and photoreduction of carbon dioxide: The twain shall meet at copper oxide/copper interfaces. ACS Energy Lett. 2016, 1, 332–338. [Google Scholar]
- Leonard, D.P.; Pan, H.; Heagy, M.D. Photocatalyzed reduction of bicarbonate to formate: Effect of ZnS crystal structure and positive hole scavenger. ACS Appl. Mater. Interfaces 2015, 7, 24543–24549. [Google Scholar] [CrossRef]
- Feaster, J.T.; Shi, G.; Cave, E.R.; Hatsukade, T.; Abram, D.N.; Kuhl, K.P.; Hahn, C.; Norskov, J.S.; Jaramillo, T.F. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 2017, 7, 4822–4827. [Google Scholar] [CrossRef]
- Pang, R.; Teramura, K.; Asakura, H.; Hosokawa, S.; Tanaka, T. Role of bicarbonate ions in aqueous solution as a carbon source for photocatalytic conversion of CO2 into CO. ACS Appl. Energy Mater. 2019, 2, 5397–5405. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information. State of the Climate: Global Climate Report for June 2019; NCEI: Asheville, NC, USA, 2019. [Google Scholar]
- Harry-O’Kuru, R.E.; Biresaw, G.; Tisserat, B.; Evangelista, R. Synthesis of polyformate esters of vegetable oils: Milkweed, pennycress, and soy. J. Lipids 2016, 2016, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jouny, M.; Luc, W.; Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 2018, 57, 2165–2177. [Google Scholar] [CrossRef]
- Afshar, A.A.N. Chemical Profile: Formic Acid; TranTech Consultants, Inc.: Philadelphia, PA, USA, 2014. [Google Scholar]
- Bushuyev, O.; De Luna, P.; Dinh, C.T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S.O.; Sargent, E.H. What Should We Make with CO2 and How Can We Make It? Joule 2018, 2, 825–832. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- British Petroleum (BP). Natural Gas, 67th ed.; BP plc: London, UK, 2018. [Google Scholar]
- Agarwal, A.S.; Zhai, Y.; Hill, D.; Sridhar, N. The electrochemical reduction of carbon dioxide to formate/formic acid: Engineering and economic feasibility. ChemSusChem 2011, 4, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Spurgeon, J.M.; Kumar, B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 2018, 11, 1536–1551. [Google Scholar] [CrossRef]
- Rumayor, M.; Dominguez-Ramos, A.; Perez, P.; Irabien, A. A techno-economic evaluation approach to the electrochemical reduction of CO2 for formic acid manufacture. J. CO2 Util. 2019, 34, 490–499. [Google Scholar] [CrossRef]
- Halmann, M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 1978, 275, 115. [Google Scholar] [CrossRef]
- Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637. [Google Scholar] [CrossRef]
- Ulman, M.; Aurian-Blajeni, B.; Halmann, M. Photoassisted carbon dioxide reduction to organic compounds using rare earth doped barium titanate and lithium niobate as photoactive agents. Isr. J. Chem. 1982, 22, 177–179. [Google Scholar] [CrossRef]
- Aurian-Blajeni, B.; Halmann, M.; Manassen, J. Electrochemical measurement on the photoelectrochemical reduction of aqueous carbon dioxide on p-Gallium phosphide and p-Gallium arsenide semiconductor electrodes. Sol. Energy Mater. 1983, 8, 425–440. [Google Scholar] [CrossRef]
- Halmann, M.; Katzir, V.; Borgarello, E.; Kiwi, J. Photoassisted carbon dioxide reduction on aqueous suspensions of titanium dioxide. Sol. Energy Mater. 1984, 10, 85–91. [Google Scholar] [CrossRef]
- Inoue, H.; Moriwaki, H.; Maeda, K.; Yoneyama, H. Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals. J. Photochem. Photobiol. A Chem. 1995, 86, 191–196. [Google Scholar] [CrossRef]
- Kanemoto, M.; Shiragami, T.; Pac, C.; Yanagida, S. Semiconductor photocatalysis. 13. Effective photoreduction of carbon dioxide catalyzed by zinc sulfide quantum crystallites with low density of surface defects. J. Phys. Chem. 1992, 96, 3521–3526. [Google Scholar] [CrossRef]
- Johne, P.; Kisch, H. Photoreduction of carbon dioxide catalysed by free and supported zinc and cadmium sulphide powders. J. Photochem. Photobiol. A Chem. 1997, 111, 223–228. [Google Scholar] [CrossRef]
- Pan, H.; Chowdhury, S.; Premachandra, D.; Olguin, S.; Heagy, M.D. Semiconductor photocatalysis of bicarbonate to solar fuels: Formate production from copper(I) oxide. Acs. Sustain. Chem. Eng. 2018, 6, 1872–1880. [Google Scholar] [CrossRef]
- Pan, H.; Steiniger, A.; Heagy, M.D.; Chowdhury, S. Efficient production of formic acid by simultaneous photoreduction of bicarbonate and oxidation of glycerol on gold-TiO2 composite under solar light. J. CO2 Util. 2017, 22, 117–123. [Google Scholar] [CrossRef]
- Pan, H.; Heagy, M.D. Plasmon-enhanced photocatalysis: Ag/TiO2 nanocomposite for the photochemical reduction of bicarbonate to formic acid. Mrs. Adv. 2019, 4, 425–433. [Google Scholar] [CrossRef]
- Beierle, A.; Gieri, P.; Pan, H.; Heagy, M.D.; Manjavacas, A.; Chowdhury, S. Titanium nitride nanoparticles for the efficient photocatalysis of bicarbonate into formate. Sol. Energy Mater. Sol. Cells 2019, 200, 109967. [Google Scholar] [CrossRef]
- Baran, T.; Wojtyła, S.; Dibenedetto, A.; Aresta, M.; Macyk, W. Zinc sulfide functionalized with ruthenium nanoparticles for photocatalytic reduction of CO2. Appl. Catal. B Environ. 2015, 178, 170–176. [Google Scholar] [CrossRef]
- Kuwabata, S.; Nishida, K.; Tsuda, R.; Inoue, H.; Yoneyama, H. Photochemical reduction of carbon dioxide to methanol using ZnS microcrystallite as a photocatalyst in the presence of methanol dehydrogenase. J. Electrochem. Soc. 1994, 141, 1498–1503. [Google Scholar] [CrossRef]
- Irvine, J.T.S.; Eggins, B.R.; Grimshaw, J. Solar energy fixation of carbon dioxide via cadmium sulphide and other semiconductor photocatalysts. Sol. Energy 1990, 45, 27–33. [Google Scholar] [CrossRef]
- Eggins, B.R.; Robertson, P.K.J.; Murphy, E.P.; Woods, E.; Irvine, J.T.S. Factors affecting the photoelectrochemical fixation of carbon dioxide with semiconductor colloids. J. Photochem. Photobiol. A Chem. 1998, 118, 31–40. [Google Scholar] [CrossRef]
- Henglein, A.; Gutiérrez, M.; Fischer, C.H. Photochemistry of colloidal metal sulfides 6. Kinetics of interfacial reactions at ZnS-Particles. Ber. Der Bunsenges. Für Phys. Chem. 1984, 88, 170–175. [Google Scholar] [CrossRef]
- Kaneco, S.; Kurimoto, H.; Ohta, K.; Mizuno, T.; Saji, A. Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium. J. Photochem. Photobiol. A Chem. 1997, 109, 59–63. [Google Scholar] [CrossRef]
- Kaneco, S.; Shimizu, Y.; Ohta, K.; Mizuno, T. Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. J. Photochem. Photobiol. A Chem. 1998, 115, 223–226. [Google Scholar] [CrossRef]
- Kaneco, S.; Kurimoto, H.; Shimizu, Y.; Ohta, K.; Mizuno, T. Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2. Energy 1999, 24, 21–30. [Google Scholar] [CrossRef]
- Liu, B.-J.; Torimoto, T.; Yoneyama, H. Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. J. Photochem. Photobiol. A Chem. 1998, 113, 93–97. [Google Scholar] [CrossRef]
- Kisch, H.; Lutz, P. Photoreduction of bicarbonate catalyzed by supported cadmium sulfide. Photochem. Photobiol. Sci. 2002, 1, 240–245. [Google Scholar] [CrossRef]
- Zhang, X.V.; Martin, S.T.; Friend, C.M.; Schoonen, M.A.A.; Holland, H.D. Mineral-assisted pathways in prebiotic synthesis: Photoelectrochemical reduction of carbon(+IV) by manganese sulfide. J. Am. Chem. Soc. 2004, 126, 11247–11253. [Google Scholar] [CrossRef]
- Xia, X.-H.; Jia, Z.-J.; Yu, Y.; Liang, Y.; Wang, Z.; Ma, L.-L. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 2007, 45, 717–721. [Google Scholar] [CrossRef]
- Qin, G.; Zhang, Y.; Ke, X.; Tong, X.; Sun, Z.; Liang, M.; Xue, S. Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film. Appl. Catal. B Environ. 2013, 129, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Ulagappan, N.; Frei, H. Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy. J. Phys. Chem. A 2000, 104, 7834–7839. [Google Scholar] [CrossRef]
- Sato, S.; Morikawa, T.; Saeki, S.; Kajino, T.; Motohiro, T. Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. Angew. Chem. Int. Ed. 2010, 49, 5101–5105. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Arai, T.; Morikawa, T.; Uemura, K.; Suzuki, T.M.; Tanaka, H.; Kajino, T. Selective co2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. J. Am. Chem. Soc. 2011, 133, 15240–15243. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Tajima, S.; Sato, S.; Uemura, K.; Morikawa, T.; Kajino, T. Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer. Chem. Commun. 2011, 47, 12664–12666. [Google Scholar] [CrossRef]
- Suzuki, T.M.; Tanaka, H.; Morikawa, T.; Iwaki, M.; Sato, S.; Saeki, S.; Inoue, M.; Kajino, T.; Motohiro, T. Direct assembly synthesis of metal complex-semiconductor hybrid photocatalysts anchored by phosphonate for highly efficient CO2 reduction. Chem. Commun. 2011, 47, 8673–8675. [Google Scholar] [CrossRef] [Green Version]
- Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863–20868. [Google Scholar] [CrossRef]
- Raja, K.S.; Smith, Y.R.; Kondamudi, N.; Manivannan, A.; Misra, M.; Subramanian, V. CO2 photoreduction in the liquid phase over Pd-supported on TiO2 nanotube and bismuth titanate photocatalysts. Electrochem. Solid State Lett. 2011, 14, F5–F8. [Google Scholar] [CrossRef]
- Mendoza, J.A.; Kim, H.K.; Park, H.K.; Park, K.Y. Photocatalytic reduction of carbon dioxide using Co3O4 nanoparticles under visible light irradiation. Korean J. Chem. Eng. 2012, 29, 1483–1486. [Google Scholar] [CrossRef]
- Qin, Z.; Tian, H.; Su, T.; Ji, H.; Guo, Z. Soft template inducted hydrothermal BiYO3 catalysts for enhanced formic acid formation from the photocatalytic reduction of carbon dioxide. Rsc Adv. 2016, 6, 52665–52673. [Google Scholar] [CrossRef]
- Ali, S.; Lee, J.; Kim, H.; Hwang, Y.; Razzaq, A.; Jung, J.-W.; Cho, C.-H.; In, S.-I. Sustained, photocatalytic CO2 reduction to CH4 in a continuous flow reactor by earth-abundant materials: Reduced titania-Cu2O Z-scheme heterostructures. Appl. Catal. B Environ. 2020, 279, 119344. [Google Scholar] [CrossRef]
- Yin, G.; Nishikawa, M.; Nosaka, Y.; Srinivasan, N.; Atarashi, D.; Sakai, E.; Miyauchi, M. photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets. ACS Nano 2015, 9, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Xie, Y.; Chen, J.; Hu, Z.; Cui, D. Selective photocatalytic CO2 reduction on copper–titanium dioxide: A study of the relationship between CO production and H2 suppression. Chem. Commun. 2019, 55, 8068–8071. [Google Scholar] [CrossRef] [PubMed]
- Bae, K.-L.; Kim, J.; Lim, C.K.; Nam, K.M.; Song, H. Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nat. Commun. 2017, 8, 1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, A.E.; Oliveira, J.A.; da Silva, G.T.S.T.; Ribeiro, C. Insights into the role of CuO in the CO2 photoreduction process. Sci. Rep. 2019, 9, 1316. [Google Scholar] [CrossRef] [Green Version]
- Dedong, Z.; Maimaiti, H.; Awati, A.; Yisilamu, G.; Fengchang, S.; Ming, W. Synthesis and photocatalytic CO2 reduction performance of Cu2O/Coal-based carbon nanoparticle composites. Chem. Phys. Lett. 2018, 700, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Li, Y.-H.; Qi, M.-Y.; Tang, Z.-R.; Xu, Y.-J. Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Appl. Catal. B Environ. 2020, 268, 118380. [Google Scholar] [CrossRef]
- Aguirre, M.E.; Zhou, R.; Eugene, A.J.; Guzman, M.I.; Grela, M.A. Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. Appl. Catal. B Environ. 2017, 217, 485–493. [Google Scholar] [CrossRef]
- Park, S.-M.; Razzaq, A.; Park, Y.H.; Sorcar, S.; Park, Y.; Grimes, C.A.; In, S.-I. Hybrid CuxO–TiO2 Heterostructured Composites for Photocatalytic CO2 Reduction into Methane Using Solar Irradiation: Sunlight into Fuel. ACS Omega 2016, 1, 868–875. [Google Scholar] [CrossRef] [Green Version]
- Gusain, R.; Kumar, P.; Sharma, O.P.; Jain, S.L.; Khatri, O.P. Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl. Catal. B Environ. 2016, 181, 352–362. [Google Scholar] [CrossRef]
- Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y. Photocatalytic Conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide Co-catalysts with a core–shell structure. Angew. Chem. Int. Ed. 2013, 52, 5776–5779. [Google Scholar] [CrossRef]
- Wu, Y.A.; McNulty, I.; Liu, C.; Lau, K.C.; Liu, Q.; Paulikas, A.P.; Sun, C.-J.; Cai, Z.; Guest, J.R.; Ren, Y.; et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 2019, 4, 957–968. [Google Scholar] [CrossRef]
- Mele, G.; Annese, C.; De Riccardis, A.; Fusco, C.; Palmisano, L.; Vasapollo, G.; D’Accolti, L. Turning lipophilic phthalocyanines/TiO2 composites into efficient photocatalysts for the conversion of CO2 into formic acid under UV–vis light irradiation. Appl. Catal. A Gen. 2014, 481, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Premkumar, J.; Ramaraj, R. Photocatalytic reduction of carbon dioxide to formic acid at porphyrin and phthalocyanine adsorbed Nafion membranes. J. Photochem. Photobiol. A Chem. 1997, 110, 53–58. [Google Scholar] [CrossRef]
- Rajan Premkumar, J.; Ramaraj, R. Photoreduction of carbon dioxide by metal phthalocyanine adsorbed Nafion membrane. Chem. Commun. 1997, 4, 343–344. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Z.; Wang, Z. Photocatalytic reduction of carbon dioxide using sol-gel derived titania-supported CoPc catalysts. Photochem. Photobiol. Sci. 2007, 6, 695–700. [Google Scholar] [CrossRef]
- Zhao, Z.; Fan, J.; Xie, M.; Wang, Z. Photo-catalytic reduction of carbon dioxide with in-situ synthesized CoPc/TiO2 under visible light irradiation. J. Clean. Prod. 2009, 17, 1025–1029. [Google Scholar] [CrossRef]
- Yazdanpour, N.; Sharifnia, S. Photocatalytic conversion of greenhouse gases (CO2 and CH4) using copper phthalocyanine modified TiO2. Sol. Energy Mater. Sol. Cells 2013, 118, 1–8. [Google Scholar] [CrossRef]
- Mele, G.; Annese, C.; Accolti, L.; De Riccardis, A.; Fusco, C.; Palmisano, L.; Scarlino, A.; Vasapollo, G. Photoreduction of carbon dioxide to formic acid in aqueous suspension: A comparison between phthalocyanine/TiO2 and porphyrin/TiO2 catalysed processes. Molecules 2015, 20, 396–415. [Google Scholar] [CrossRef] [Green Version]
- Conner, W.C.; Falconer, J.L. Spillover in Heterogeneous Catalysis. Chem. Rev. 1995, 95, 759–788. [Google Scholar] [CrossRef]
- Gangu, K.K.; Maddila, S.; Mukkamala, S.B.; Jonnalagadda, S.B. A review on contemporary metal–organic framework materials. Inorg. Chim. Acta 2016, 446, 61–74. [Google Scholar] [CrossRef]
- Sun, D.; Fu, Y.; Liu, W.; Ye, L.; Wang, D.; Yang, L.; Fu, X.; Li, Z. Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: Towards a better understanding of photocatalysis on metal–organic frameworks. Chem. A Eur. J. 2013, 19, 14279–14285. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Huang, R.; Liu, W.; Sun, D.; Li, Z. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways. Acs Catal. 2014, 4, 4254–4260. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 2012, 51, 3364–3367. [Google Scholar] [CrossRef] [PubMed]
- Fei, H.; Sampson, M.D.; Lee, Y.; Kubiak, C.P.; Cohen, S.M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal–organic framework. Inorg. Chem. 2015, 54, 6821–6828. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, S.; Kang, J.K.; Cohen, S.M. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chem. Commun. 2015, 51, 5735–5738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Product | Reaction | E° (V vs. NHE) | Equation |
---|---|---|---|
Hydrogen | 2H2O + 2e− → 2OH− + H2 | −0.41 | (1) |
Methane | CO2 + 8H+ + 8e− → CH4 + 2H2O | −0.24 | (2) |
Carbon monoxide | CO2 + 2H+ + 2e− → CO + H2O | −0.51 | (3) |
Methanol | CO2 + 6H+ + 6e− → CH3OH + H2O | −0.39 | (4) |
Formic acid | CO2 + 2H+ + 2e− → HCOOH | −0.58 | (5) |
Ethane | 2CO2 + 14H+ + 14e− → C2H6 + 4H2O | −0.27 | (6) |
Ethanol | 2CO2 + 12H+ + 12e− → C2H5OH + 3H2O | −0.33 | (7) |
Oxalate | 2CO2 + 2H+ + 2e− → H2C2O4 | −0.87 | (8) |
Light Source | Reaction Medium and Electrolyte | Catalyst | Formate & Other Products | Ref. |
---|---|---|---|---|
Halogen lamp at 365 nm | Electrode consisting of single crystal GaP in 0.05 M K2HPO4/KH2PO4 | GaP | HCOOH: 1.2 × 10−2 M HCHO: 3.2 × 10−4 M CH3OH: 1.1 × 10−4 M | [33] |
500 W Xe lamp | Aqueous Suspension of semiconductor in water | TiO2, ZnO, CdS, GaP, SiC, WO3 | TiO2: HCOOH: 1.8 x 10−3 M CH3OH: 14.6 × 10−4 M ZnO: HCOOH: 1.2 × 10−3 M CH3OH: 3.5 × 10−4 M CdS: HCOOH: 2.0 × 10−3 M CH3OH: 11.7 × 10−4 M GaP: HCOOH: 1.0 × 10−3 M CH3OH: 11.0 × 10−4 M SiC: HCOOH: 1.0 × 10−3 M CH3OH: 53.5 × 10−4 M WO3: HCOOH: 0 CH3OH: 0 | [34] |
High pressure Hg lamp | Aqueous suspensions | Doped BaTiO3, LiNbO3 | HCOOH and HCHO | [35] |
150 W Xe lamp | Electrodes in 0.5 M Na2CO3 | Single crystal p-GaP, p-GaAs | p-GaP: HCOOH: 670 μmol HCHO: 13 μmol CH3OH: 10 μmol p-GaAs: HCOOH: 320 μmol HCHO: 5 μmol | [36] |
High pressure Hg lamp | Aqueous suspension in water | RuO2-doped TiO2 | HCOOH: 1.46 μmol/h HCHO: 0.18 μmol/h CH3OH: 0.2 μmol/h | [37] |
High pressure Hg lamp | Aqueous suspension in 1.5 × 10−3 M NaHCO3 | Cd-loaded ZnS | Quantum efficiency: HCOOH: 32.5% HCHO: 42.0% H2: 5.0% | [38] |
High pressure Hg lamp | Colloidal suspension in 0.7 M NaH2PO2 | ZnS | HCOOH: 75.1 μmol/h CO: 2.7 μmol/h H2: 86.0 μmol/h | [39] |
Tungsten-halogen lamp (λ > 350 nm) | Aqueous suspension in water | ZnS-loaded SiO2 | HCOOH: 10 mmol | [40] |
1000 W Xenon arc lamp | Aqueous suspension in 0.2 M NaHCO3 | ZnS | HCOOH: 140 mmol formate/g cat-hr | [20] |
1000 W Xenon arc lamp | Aqueous suspension in 0.2 M NaHCO3 | Cu2O | HCOOH: 2.78 mmol formate/g cat-hr | [41] |
1000 W Xenon arc lamp | Aqueous suspension in 0.2 M NaHCO3 | Au/TiO2 | HCOOH: 55 mmol formate/g cat-hr | [42] |
1000 W Xenon arc lamp | Aqueous suspension in 0.2 M NaHCO3 | Ag/TiO2 | HCOOH: 3.89 mmol formate/g cat-hr | [43] |
1000 W Xenon arc lamp | Aqueous suspension in 0.2 M NaHCO3 | TiN/TiO2 | HCOOH: 3000 mmol formate/g cat-hr | [44] |
150 W XBO arc lamp | Aqueous suspension in water | Ru nanoparticles-loaded ZnS | HCOOH:0.006 M | [45] |
High pressure Hg lamp | Colloidal suspension in H3PO4 | ZnS microcrystallite | HCOOH: 11.6 μmol HCHO: 11.8 μmol CH3OH: 1.2 μmol | [46] |
Medium pressure mercury lamp | Aqueous suspension in water | CdS, ZnO, SiC, Ba TiO3, SrTiO3 | HCOOH, HCHO | [47] |
Medium pressure mercury lamp | Aqueous suspension in water | CdS, ZnS | ZnS: HCOOH: 320 μmol/L CdS: HCOOH: 87 μmol/L | [48] |
Medium pressure mercury lamp | Aqueous suspension in water | SiO2-stabilized ZnS | HCOOH: 0.8% AQE | [49] |
990 W Xe lamp | Aqueous suspension in water | TiO2 | HCOOH: 8 × 10−6 mol/g-cat | [50] |
Xe lamp | Aqueous suspension in water | TiO2 | HCOOH: 2.3 × 10−6 mol/g-cat CH4: 1.2 × 10−6 mol/g-cat | [51] |
990 W Xe lamp | Power in supercritical fluid CO2 | TiO2 | HCOOH: 9 × 10−6 mol/g-cat | [52] |
500 W high pressure mercury arc lamp | Aqueous suspension in water and 2-propanol | CdS | HCOOH: 0.4 μmol HCHO: 1.9 μmol CO: 0.8 μmol H2: 0.5 μmol | [53] |
100 W tungsten halogen lamp, 150 W xenon lamp | Aqueous suspension in water | CdS-SiO2, CdS-ZnS | CdS-SiO2: HCOOH: 10 × 10−5 M HCHO: 3.4 × 10−5 M CdS-ZnS: HCOOH: 4.5 × 10−5 M | [54] |
450 W medium pressure UV Hg arc lamp | Aqueous suspension in water and 7.2 mM NaHS and 2.5 mM NaHCO3 | MnS | HCOOH: 200 μM | [55] |
15 W UV lamp λ = 365 nm | Aqueous suspension in water | MWCNT-supported TiO2 | HCOOH: 125.1 μmol/g CH4: 73.33 μmol/g C2H5OH: 149.36 μmol/g | [56] |
300 W Xe lamp | Electrode in water adjusted to pH 4 | Dye-sensitized TiO2 film | HCOOH: 1.8 mmol/cm2 HCHO: 1.4 mmol/cm2 CH3OH: 1.9 mmol/cm2 | [57] |
Pulsed Nd:YAG laser at 10 Hz, λ = 266 nm | Methanol | Ti silicalite molecular sieve | HCOOH, CO | [58] |
Xe lamp | Aqueous suspension in MeCN/TEOA | N-doped Ta2O5 (N-Ta2O5), linked with electrocatalysts [Ru(dcbpy)(bpy)(CO)2]2+ or [Ru- (dcbpy)2(CO)2]2+ | HCOOH: 1.9% quantum yield | [59] |
Solar simulator with AM 1.5 filter | Aqueous suspension in water and 10 mM NaHCO3 | InP/Ru complex polymer hybrid | HCOOH: 4.71 μmol/cm2 | [60] |
Xe light source | Aqueous suspension in water | Cu2ZnSnS4 | HCOOH: 0.22 mM | [61] |
500 W Xe lamp | Aqueous suspension in acetonitrile/triethanolamine | N-doped Ta2O5 with [Ru(dcbpy)2(CO)2]2+ | HCOOH: 1.9 quantum efficiency | [62] |
400 W high-pressure mercury lamp | Aqueous suspension in water | Ag-loaded ALa4Ti4O15 (A = Ca, Sr, Ba) | BaLa4Ti4O15: HCOOH: 150 μmol | [63] |
300 W solar simulator with AM 1.5 filter | Thin films submerged in 0.1 M H2SO4 | Anodized titanium oxide nanotubes (T-NT), Pd-decorated bismuth titanate (BTO) | HCOOH: 160 μmol/h/g | [64] |
21 W LED lamp, λ = 510 to 620 nm | Aqueous suspension in water | Co3O4 | HCOOH: 4.53 µmol/g-h HCHO: 0.62 µmol/g-h | [65] |
300 W Xe lamp | Aqueous suspension in 0.25 M NaOH and 0.1 M Na2SO3 | BiYO3 | HCOOH: 1.68 μmol/L | [66] |
100W solar simulator with AM 1.5 filter | CO2 passing through solid photocatalyst | Reduced titania-Cu2O | CH4: 462 nmol/g | [67] |
Xe–Hg lamp | Aqueous suspension in 0.5 M KHCO3 | Cu(II)-grafted Nb3O8− nanosheets | CO: 1.5 µmol | [68] |
300 W Xe lamp | Aqueous suspension in water | Cu-TiO2 | CO: 244 μmol/g | [69] |
300 W Xe lamp | Aqueous suspension in water and 0.2 M Na2CO3 | ZnO-Cu2O nanoparticles | CH4: 1080 μmol/gcat h CO: 1.4 μmol/gcat h | [70] |
5 W UVC lamp | Aqueous suspension in 0.1 M Na2C2O4, 0.1 M KBrO3, 0.1 M NaOH or water | CuO | CH4: 1000 µmol/L-g CO: 6 µmol/L-g | [71] |
300 W Xenon lamp | Aqueous suspension in 1M NaOH | Cu2O/CNPs | CH3OH: 236.43μmolg−1cat | [72] |
300 W Xe arc lamp | Aqueous suspension in water | Ag-Cu2O/ZnO nanorods | CO: 9.94 μmol/g | [73] |
1 kW high-pressure Hg (Xe) arc lamp | Aqueous suspension in water | Cu2O/TiO2 | CO: 2.11 μmol gcat−1 h−1 | [74] |
100 W Xenon solar simulator with AM 1.5 filter | Powder photocatalyst with CO2 | CuxO-TiO2 | CH4: 221.6 ppm/g-h | [75] |
20 W white cold LED flood light | Aqueous suspension in DMF and water | rGO-CuO, rGO-Cu2O | rGO-CuO: CH3OH: 1228 μmol/g rGO-Cu2O: CH3OH: 862 μmol/g | [76] |
200 W Xe lamp | Powder photocatalyst with CO2 | TiO2-loaded Pt and Cu | Pt/TiO2: CH4: 11 µmol/g-h CO: 2.2 µmol/g-h Cu/TiO2: CH4: 8.7 µmol/g-h CO: 5.4 µmol/g-h Pt-Cu/TiO2: CH4: 9.8 µmol/g-h CO: 5.9 µmol/g-h | [77] |
300 W Xe lamp | Aqueous suspension in water | Cu2O | CH3OH: 1.2 mol g−1 h−1 | [78] |
Light Source | Reaction Medium and Electrolyte | Catalyst | Formate & Other Products | Ref. |
---|---|---|---|---|
300 UV-VIS UV-VIS lamp and 400 W Xe-Halogen lamp S: SANOLIUX HRC uv vis lamp 300 W H: RADIUM Xe-Halogen lamp 400 W | Aqueous suspension in water, pH adjusted by NaOH or H3PO4 | Lipophilic phthalocyanines/TiO2 composites | Product yield in μmol/g cat TiO2 with pH 3 and a S/H light source: 131 HCOOH TiO2-H2Pc with pH 3 and a S/H light source: 75 HCOOH TiO2-CuPc with pH 3 and a S/H light source: 208.5 HCOOH TiO2-ZnPc with pH 3 and a S/H light source: 88.5 HCOOH TiO2-CuPc with pH 7 and a S/H light source: 63.4 HCOOH TiO2-CuPc with pH 13 and a S/H light source: 65.2 HCOOH TiO2-CuPc with pH 3 and a S light source: 32.6 HCOOH TiO2-CuPc with pH 3 and a H light source: 52.2 HCOOH | [79] |
500 W tungsten-halogen lamp | Membrane dipped in water with 0.1 M TEA and 0.1 M HCIO4 | MP-Nafion, MPC-Nafion | Nf/PP: 8 × 10−5 mol Nf/CoTPP: 2.9 × 10−4 mol Nf/FePC: 11 × 10−5 mol Nf/ZnPC: 2 × 10−4 mol | [80] |
500 W tungsten–halogen lamp | Membrane dipped in 0.1 M triethanolamine and 0.1 M HClO4 | MPC-Nafion | Nf-CoPc: 1.7 × 104 mol Nf-ZnPc: 2.0 × 104 mol | [81] |
500 W tungsten–halogen lamp | Aqueous suspension in NaOH | CoPc-TiO2 | With 0 [HCHO]/M and 0 [CH3OH]/M: HCOOH: 289.9 μmol/(g cat) With 0 [HCHO]/M and 0.5 [CH3OH]/M: HCOOH: 292.8 μmol/(g cat) With 0 [HCHO]/M and 5 [CH3OH]/M: HCOOH: 301.1 μmol/(g cat) With 0.1 [HCHO]/M and 0 [CH3OH]/M: HCOOH: 9731.3 μmol/(g cat) With 1 [HCHO]/M and 0 [CH3OH]/M: HCOOH: 82660.5 μmol/(g cat) | [82] |
500 W tungsten-halogen lamp | Aqueous suspension in 0.1 N NaOH | CoPc-TiO2 | 1.0 wt% CoPc/TiO2: HCOOH: 450.6 μmol/g cat 0.7 wt% In-situ CoPc/TiO2: HCOOH: 1487.6 μmol/g cat | [83] |
125 W high pressure mercury lamp | CO2 passed through catalyst-coasted reaction vessel | CuPc-TiO2 | 14% photoconversion | [84] |
300 UV-VIS UV-VIS lamp and 400 W Xe-Halogen lamp | Aqueous suspension in water, pH adjusted by NaOH or H3PO4 | CuPc-TiO2 | HCOOH: 239.5 μmol/gcat | [85] |
Light Source | Reaction Medium and Electrolyte | Catalyst | Formate & Other Products | Ref. |
---|---|---|---|---|
500 W Xe lamp | Aqueous suspension in 5:1 ratio of MeCN and TEOA | NH2-Uio-66(Zr) | NH2-Uio-66(Zr): HCOOH: 13.2 μmol in 10 h Mixed NH2-Uio-66(Zr): HCOOH:20.7 μmol in 10 h NH2-UiO-66(Zr): HCOOH: None Mixed NH2-UiO-66(Zr): HCOOH:7.28 μmol | [88] |
300 W Xe lamp | Aqueous suspension in 5:1 ratio of MeCN and TEOA | MIL-101 (Fe), MIL-53 (Fe), MIL-88B (Fe), | NH2-MIL-101(Fe): HCOOH: 178 μmol MIL-101(Fe): HCOOH: 59.0 μmol NH2-MIL-53(Fe): HCOOH: 46.5 μmol MIL-53(FE): HCOOH: 29.7 μmol NH2-MIL-88(Fe): HCOOH: 30.0 μmol MIL-88(Fe): HCOOH: 9.0 μmol | [89] |
500 W Xe lamp | Aqueous suspension in 5:1 ratio of MeCN and TEOA | NH2-MIL-125(Ti) | NH2-MIL-125(Ti): HCOOH: 8.14 μmol NH2-MIL-125(Ti) (λ > 450 nm): HCOOH: 3.83 μmol | [90] |
470 nm LED | Aqueous suspension in 4:1 ratio of DMF/TEOA solvent mixture containing 0.2 M 1-benzyl-1,4-dihydronicotiamide (BNAH) | Mn(bpydc)(CO)3Br incorporated into Zr(IV)-based metal−organic framework | Turnover numbers for Products: UiO-67-Mn(bpy)(CO)3Br(b) for 4 h: HCOOH: 50 UiO-67-Mn(bpy)(CO)3Br(b) for 18 h: HCOOH: 110 | [91] |
300 W Xe arc lamp | Aqueous suspension in 4:1 mixed solution of acetonitrile (MeCN)-triethanolamine (TEOA), which contained 1-benzyl-1,4-dihydronicotiamide (0.1 M, BNAH) | Zr4.3Ti1.7O4(OH)4(C8H7O4N)5.17(C8H8O4N2)0.83 | Zr4.3Ti1.7O4(OH)4(C8H7O4N)5.17(C8H8O4N2)0.83: HCOOH: 31.57 μmol UiO-66(Zr/Ti)-NH2: HCOOH: 4.66 µmol | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, H.; Heagy, M.D. Photons to Formate: A Review on Photocatalytic Reduction of CO2 to Formic Acid. Nanomaterials 2020, 10, 2422. https://doi.org/10.3390/nano10122422
Pan H, Heagy MD. Photons to Formate: A Review on Photocatalytic Reduction of CO2 to Formic Acid. Nanomaterials. 2020; 10(12):2422. https://doi.org/10.3390/nano10122422
Chicago/Turabian StylePan, Hanqing, and Michael D. Heagy. 2020. "Photons to Formate: A Review on Photocatalytic Reduction of CO2 to Formic Acid" Nanomaterials 10, no. 12: 2422. https://doi.org/10.3390/nano10122422
APA StylePan, H., & Heagy, M. D. (2020). Photons to Formate: A Review on Photocatalytic Reduction of CO2 to Formic Acid. Nanomaterials, 10(12), 2422. https://doi.org/10.3390/nano10122422