The Effects of a Varied Gold Shell Thickness on Iron Oxide Nanoparticle Cores in Magnetic Manipulation, T1 and T2 MRI Contrasting, and Magnetic Hyperthermia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Multistage Magnetic-Plasmonic Nanoparticles
2.2. Magnetophoresis
2.3. NMR T1 and T2 Relaxation Measurements
2.4. Magnetic Hyperthermia
3. Results
3.1. Magnetophoresis
3.2. NMR/MRI Contrast Agent
3.3. Magnetic Hyperthermia
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, X.; Tang, Y.; Hu, Y.; Lu, F.; Lu, X.; Wang, Y.; Li, J.; Li, Y.; Ji, Y.; Wang, W.; et al. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy. Theranostics 2019, 9, 4168–4181. [Google Scholar] [CrossRef] [PubMed]
- Dadfar, S.M.; Roemhild, K.; Drude, N.I.; von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 2019, 138, 302–325. [Google Scholar] [CrossRef] [PubMed]
- Knežević, N.; Kaluderović, G.N. Silicon-based nanotheranostics. Nanoscale 2017, 9, 12821–12829. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, P.; Vinhas, R.; Fernandes, A.; Baptista, P.V. Gold nanotheranostics: Proof-of-concept or clinical tool? Nanomaterials 2015, 5, 1853–1879. [Google Scholar] [CrossRef] [Green Version]
- Saini, A.; Maurer, T.; Lorenzo, I.I.; Santos, A.R.; Béal, J.; Goffard, J.; Gérard, D.; Vial, A.; Plain, J. Synthesis and SERS Application of SiO2@Au Nanoparticles. Plasmonics 2015, 10, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Rastinehad, A.R.; Anastos, H.; Wajswol, E.; Winoker, J.S.; Sfakianos, J.P.; Doppalapudi, S.K.; Carrick, M.R.; Knauer, C.J.; Taouli, B.; Lewis, S.C.; et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. USA 2019, 116, 18590–18596. [Google Scholar] [CrossRef] [Green Version]
- Imai, M.; Mine, K.; Tomonari, H.; Uchiyama, J.; Matuzaki, S.; Niko, Y.; Hadano, S.; Watanabe, S. Dark-Field Microscopic Detection of Bacteria using Bacteriophage-Immobilized SiO2@AuNP Core-Shell Nanoparticles. Anal. Chem. 2019, 91, 12352–12357. [Google Scholar] [CrossRef]
- Gossuin, Y.; Gillis, P.; Hocq, A.; Vuong, Q.L.; Roch, A. Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009, 1, 299–310. [Google Scholar] [CrossRef]
- Shao, H.; Yoon, T.-J.; Liong, M.; Weissleder, R.; Lee, H. Magnetic nanoparticles for biomedical NMR-based diagnostics. Beilstein J. Nanotechnol. 2010, 1, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Price, P.M.; Mahmoud, W.E.; Al-Ghamdi, A.A.; Bronstein, L.M. Magnetic drug delivery: Where the field is going. Front. Chem. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Dukenbayev, K.; Korolkov, I.V.; Tishkevich, D.I.; Kozlovskiy, A.L.; Trukhanov, S.V.; Gorin, Y.G.; Shumskaya, E.E.; Kaniukov, E.Y.; Vinnik, D.A.; Zdorovets, M.V.; et al. Fe3O4 nanoparticles for complex targeted delivery and boron neutron capture therapy. Nanomaterials 2019, 9, 494. [Google Scholar] [CrossRef] [Green Version]
- Salunkhe, A.B.; Khot, V.M.; Pawar, S.H. Magnetic Hyperthermia with Magnetic Nanoparticles: A Status Review. Curr. Top. Med. Chem. 2014, 14, 572–594. [Google Scholar] [CrossRef] [PubMed]
- Thorat, N.D.; Tofail, S.A.M.; Von Rechenberg, B.; Townley, H.; Brennan, G.; Silien, C.; Yadav, H.M.; Steffen, T.; Bauer, J. Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations. Appl. Phys. Rev. 2019, 6, 041306. [Google Scholar] [CrossRef]
- Zborowski, M.; Chalmers, J.J. Rare cell separation and analysis by magnetic sorting. Anal. Chem. 2011, 83, 8050–8056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belyanina, I.; Kolovskaya, O.; Zamay, S.; Gargaun, A.; Zamay, T.; Kichkailo, A. Targeted magnetic nanotheranostics of cancer. Molecules 2017, 22, 975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Jon, S. Gold nanoparticles in image-guided cancer therapy. Inorg. Chim. Acta 2012, 393, 154–164. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Liz-Marzán, L.M. SERS-based diagnosis and biodetection. Small 2010, 6, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Panchapakesan, B.; Book-Newell, B.; Sethu, P.; Rao, M.; Irudayaraj, J. Gold nanoprobes for theranostics. Nanomedicine 2011, 6, 1787–1811. [Google Scholar] [CrossRef] [Green Version]
- Artur, C.G.; Womack, T.; Zhao, F.; Eriksen, J.L.; Mayerich, D.; Shih, W.-C. Plasmonic nanoparticle-based expansion microscopy with surface-enhanced Raman and dark-field spectroscopic imaging. Biomed. Opt. Express 2018, 9, 603. [Google Scholar] [CrossRef]
- Sokolov, K.; Follen, M.; Aaron, J.; Pavlova, I.; Malpica, A.; Lotan, R.; Richards-Kortum, R. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003, 63, 1999–2004. [Google Scholar]
- Kuttner, C. Plasmonics in Sensing: From Colorimetry to SERS Analytics. In Plasmonics; IntechOpen: London, UK, 2018. [Google Scholar]
- Duncan, B.; Kim, C.; Rotello, V.M. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J. Control. Release 2010, 148, 122–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Asharani, P.V.; Lianwu, Y.; Gong, Z.; Valiyaveettil, S. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 2011, 5, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Li, Y.; Niu, D.; Ma, Z.; Gu, J.; Chen, Y.; Zhao, W.; Liu, X.; Liu, C.; Shi, J. Facile synthesis of monodisperse superparamagnetic Fe3O4 Core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater. 2011, 23, 5392–5397. [Google Scholar] [CrossRef]
- Esenturk, E.N.; Hight Walker, A.R. Gold nanostar @ iron oxide core–shell nanostructures: Synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties. J. Nanoparticle Res. 2013, 15, 1364. [Google Scholar] [CrossRef]
- JitKang Lim, B.; Eggeman, A.; Lanni, F.; Tilton, R.D.; Majetich, S.A.; Majetich, S.A.; Eggeman, A.; Lim, J.K.; Tilton, R.D.; Lanni, F. Synthesis and Single-Particle Optical Detection of Low-Polydispersity Plasmonic-Superparamagnetic Nanoparticles. Adv. Mater 2008, 20, 1721–1726. [Google Scholar] [CrossRef]
- Brennan, G.; Thorat, N.D.; Pescio, M.; Bergamino, S.; Bauer, J.; Liu, N.; Tofail, S.A.M.; Silien, C. Spectral drifts in surface textured Fe3O4-Au, core–shell nanoparticles enhance spectra-selective photothermal heating and scatter imaging. Nanoscale 2020, 12, 12632–12638. [Google Scholar] [CrossRef]
- Jain, P.K.; Xiao, Y.; Walsworth, R.; Cohen, A.E. Surface Plasmon Resonance Enhanced Magneto-Optics (SuPREMO): Faraday Rotation Enhancement in Gold-Coated Iron Oxide Nanocrystals. Nano Lett. 2009, 9, 1644–1650. [Google Scholar] [CrossRef]
- Chen, K.-L.; Yeh, Y.-W.; Chen, J.-M.; Hong, Y.-J.; Huang, T.-L.; Deng, Z.-Y.; Wu, C.-H.; Liao, S.-H.; Wang, L.-M. Influence of magnetoplasmonic γ-Fe2O3/Au core/shell nanoparticles on low-field nuclear magnetic resonance. Sci. Rep. 2016, 6, 35477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liu, J.; Zhong, Y.; Zhang, J.; Wang, Z.; Wang, L.; An, Y.; Lin, M.; Gao, Z.; Zhang, D. Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo. Int. J. Nanomed. 2011, 6, 2805–2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakoçak, B.B.; Raliya, R.; Davis, J.T.; Chavalmane, S.; Wang, W.N.; Ravi, N.; Biswas, P. Biocompatibility of gold nanoparticles in retinal pigment epithelial cell line. Toxicol. Vitr. 2016, 37, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11, 673–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, K.; Cole, B.; Ghelardini, M.; Powell, B.A.; Mefford, O.T. Quantitative Measurement of Ligand Exchange with Small-Molecule Ligands on Iron Oxide Nanoparticles via Radioanalytical Techniques. Langmuir 2016, 32, 13716–13727. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Cai, H.; Wang, X.; Cao, X.; Li, K.; Wang, S.H.; Guo, R.; Zheng, L.; Zhang, G.; Shi, X. Facile one-pot preparation, surface functionalization, and toxicity assay of APTS-coated iron oxide nanoparticles. Nanotechnology 2012, 23. [Google Scholar] [CrossRef] [PubMed]
- Duff, D.G.; Baiker, A.; Edwards, P.P. A new hydrosol of gold clusters. J. Chem. Soc. Chem. Commun. 1993, 9, 96–98. [Google Scholar] [CrossRef]
- Oldenburg, S.J.; Averitt, R.D.; Westcott, S.L.; Halas, N.J. Nanoengineering of optical resonances. Chem. Phys. Lett. 1998, 288, 243–247. [Google Scholar] [CrossRef]
- Herea, D.-D.; Danceanu, C.; Radu, E.; Labusca, L.; Lupu, N.; Chiriac, H. Comparative effects of magnetic and water-based hyperthermia treatments on human osteosarcoma cells. Int. J. Nanomed. 2018, 13, 5743–5751. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.K.; Yeap, S.P.; Leow, C.H.; Toh, P.Y.; Low, S.C. Magnetophoresis of iron oxide nanoparticles at low field gradient: The role of shape anisotropy. J. Colloid Interface Sci. 2014, 421, 170–177. [Google Scholar] [CrossRef]
- Lyons, S.; Mc Kiernan, E.P.; Dee, G.; Brougham, D.F.; Morrin, A. Electrostatically modulated magnetophoretic transport of functionalised iron-oxide nanoparticles through hydrated networks. Nanoscale 2020, 12, 10550–10558. [Google Scholar] [CrossRef]
- Lim, J.; Lanni, C.; Evarts, E.R.; Lanni, F.; Tilton, R.D.; Majetich, S.A. Magnetophoresis of nanoparticles. ACS Nano 2011, 5, 217–226. [Google Scholar] [CrossRef]
- Lim, J.; Yeap, S.P.; Low, S.C. Challenges associated to magnetic separation of nanomaterials at low field gradient. Sep. Purif. Technol. 2014, 123, 171–174. [Google Scholar] [CrossRef]
- Yeap, S.P.; Ahmad, A.L.; Ooi, B.S.; Lim, J. Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir 2012, 28, 14878–14891. [Google Scholar] [CrossRef] [PubMed]
- Bakhteeva, I.A.; Medvedeva, I.V.; Uimin, M.A.; Byzov, I.V.; Zhakov, S.V.; Yermakov, A.E.; Shchegoleva, N.N. Magnetic sedimentation and aggregation of Fe3O4@SiO2 nanoparticles in water medium. Sep. Purif. Technol. 2016, 159, 35–42. [Google Scholar] [CrossRef]
- Benelmekki, M.; Montras, A.; Martins, A.J.; Coutinho, P.J.G.; Martinez, L.M. Magnetophoresis behaviour at low gradient magnetic field and size control of nickel single core nanobeads. J. Magn. Magn. Mater. 2011, 323, 1945–1949. [Google Scholar] [CrossRef]
- Moeser, G.D.; Roach, K.A.; Green, W.H.; Hatton, T.A.; Laibinis, P.E. High-gradient magnetic separation of coated magnetic nanoparticles. AIChE J. 2004, 50, 2835–2848. [Google Scholar] [CrossRef]
- Gerbei, R.; Takayasu, M.; Friedlaender, F.J. Generalization of HGMS theory: The capture of ultra-fine particles. IEEE Trans. Magn. 1983, 19, 2115–2117. [Google Scholar] [CrossRef]
- Yavuz, C.T.; Mayo, J.T.; Yu, W.W.; Prakash, A.; Falkner, J.C.; Yean, S.; Cong, L.; Shipley, H.J.; Kan, A.; Tomson, M.; et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 2006, 314, 964–967. [Google Scholar] [CrossRef]
- Faraudo, J.; Andreu, J.S.; Camacho, J. Understanding diluted dispersions of superparamagnetic particles under strong magnetic fields: A review of concepts, theory and simulations. Soft Matter 2013, 9, 6654–6664. [Google Scholar] [CrossRef] [Green Version]
- Zahn, K.; Lenke, R.; Maret, G. Friction coefficient of rod-like chains of spheres at very low Reynolds numbers. I. Experiment. J. Phys. II 1994, 4, 555–560. [Google Scholar] [CrossRef]
- Tamer, U.; Cetin, D.; Suludere, Z.; Boyaci, I.H.; Temiz, H.T.; Yegenoglu, H.; Daniel, P.; Dinçer, I.; Elerman, Y. Gold-coated iron composite nanospheres targeted the detection of Escherichia coli. Int. J. Mol. Sci. 2013, 14, 6223–6240. [Google Scholar] [CrossRef]
- Dizaji, A.N.; Yilmaz, M.; Piskin, E. Silver or gold deposition onto magnetite nanoparticles by using plant extracts as reducing and stabilizing agents. Artif. CellsNanomed. Biotechnol. 2016, 44, 1109–1115. [Google Scholar] [CrossRef]
- Xie, H.Y.; Zhen, R.; Wang, B.; Feng, Y.J.; Chen, P.; Hao, J. Fe3O4/Au core/shell nanoparticles modified with Ni2+-nitrilotriacetic acid specific to histidine-tagged proteins. J. Phys. Chem. C 2010, 114, 4825–4830. [Google Scholar] [CrossRef]
- Tomitaka, A.; Ota, S.; Nishimoto, K.; Arami, H.; Takemura, Y.; Nair, M. Dynamic magnetic characterization and magnetic particle imaging enhancement of magnetic-gold core–shell nanoparticles. Nanoscale 2019, 11, 6489–6496. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Lei, S.L.; Lu, J.H.; He, Y.; Chen, Z.W.; Ren, L.; Zhou, X. Potential use of SERS-assisted theranostic strategy based on Fe3O4/Au cluster/shell nanocomposites for bio-detection, MRI, and magnetic hyperthermia. Mater. Sci. Eng. C 2016, 64, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Montazerabadi, A.R.; Oghabian, M.A.; Irajirad, R.; Muhammadnejad, S.; Ahmadvand, D.; Delavari, H.H.; Mahdavi, S.R. Development of Gold-Coated Magnetic Nanoparticles as a Potential MRI Contrast Agent. Nano 2015, 10, 1550048. [Google Scholar] [CrossRef]
- Gangopadhyay, P.; Gallet, S.; Franz, E.; Persoons, A.; Verbiest, T. Novel superparamagnetic core(shell) nanoparticles for magnetic targeted drug delivery and hyperthermia treatment. IEEE Trans. Magn. 2005, 41, 4194–4196. [Google Scholar] [CrossRef]
- Billen, A.; de Cattelle, A.; Jochum, J.K.; Van Bael, M.J.; Billen, J.; Seo, J.W.; Brullot, W.; Koeckelberghs, G.; Verbiest, T. Novel synthesis of superparamagnetic plasmonic core-shell iron oxide-gold nanoparticles. Phys. B Condens. Matter 2019, 560, 85–90. [Google Scholar] [CrossRef]
- Hao, L.; Leng, Y.; Zeng, L.; Chen, X.; Chen, J.; Duan, H.; Huang, X.; Xiong, Y.; Chen, X. Core–Shell-Heterostructured Magnetic–Plasmonic Nanoassemblies with Highly Retained Magnetic–Plasmonic Activities for Ultrasensitive Bioanalysis in Complex Matrix. Adv. Sci. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Ding, J.; Wang, Y. Shell-dependent evolution of optical and magnetic properties of Co@Au core-shell nanoparticles. J. Phys. Chem. C 2012, 116, 11343–11350. [Google Scholar] [CrossRef]
- Ammar, M.; Mazaleyrat, F.; Bonnet, J.P.; Audebert, P.; Brosseau, A.; Wang, G.; Champion, Y. Synthesis and characterization of core–shell structure silica-coated Fe29.5Ni70.5 nanoparticles. Nanotechnology 2007, 18, 285606. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Raja, S.O.; Sardar, M.; Gayathri, N.; Ghosh, B.; Dasgupta, A. Iron oxide nanoparticles coated with gold: Enhanced magnetic moment due to interfacial effects. J. Appl. Phys. 2011, 109, 123902. [Google Scholar] [CrossRef]
- León-Félix, L.; Chaker, J.; Parise, M.; Coaquira, J.A.H.; De Los Santos Valladares, L.; Bustamante, A.; Garg, V.K.; Oliveira, A.C.; Morais, P.C. Synthesis and characterization of uncoated and gold-coated magnetite nanoparticles. Hyperfine Interact. 2014, 224, 179–188. [Google Scholar] [CrossRef]
- Runge, V.M. Safety of the Gadolinium-Based Contrast Agents for Magnetic Resonance Imaging, Focusing in Part on Their Accumulation in the Brain and Especially the Dentate Nucleus. Investig. Radiol. 2016, 51, 273–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Zhao, Z.; Zhang, H.; Wang, Z.; Chen, X.; Wang, R.; Chen, Z.; Gao, J. Interplay between longitudinal and transverse contrasts in Fe3O4 nanoplates with (111) exposed surfaces. ACS Nano 2014, 8, 7976–7985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roch, A.; Gossuin, Y.; Muller, R.N.; Gillis, P. Superparamagnetic colloid suspensions: Water magnetic relaxation and clustering. J. Magn. Magn. Mater. 2005, 293, 532–539. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, L.; Chen, H.; Hu, K.; Delahunty, I.; Gao, S.; Xie, J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018, 8, 2521–2548. [Google Scholar] [CrossRef]
- Marangoni, V.S.; Neumann, O.; Henderson, L.; Kaffes, C.C.; Zhang, H.; Zhang, R.; Bishnoi, S.; Ayala-Orozco, C.; Zucolotto, V.; Bankson, J.A.; et al. Enhancing T1 magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle. Proc. Natl. Acad. Sci. USA 2017, 114, 6960–6965. [Google Scholar] [CrossRef] [Green Version]
- Pinho, S.L.C.; Pereira, G.A.; Voisin, P.; Kassem, J.; Bouchaud, V.; Etienne, L.; Peters, J.A.; Carlos, L.; Mornet, S.; Geraldes, C.F.G.C.; et al. Fine Tuning of the Relaxometry of γ-Fe2O3@SiO2 Nanoparticles by Tweaking the Silica Coating Thickness. ACS Nano 2010, 4, 5339–5349. [Google Scholar] [CrossRef]
- Joshi, H.M.; De, M.; Richter, F.; He, J.; Prasad, P.V.; Dravid, V.P. Effect of silica shell thickness of Fe3O4–SiOx core–shell nanostructures on MRI contrast. J. Nanoparticle Res. 2013, 15, 1448. [Google Scholar] [CrossRef]
- Ye, F.; Laurent, S.; Fornara, A.; Astolfi, L.; Qin, J.; Roch, A.; Martini, A.; Toprak, M.S.; Muller, R.N.; Muhammed, M. Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T2 contrast agent with tunable proton relaxivities. Contrast Media Mol. Imaging 2012, 7, 460–468. [Google Scholar] [CrossRef]
- Park, J.A.; Lee, J.J.; Kim, I.S.; Park, B.H.; Lee, G.H.; Kim, T.J.; Ri, H.C.; Kim, H.J.; Chang, Y. Magnetic and MR relaxation properties of avidin-biotin conjugated superparamagnetic nanoparticles. Colloids Surf. A Phys. Eng. Asp. 2008, 313, 288–291. [Google Scholar] [CrossRef]
- Peiris, P.M.; Schmidt, E.; Calabrese, M.; Karathanasis, E. Assembly of Linear Nano-Chains from Iron Oxide Nanospheres with Asymmetric Surface Chemistry. PLoS ONE 2011, 6, e15927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, A.; Domingues, I.; Gonçalves, M.C. Core-shell superparamagnetic nanoparticles with interesting properties as contrast agents for MRI. Mater. Chem. Phys. 2015, 168, 42–49. [Google Scholar] [CrossRef]
- Umut, E.; Pineider, F.; Arosio, P.; Sangregorio, C.; Corti, M.; Tabak, F.; Lascialfari, A.; Ghigna, P. Magnetic, optical and relaxometric properties of organically coated gold-magnetite (Au-Fe3O4) hybrid nanoparticles for potential use in biomedical applications. J. Magn. Magn. Mater. 2012, 324, 2373–2379. [Google Scholar] [CrossRef]
- Lin, L.-S.; Yang, X.; Zhou, Z.; Yang, Z.; Jacobson, O.; Liu, Y.; Yang, A.; Niu, G.; Song, J.; Yang, H.H.; et al. Yolk–Shell Nanostructure: An Ideal Architecture to Achieve Harmonious Integration of Magnetic–Plasmonic Hybrid Theranostic Platform. Adv. Mater. 2017, 29, 1606681. [Google Scholar] [CrossRef]
- Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497. [Google Scholar] [CrossRef]
- Saville, S.L.; Qi, B.; Baker, J.; Stone, R.; Camley, R.E.; Livesey, K.L.; Ye, L.; Crawford, T.M.; Thompson Mefford, O. The formation of linear aggregates in magnetic hyperthermia: Implications on specific absorption rate and magnetic anisotropy. J. Colloid Interface Sci. 2014, 424, 141–151. [Google Scholar] [CrossRef]
- Das, H.; Debnath, N.; Arai, T.; Kawaguchi, T.; Sakamoto, N.; Shinozaki, K.; Suzuki, H.; Wakiya, N. Superparamagnetic magnesium ferrite/silica core-shell nanospheres: A controllable SiO2 coating process for potential magnetic hyperthermia application. Adv. Powder Technol. 2019, 30, 3171–3181. [Google Scholar] [CrossRef]
- Yu, X.; Zhu, Y. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia. Sci. Technol. Adv. Mater. 2016, 17, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Meng, L.; Niu, L.; Lu, Q. Facile synthesis of superparamagnetic Fe3O4@polyphosphazene@Au shells for magnetic resonance imaging and photothermal therapy. Acs Appl. Mater. Interfaces 2013, 5, 4586–4591. [Google Scholar] [CrossRef]
- Lanier, O.L.; Korotych, O.I.; Monsalve, A.G.; Wable, D.; Savliwala, S.; Grooms, N.W.F.; Nacea, C.; Tuitt, O.R.; Dobson, J. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Int. J. Hyperth. 2019, 36, 687–701. [Google Scholar] [CrossRef] [PubMed]
Application | Fe3O4 (O) | Fe3O4 + Au Seeds (Os) | Fe3O4 + Thin Au Shell (R1) | Fe3O4 + Medium Au Shell (R2) | Fe3O4 + Thick Au Shell (R3) |
---|---|---|---|---|---|
Nanoparticle total diameter (nm) [28] | 20.5 ± 1.3 | O + ~3 nm seeds | 28.5 ± 2.2 | 42.1 ± 10.3 | 103.7 ± 16.9 |
Shell thickness (nm) [28] | - | - | ≈4 | ≈10.8 | ≈41.6 |
Zeta Potential (mV) [28] | 0.0 ± 4.1 | −10.0 ± 6.8 | −27.3± 2.8 | −22.4 ± 2.1 | −22.1 ± 3.2 |
Magnetophoresis time (min) | 12 | 326 | 498 | 636 | 1421 |
Magnetophoresis speed, vmag (μm/s) | 9.7 | 0.4 (4.1%) | 0.2 (2.1%) | 0.2 (2.1%) | 0.1(1%) |
T1 relaxivity r1 (mM/s) | 0.9 | 0.7 (77.8%) | 0.7 (77.8%) | 0.3 (33.3%) | 0.2 (22.2%) |
T2 relaxivity r2 (mM/s) | 32.7 | 21.9 (67%) | 15.4 (47.1%) | 15.1 (46.2%) | 13.6 (41.6%) |
Relaxivity ratio r2/r1 | 35.6 | 30.6 (86%) | 23.3 (65.4%) | 51.5 (144.7%) | 55.5 (155.9%) |
Max. temperature | 3.4 | 2.1 (61.8%) | 1.5 (44.1%) | 0.3 (8.8%) | 0.1 (2.9%) |
Initial 60 s ΔT/Δt (m °C/s) | 18.8 | 11.7 (62.2%) | 6.2 (33%) | 1.7 (9%) | 1.3 (6.9%) |
Specific power absorption (SPA) (W/g) | 93.7 | 58.3 (62.2%) | 30.9 (33%) | 8.5 (9.1%) | 6.5 (6.9%) |
Intrinsic loss power parameter (ILP) (H m2/kg) | 0.7 | 0.5 (71.4%) | 0.2 (28.6%) | 0.1 (14.3%) | 0.1 (14.3%) |
Sample | r1 (mM−1 s−1) | r2 (mM−1 s−1) | r2/r1 | Frequency (MHz) | Field (T) | Ref. |
---|---|---|---|---|---|---|
Fe3O4 (20 nm) @Au (5 nm) | - | 181.35 | - 1 | 3 | [56] | |
Fe3O4 (20 nm) @Au (5 nm) + PEG 2 | 162.3 | - | 3 | [56] | ||
Fe3O4 9 nm + 1 nm SiO2 shell | 94 | - | 3 | [70] | ||
Fe3O4 9 nm + 5 nm SiO2 shell | 68 | - | 3 | [70] | ||
Fe3O4 9 nm + 10 nm SiO2 shell | 47 | - | 3 | [70] | ||
Fe3O4 9 nm + 13 nm SiO2 shell | 32 | - | 3 | [70] | ||
Fe2O3 ≈ 10 nm | 32 | ≈228 | ≈7.1 | r1 20r2 ≈500 | r1 0.4r2 11.7 | [69] |
Fe2O3 ≈10 nm + ≈2 nm SiO2 shell | 11.2 | ≈100 | ≈8.9 | “ 3 | “ | [69] |
Fe2O3 ≈10 nm + ≈8 nm SiO2 shell | <2 | ≈64 | ≈32.0 | “ | “ | [69] |
Fe2O3 ≈10 nm + ≈15 nm SiO2 shell | <2 | ≈47 | ≈23.5 | “ | “ | [69] |
Fe2O3 ≈10 nm + ≈20 nm SiO2 shell | <2 | ≈38 | ≈19.0 | “ | “ | [69] |
Fe2O3 ≈10 nm + ≈28 nm SiO2 shell | <2 | ≈23 | ≈11.5 | “ | “ | [69] |
Fe2O3 ≈10 nm + ≈52 nm SiO2 shell | <2 | ≈15 | ≈7.5 | “ | “ | [69] |
Fe2O3 ≈10 nm + ≈67 nm SiO2 shell | <2 | ≈13 | ≈6.5 | “ | “ | [69] |
Cluster core–shell Fe3O4 6 nm–APTES (≈96.6 nm total) | 0.006 | 40.6 | 6766.7 | 300 | 7 | [74] |
Cluster core–shell Fe3O4 6 nm–GPTMS 4 (≈22.0 nm total) | 0.026 | 14.4 | 553.8 | 300 | 7 | [74] |
Cluster core–shell Fe3O4 6 nm–TEOS 5 (≈66.6 nm total) | 0.016 | 13.8 | 862.5 | 300 | 7 | [74] |
Fe3O4 (30 nm) with asymmetric surface chemistry (amine and thiol) | - | 44.87 | - | 1.4 | [73] | |
Nanochains of Fe3O4 (30 nm) with amine and thiol surface | - | 101.05 | - | 1.4 | [73] | |
Fe3O4 (11 nm)–CTAB 6 | 31.25 (13.69) | 81.37 (82.18) | 2.6 (6.0) | 20 (60) | 0.47 (1.41) | [71] |
Fe3O4 (12 nm) @mSiO2 shell (50 nm total) | 3.65 (1.31) | 84.26 (92.13) | 23.1 (70.3) | “ | “ | [71] |
Fe3O4 (12 nm) @mSiO2 shell (75 nm total) | 2.13 (0.97) | 79.93 (87.54) | 37.5 (90.3) | “ | “ | [71] |
Fe3O4 (12 nm) @mSiO2 shell (95 nm total) | 0.61 (0.31) | 50.13 (55.44) | 82.2 (178.8) | “ | “ | [71] |
Fe3O4 (≈7.48 nm) | ≈37 | ≈48 | ≈1.3 | ≈10 | - | [75] |
Fe3O4 (≈7.48 nm)–Au (5–8 nm) dimer | ≈5 | ≈62 | ≈12.4 | “ | - | [75] |
Au core (5–8 nm)–Fe3O4 shell (≈15.92 nm total) | ≈27 | ≈41 | ≈1.5 | “ | - | [75] |
Fe3O4 cluster (200 nm) | - | 230.7 | - | - | [55] | |
Fe3O4 cluster (200 nm) + 5 nm Au seeds | - | 147.7 | - | - | [55] | |
Fe3O4 cluster (200 nm) + 20 nm Au seeds | - | 163.1 | - | - | [55] | |
Fe3O4 cluster (200 nm) + 25 nm Au shell | - | 158.2 | - | - | [55] | |
Fe3O4 | - | 167 | - | - | [76] | |
Fe3O4–Au (core–shell) | - | 61.9 | - | - | [76] | |
Fe3O4–Au (yolk–shell) | - | 149.4 | - | - | [76] | |
γ-Fe2O3 core–Au Shell ≈28.38 nm | ≈8.82 (≈10.35) | ≈4.04 (≈3.99) | - (532 nm light) | 100 μT | [30] | |
20.5 ± 1.3 nm Fe3O4 (O) | 0.92 | 32.70 | 35.55 | 60 | 1.5 | This work |
O + ≈3 nm Au seeds (Os) | 0.72 | 21.94 | 30.56 | “ | “ | “ |
O + ≈4 nm thick Au shell (R1) | 0.66 | 15.43 | 23.27 | “ | “ | “ |
O + ≈10.8 nm thick Au shell (R2) | 0.29 | 15.06 | 51.48 | “ | “ | “ |
O + ≈41.6 nm thick Au shell (R3) | 0.24 | 13.58 | 55.48 | “ | “ | “ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brennan, G.; Bergamino, S.; Pescio, M.; Tofail, S.A.M.; Silien, C. The Effects of a Varied Gold Shell Thickness on Iron Oxide Nanoparticle Cores in Magnetic Manipulation, T1 and T2 MRI Contrasting, and Magnetic Hyperthermia. Nanomaterials 2020, 10, 2424. https://doi.org/10.3390/nano10122424
Brennan G, Bergamino S, Pescio M, Tofail SAM, Silien C. The Effects of a Varied Gold Shell Thickness on Iron Oxide Nanoparticle Cores in Magnetic Manipulation, T1 and T2 MRI Contrasting, and Magnetic Hyperthermia. Nanomaterials. 2020; 10(12):2424. https://doi.org/10.3390/nano10122424
Chicago/Turabian StyleBrennan, Grace, Silvia Bergamino, Martina Pescio, Syed A. M. Tofail, and Christophe Silien. 2020. "The Effects of a Varied Gold Shell Thickness on Iron Oxide Nanoparticle Cores in Magnetic Manipulation, T1 and T2 MRI Contrasting, and Magnetic Hyperthermia" Nanomaterials 10, no. 12: 2424. https://doi.org/10.3390/nano10122424
APA StyleBrennan, G., Bergamino, S., Pescio, M., Tofail, S. A. M., & Silien, C. (2020). The Effects of a Varied Gold Shell Thickness on Iron Oxide Nanoparticle Cores in Magnetic Manipulation, T1 and T2 MRI Contrasting, and Magnetic Hyperthermia. Nanomaterials, 10(12), 2424. https://doi.org/10.3390/nano10122424