Unidirectional Magnetic Anisotropy in Dense Vertically-Standing Arrays of Passivated Nickel Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Samples Characterization
3. Results and Discussion
3.1. Morphological and Structural Characterizations
3.2. Magnetic Properties and Micromagnetic Simulations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NIMP | National Institute of Materials Physics |
R&D | Research & Development |
MDEO | R&D Center for Materials and Electronic & Optoelectronic Devices |
IMCN | Institute of Condensed Matter and Nanosciences |
UCLouvain | Université catholique de Louvain |
IFIN-HH | Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering |
NWs | Nanowires |
NTs | Nanotubes |
PC | Polycarbonate |
AAO | Anodic aluminum oxide |
0D | Zero-dimensional |
1D | One-dimensional |
2D | Two-dimensional |
F | Ferromagnetic |
AF | Antiferromagnetic |
GMR | Giant Magneto-Resistance |
TMR | Tunneling Magneto-Resistance |
DIW | Deionized water |
DC | Direct current |
SCE | Saturated calomel electrode |
NHE | Normal hydrogen electrode |
SEM | Scanning Electron Microscope |
XRD | X-ray diffraction |
SQUID | Superconducting Quantum Interference Device |
RSO | Reciprocal Space Option |
UEFISCDI | Executive Unit for Financing Higher Education, Research, Development and Innovation |
FNRS | Fonds de la Recherche Scientifique |
BSMA | Bio- and Soft Matter |
References
- Gloag, L.; Mehdipour, M.; Chen, D.; Tilley, R.D.; Gooding, J.J. Advances in the Application of Magnetic Nanoparticles for Sensing. Adv. Mater. 2019, 31, 1904385. [Google Scholar] [CrossRef]
- Haun, J.B.; Yoon, T.J.; Lee, H.; Weissleder, R. Magnetic nanoparticle biosensors. WIREs Nanomed. Nanobiotechnol. 2010, 2, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Piraux, L.; Renard, K.; Guillemet, R.; Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Antohe, V.A.; Fusil, S.; Bouzehouane, K.; Cros, V. Template-Grown NiFe/Cu/NiFe Nanowires for Spin Transfer Devices. Nano Lett. 2007, 7, 2563–2567. [Google Scholar] [CrossRef] [PubMed]
- Ebels, U.; Radulescu, A.; Henry, Y.; Piraux, L.; Ounadjela, K. Spin Accumulation and Domain Wall Magnetoresistance in 35 nm Co Wires. Phys. Rev. Lett. 2000, 84, 983–986. [Google Scholar] [CrossRef] [PubMed]
- Futamoto, M.; Ohtake, M. Development of Media Nanostructure for Perpendicular Magnetic Recording. J. Magn. Soc. Jpn. 2017, 41, 108–126. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.; Antohe, V.A.; Hu, Z.; Nysten, B.; Piraux, L.; Jonas, A.M. Multiferroic Nanopatterned Hybrid Material with Room-Temperature Magnetic Switching of the Electric Polarization. Adv. Mater. 2017, 29, 1604604. [Google Scholar] [CrossRef] [Green Version]
- Kolhatkar, A.G.; Jamison, A.C.; Litvinov, D.; Willson, R.C.; Lee, T.R. Tuning the Magnetic Properties of Nanoparticles. Int. J. Mol. Sci. 2013, 14, 15977–16009. [Google Scholar] [CrossRef] [Green Version]
- Guardia, P.; Labarta, A.; Batlle, X. Tuning the Size, the Shape, and the Magnetic Properties of Iron Oxide Nanoparticles. J. Phys. Chem. C 2011, 115, 390–396. [Google Scholar] [CrossRef]
- Genuzio, F.; Menteş, T.O.; Freindl, K.; Spiridis, N.; Korecki, J.; Locatelli, A. Chemistry-dependent magnetic properties at the FeNi oxide-metal interface. J. Mater. Chem. C 2020, 8, 5777–5785. [Google Scholar] [CrossRef]
- Yao, Y.D.; Huang, D.R.; Lin, S.M.; Wang, S.J. Theoretical computations of the magnetic coupling between magnetic gears. IEEE Trans. Magn. 1996, 32, 710–713. [Google Scholar] [CrossRef]
- Lavorato, G.C.; Lima, E.; Troiani, H.F.; Zysler, R.D.; Winkler, E.L. Tuning the coercivity and exchange bias by controlling the interface coupling in bimagnetic core/shell nanoparticles. Nanoscale 2017, 9, 10240–10247. [Google Scholar] [CrossRef] [PubMed]
- Piraux, L.; Dubois, S.; Fert, A. Perpendicular giant magnetoresistance in magnetic multilayered nanowires. J. Magn. Magn. Mater. 1996, 159, L287–L292. [Google Scholar] [CrossRef]
- Montes, E.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U. Tunneling magnetoresistance in Si nanowires. New J. Phys. 2016, 18, 113024. [Google Scholar] [CrossRef]
- Radu, F.; Zabel, H. Exchange Bias Effect of Ferro-/Antiferromagnetic Heterostructures. In Magnetic Heterostructures: Advances and Perspectives in Spinstructures and Spintransport; Springer Tracts in Modern Physics; Zabel, H., Bader, S.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 227, pp. 97–184. [Google Scholar] [CrossRef]
- Zhan, X.; Mao, Z.; Chen, X. Exchange bias and coercivity for ferromagnets coupled to the domain state and spin glass state. J. Phys. Appl. Phys. 2016, 49, 185002. [Google Scholar] [CrossRef]
- Agarwal, S.; Wang, B.; Yang, H.; Dhanapal, P.; Shen, Y.; Wang, J.; Wang, H.; Zhao, J.; Li, R.W. Spin-valve-like magnetoresistance in a Ni-Mn-In thin film. Phys. Rev. B 2018, 97, 214427. [Google Scholar] [CrossRef] [Green Version]
- Nogués, J.; Schuller, I.K. Exchange bias. J. Magn. Magn. Mater. 1999, 192, 203–232. [Google Scholar] [CrossRef]
- Stromberg, F.; Keune, W.; Kuncser, V.E.; Westerholt, K. Fe-coverage-induced out-of-plane spin components of the antiferromagnetic spin structure in exchange-biased Fe/FeSn2 bilayers. Phys. Rev. B 2005, 72, 064440. [Google Scholar] [CrossRef]
- Ding, J.; Adeyeye, A.O. Binary Ferromagnetic Nanostructures: Fabrication, Static and Dynamic Properties. Adv. Funct. Mater. 2013, 23, 1684–1691. [Google Scholar] [CrossRef]
- Greculeasa, S.G.; Schinteie, G.; Hrib, L.M.; Stancu, V.; Pasuk, I.; Kuncser, A.; Kuncser, V. Complex exchange coupling mechanisms in SRO/BFO/Fe heterostructures. J. Alloys Compd. 2019, 773, 338–345. [Google Scholar] [CrossRef]
- Rinaldi-Montes, N.; Gorria, P.; Martínez-Blanco, D.; Amghouz, Z.; Fuertes, A.B.; Barquín, L.F.; Fernández, J.R.; Olivi, L.; Aquilanti, G.; Blanco, J.A. Disentangling magnetic core/shell morphologies in Co-based nanoparticles. J. Mater. Chem. C 2016, 4, 2302–2311. [Google Scholar] [CrossRef]
- Mandal, S.; Chaudhuri, K. Engineered magnetic core shell nanoprobes: Synthesis and applications to cancer imaging and therapeutics. World J. Biol. Chem. 2016, 7, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Tabasum, M.R.; Fatih, Z.; de la Torre Medina, J.; Encinas, A.; Piraux, L.; Nysten, B. Magnetic force microscopy investigation of arrays of nickel nanowires and nanotubes. Nanotechnology 2014, 25, 245707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, F.A.; Piraux, L.; Antohe, V.A.; Cros, V.; Gence, L. Single spin-torque vortex oscillator using combined bottom-up approach and e-beam lithography. Appl. Phys. Lett. 2013, 102, 222402. [Google Scholar] [CrossRef] [Green Version]
- Velázquez-Galván, Y.; Martínez-Huerta, J.M.; Medina, J.D.L.T.; Danlée, Y.; Piraux, L.; Encinas, A. Dipolar interaction in arrays of magnetic nanotubes. J. Phys. Condens. Matter 2013, 26, 026001. [Google Scholar] [CrossRef] [PubMed]
- Antohe, V.A.; Nysten, E.; Martínez-Huerta, J.M.; de Sá, P.M.P.; Piraux, L. Annealing effects on the magnetic properties of highly-packed vertically-aligned nickel nanotubes. RSC Adv. 2017, 7, 18609–18616. [Google Scholar] [CrossRef] [Green Version]
- de la Torre Medina, J.; da Câmara Santa Clara Gomes, T.; Velázquez-Galván, Y.G.; Piraux, L. Large-scale 3-D interconnected Ni nanotube networks with controlled structural and magnetic properties. Sci. Rep. 2018, 8, 14555. [Google Scholar] [CrossRef]
- Vlad, A.; Mátéfi-Tempfli, M.; Antohe, V.A.; Faniel, S.; Reckinger, N.; Olbrechts, B.; Crahay, A.; Bayot, V.; Piraux, L.; Melinte, S.; et al. Nanowire-Decorated Microscale Metallic Electrodes. Small 2008, 4, 557–560. [Google Scholar] [CrossRef]
- Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Vlad, A.; Antohe, V.A.; Piraux, L. Nanowires and nanostructures fabrication using template methods: A step forward to real devices combining electrochemical synthesis with lithographic techniques. J. Mater. Sci. Mater. Electron. 2009, 20, 249. [Google Scholar] [CrossRef]
- Sharma, M.; Kuanr, B.K.; Veerakumar, V.; Basu, A.; Celinski, Z.J. Magnetization Dynamics and Reversal Mechanisms in Ni Nanowire and Nanotube Arrays. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Nielsch, K.; Castaño, F.J.; Matthias, S.; Lee, W.; Ross, C.A. Synthesis of Cobalt/Polymer Multilayer Nanotubes. Adv. Eng. Mater. 2005, 7, 217–221. [Google Scholar] [CrossRef]
- Nielsch, K.; Castaño, F.J.; Ross, C.A.; Krishnan, R. Magnetic properties of template-synthesized cobalt/polymer composite nanotubes. J. Appl. Phys. 2005, 98, 034318. [Google Scholar] [CrossRef]
- Han, X.F.; Shamaila, S.; Sharif, R.; Chen, J.Y.; Liu, H.R.; Liu, D.P. Structural and Magnetic Properties of Various Ferromagnetic Nanotubes. Adv. Mater. 2009, 21, 4619–4624. [Google Scholar] [CrossRef]
- Antohe, V.A.; Radu, A.; Mátéfi-Tempfli, M.; Attout, A.; Yunus, S.; Bertrand, P.; Duţu, C.A.; Vlad, A.; Melinte, S.; Mátéfi-Tempfli, S.; et al. Nanowire-templated microelectrodes for high-sensitivity pH detection. Appl. Phys. Lett. 2009, 94, 073118. [Google Scholar] [CrossRef]
- Vlad, A.; Antohe, V.A.; Martínez-Huerta, J.M.; Ferain, E.; Gohy, J.F.; Piraux, L. Three-dimensional interconnected Nicore–NiOshell nanowire networks for lithium microbattery architectures. J. Mater. Chem. A 2016, 4, 1603–1607. [Google Scholar] [CrossRef]
- Sallagoity, D.; Elissalde, C.; Majimel, J.; Berthelot, R.; Chung, U.C.; Penin, N.; Maglione, M.; Antohe, V.A.; Hamoir, G.; Araujo, F.A.; et al. Synthesis and magnetic properties of Ni–BaTiO3 nanocable arrays within ordered anodic alumina templates. J. Mater. Chem. C 2015, 3, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Dar, F.I.; Moonoosawmy, K.R.; Es-Souni, M. Morphology and property control of NiO nanostructures for supercapacitor applications. Nanoscale Res. Lett. 2013, 8, 363. [Google Scholar] [CrossRef] [Green Version]
- Bonomo, M. Synthesis and characterization of NiO nanostructures: A review. J. Nanopart. Res. 2018, 20, 222. [Google Scholar] [CrossRef]
- Mishra, S.; Yogi, P.; Saxena, S.K.; Jayabalan, J.; Behera, P.; Sagdeo, P.R.; Kumar, R. Significant field emission enhancement in ultrathin nano-thorn covered NiO nano-petals. J. Mater. Chem. C 2017, 5, 9611–9618. [Google Scholar] [CrossRef]
- You, W.; Che, R. Excellent NiO–Ni Nanoplate Microwave Absorber via Pinning Effect of Antiferromagnetic- Ferromagnetic Interface. ACS Appl. Mater. Interfaces 2018, 10, 15104–15111. [Google Scholar] [CrossRef]
- Rinaldi-Montes, N.; Gorria, P.; Martínez-Blanco, D.; Amghouz, Z.; Fuertes, A.B.; Barquín, L.F.; de Pedro, I.; Olivi, L.; Blanco, J.A. Unravelling the onset of the exchange bias effect in Ni(core)@NiO(shell) nanoparticles embedded in a mesoporous carbon matrix. J. Mater. Chem. C 2015, 3, 5674–5682. [Google Scholar] [CrossRef]
- D’Addato, S.; Spadaro, M.C.; Luches, P.; Grillo, V.; Frabboni, S.; Valeri, S.; Ferretti, A.M.; Capetti, E.; Ponti, A. Controlled growth of Ni/NiO core–shell nanoparticles: Structure, morphology and tuning of magnetic properties. Appl. Surf. Sci. 2014, 306, 2–6. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, G.; Han, X.; Wang, X.; Hou, J.G. Controllable Template Synthesis of Ni/Cu Nanocable and Ni Nanotube Arrays: A One-Step Coelectrodeposition and Electrochemical Etching Method. J. Phys. Chem. B 2005, 109, 23326–23329. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xia, G.; Zhu, F.; Kim, S.; Markovic, N.; Chien, C.L.; Searson, P.C. Exploiting finite size effects in a novel core/shell microstructure. J. Appl. Phys. 2008, 103, 4313. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Elbert, D.; Chien, C.L.; Searson, P.C. FIB/TEM Characterization of the Composition and Structure of Core/Shell Cu–Ni Nanowires. Nano Lett. 2008, 8, 2166–2170. [Google Scholar] [CrossRef]
- Chang, J.K.; Hsu, S.H.; Sun, I.W.; Tsai, W.T. Formation of Nanoporous Nickel by Selective Anodic Etching of the Nobler Copper Component from Electrodeposited Nickel-Copper Alloys. J. Phys. Chem. C 2008, 112, 1371–1376. [Google Scholar] [CrossRef]
- Dai, X.; Chen, D.; Fan, H.; Zhong, Y.; Chang, L.; Shao, H.; Wang, J.; Zhang, J.; Cao, C. Ni(OH)2/NiO/Ni composite nanotube arrays for high-performance supercapacitors. Electrochim. Acta 2015, 154, 128–135. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, C.; Zhou, Y.; Maaz, K.; Yao, H.; Mo, D.; Lyu, S.; Duan, J.; Liu, J. Temperature- and Angle-Dependent Magnetic Properties of Ni Nanotube Arrays Fabricated by Electrodeposition in Polycarbonate Templates. Nanomaterials 2016, 6, 231. [Google Scholar] [CrossRef] [Green Version]
- Swartzendruber, L.J. Properties, units and constants in magnetism. J. Magn. Magn. Mater. 1991, 100, 573–575. [Google Scholar] [CrossRef]
- Donahue, M.J.; Porter, D.G. Object Oriented MicroMagnetic Framework (OOMMF); User’s Guide, Interagency Report NISTIR 6376, Version 1.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1999; p. 20899. [CrossRef]
- Zhang, J.M.; Ma, F.; Xu, K.W. Calculation of the surface energy of FCC metals with modified embedded-atom method. Appl. Surf. Sci. 2004, 229, 34–42. [Google Scholar] [CrossRef]
- Boubatra, M.; Azizi, A.; Schmerber, G.; Dinia, A. The influence of pH electrolyte on the electrochemical deposition and properties of nickel thin films. Ionics 2012, 18, 425–432. [Google Scholar] [CrossRef]
- Zheng, Z.; Ng, Y.H.; Wang, D.W.; Amal, R. Epitaxial Growth of Au–Pt–Ni Nanorods for Direct High Selectivity H2O2 Production. Adv. Mater. 2016, 28, 9949–9955. [Google Scholar] [CrossRef] [PubMed]
- Li, G.G.; Blom, D.A.; Pandey, S.; Koch, R.J.; Misture, S.T.; Phillpot, S.R.; Wang, H. Overcoming the Interfacial Lattice Mismatch: Geometry Control of Gold-Nickel Bimetallic Heteronanostructures. Part. Part. Syst. Charact. 2018, 35, 1700361. [Google Scholar] [CrossRef]
- Kuncser, A.; Antohe, S.; Kuncser, V. A general perspective on the magnetization reversal in cylindrical soft magnetic nanowires with dominant shape anisotropy. J. Magn. Magn. Mater. 2017, 423, 34–38. [Google Scholar] [CrossRef]
- Costas, A.; Florica, C.; Matei, E.; Toimil-Molares, M.E.; Stavarache, I.; Kuncser, A.; Kuncser, V.; Enculescu, I. Magnetism and magnetoresistance of single Ni–Cu alloy nanowires. Beilstein J. Nanotechnol. 2018, 9, 2345–2355. [Google Scholar] [CrossRef]
- Mansuripur, M. The Physical Principles of Magneto-optical Recording; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar] [CrossRef]
- Matei, E.; Enculescu, I.; Toimil-Molares, M.E.; Leca, A.; Ghica, C.; Kuncser, V. Magnetic configurations of Ni–Cu alloy nanowires obtained by the template method. J. Nanopart. Res. 2013, 15, 1863. [Google Scholar] [CrossRef]
- Kuncser, V.; Palade, P.; Kuncser, A.; Greculeasa, S.; Schinteie, G. Engineering Magnetic Properties of Nanostructures via Size Effects and Interphase Interactions. In Size Effects in Nanostructures: Basics and Applications; Springer Series in Materials Science; Kuncser, V., Miu, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 205. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Locovei, C.; Filipoiu, N.; Kuncser, A.; Stanciu, A.-E.; Antohe, Ş.; Florica, C.-F.; Costas, A.; Enculescu, I.; Piraux, L.; Kuncser, V.; et al. Unidirectional Magnetic Anisotropy in Dense Vertically-Standing Arrays of Passivated Nickel Nanotubes. Nanomaterials 2020, 10, 2444. https://doi.org/10.3390/nano10122444
Locovei C, Filipoiu N, Kuncser A, Stanciu A-E, Antohe Ş, Florica C-F, Costas A, Enculescu I, Piraux L, Kuncser V, et al. Unidirectional Magnetic Anisotropy in Dense Vertically-Standing Arrays of Passivated Nickel Nanotubes. Nanomaterials. 2020; 10(12):2444. https://doi.org/10.3390/nano10122444
Chicago/Turabian StyleLocovei, Claudiu, Nicolae Filipoiu, Andrei Kuncser, Anda-Elena Stanciu, Ştefan Antohe, Camelia-Florina Florica, Andreea Costas, Ionuţ Enculescu, Luc Piraux, Victor Kuncser, and et al. 2020. "Unidirectional Magnetic Anisotropy in Dense Vertically-Standing Arrays of Passivated Nickel Nanotubes" Nanomaterials 10, no. 12: 2444. https://doi.org/10.3390/nano10122444
APA StyleLocovei, C., Filipoiu, N., Kuncser, A., Stanciu, A. -E., Antohe, Ş., Florica, C. -F., Costas, A., Enculescu, I., Piraux, L., Kuncser, V., & Antohe, V. -A. (2020). Unidirectional Magnetic Anisotropy in Dense Vertically-Standing Arrays of Passivated Nickel Nanotubes. Nanomaterials, 10(12), 2444. https://doi.org/10.3390/nano10122444