Nanodroplets of Docosahexaenoic Acid-Enriched Algae Oil Encapsulated within Microparticles of Hydrocolloids by Emulsion Electrospraying Assisted by Pressurized Gas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Emulsion
2.3. Emulsion Droplet Size
2.4. EAPG Process
2.5. Microscopy
2.6. Extractable Oil from the Particles
2.7. Peroxide Value Determination
2.8. Attenuated Total Reflection—Fourier Transform Infrared (ATR-FTIR)
2.9. Stability Tests under Ultraviolet Radiation
2.10. Headspace Oxygen Volume Depletion
2.11. Organoleptic Testing
2.12. Statistical Analysis
3. Results and Discussion
3.1. Morphology
3.2. Extractable Oil in Isooctane
3.3. Oxidative Stability
3.4. Headspace Oxygen Depletion
3.5. Organoleptic Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Semenova, M. Advances in molecular design of biopolymer-based delivery micro/nanovehicles for essential fatty acids. Food Hydrocolloids 2017, 68, 114–121. [Google Scholar] [CrossRef]
- FAO/WHO. Interim Summary of Conclusions and Dietary Recommendations on Total Fat and Fatty Acids from the Joint FAO/WHO Expert Consultation on Fats and Fatty Acids in Human Nutrition; FAO/WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Shaw, L.A.; Faraji, H.; Aoki, T.; Djordjevic, D.; McClements, D.J.; Decker, E.A. 7—Emulsion droplet interfacial engineering to deliver bioactive lipids into functional foods. In Delivery and Controlled Release of Bioactives in Foods and Nutraceuticals; Garti, N., Ed.; Woodhead Publishing: Cambridge, UK, 2008; pp. 184–206. [Google Scholar]
- Bimbo, A.P. 2—Sources of omega-3 fatty acids. In Food Enrichment with Omega-3 Fatty Acids; Jacobsen, C., Nielsen, N.S., Horn, A.F., Sørensen, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 27–107. [Google Scholar]
- Busolo, M.A.; Torres-Giner, S.; Prieto, C.; Lagaron, J.M. Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine. Innovative Food Sci. Emerg. Technol. 2019, 51, 12–19. [Google Scholar] [CrossRef]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S. Fish oil supplementation: Evidence for health benefits. Cleveland Clin. J. Med. 2004, 71, 208–221. [Google Scholar] [CrossRef]
- Rodríguez, J.; Martín, M.J.; Ruiz, M.A.; Clares, B. Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Res. Int. 2016, 83, 41–59. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; López-Rubio, A. Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives. J. Colloid Interface Sci. 2016, 465, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Torres-Giner, S.; Martinez-Abad, A.; Ocio, M.J.; Lagaron, J.M. Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J. Food Sci. 2010, 75, N69–N79. [Google Scholar] [CrossRef]
- Augustin, M.A.; Sanguansri, L. 2—Challenges in developing delivery systems for food additives, nutraceuticals and dietary supplements. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Garti, N., McClements, D.J., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 19–48. [Google Scholar]
- Zuidam, N.J.; Shimoni, E. Overview of microencapsulates for use in food products or processes and methods to make them. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Zuidam, N.J., Nedovic, V., Eds.; Springer: New York, NY, USA, 2010; pp. 3–29. [Google Scholar]
- Prieto, C.; Calvo, L. The encapsulation of low viscosity omega-3 rich fish oil in polycaprolactone by supercritical fluid extraction of emulsions. J. Supercrit. Fluids 2017, 128, 227–234. [Google Scholar] [CrossRef]
- Moomand, K.; Lim, L.-T. Effects of solvent and n-3 rich fish oil on physicochemical properties of electrospun zein fibres. Food Hydrocolloids 2015, 46, 191–200. [Google Scholar] [CrossRef]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compre. Rev. Food Sci. Food Saf. 2016, 15, 143–182. [Google Scholar] [CrossRef]
- Echegoyen, Y.; Fabra, M.J.; Castro-Mayorga, J.L.; Cherpinski, A.; Lagaron, J.M. High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications: Viewpoint. Trends Food Sci. Technol. 2017, 60, 71–79. [Google Scholar] [CrossRef]
- Jacobsen, C.; García-Moreno, P.J.; Mendes, A.C.; Mateiu, R.V.; Chronakis, I.S. Use of electrohydrodynamic processing for encapsulation of sensitive bioactive compounds and applications in food. Annu. Rev. Food Sci. Technol. 2018, 9, 525–549. [Google Scholar] [CrossRef] [PubMed]
- Moomand, K.; Lim, L.T. Oxidative stability of encapsulated fish oil in electrospun zein fibres. Food Res. Int. 2014, 62, 523–532. [Google Scholar] [CrossRef]
- Moomand, K.; Lim, L.-T. Properties of encapsulated fish oil in electrospun zein fibres under simulated in vitro conditions. Food Bioprocess Technol. 2015, 8, 431–444. [Google Scholar] [CrossRef]
- Yang, H.; Wen, P.; Feng, K.; Zong, M.H.; Lou, W.Y.; Wu, H. Encapsulation of fish oil in a coaxial electrospun nanofibrous mat and its properties. RSC Adv. 2017, 7, 14939–14946. [Google Scholar] [CrossRef] [Green Version]
- García-Moreno, P.J.; Stephansen, K.; van der Kruijs, J.; Guadix, A.; Guadix, E.M.; Chronakis, I.S.; Jacobsen, C. Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability. J. Food Eng. 2016, 183, 39–49. [Google Scholar] [CrossRef] [Green Version]
- García-Moreno, P.J.; Damberg, C.; Chronakis, I.S.; Jacobsen, C. Oxidative stability of pullulan electrospun fibers containing fish oil: Effect of oil content and natural antioxidants addition. Eur. J. Lipid Sci. Technol. 2017, 119, 1600305. [Google Scholar] [CrossRef] [Green Version]
- García-Moreno, P.J.; Özdemir, N.; Stephansen, K.; Mateiu, R.V.; Echegoyen, Y.; Lagaron, J.M.; Chronakis, I.S.; Jacobsen, C. Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing. Food Hydrocolloids 2017, 69, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Miguel, G.A.; Jacobsen, C.; Prieto, C.; Kempen, P.J.; Lagaron, J.M.; Chronakis, I.S.; García-Moreno, P.J. Oxidative stability and physical properties of mayonnaise fortified with zein electrosprayed capsules loaded with fish oil. J. Food Eng. 2019, 263, 348–358. [Google Scholar] [CrossRef]
- Fu, H.; Hoerr, R.A.; Ryan, P.J. A high-throughput electrospray nozzle for nanoparticle production. TechConnect Briefs 2014, 1, 101–104. [Google Scholar]
- Bioinicia, S.L. Available online: https://bioinicia.com/ (accessed on 5 February 2020).
- Wang, Y.; Liu, W.; Chen, X.D.; Selomulya, C. Micro-encapsulation and stabilization of dha containing fish oil in protein-based emulsion through mono-disperse droplet spray dryer. J. Food Eng. 2016, 175, 74–84. [Google Scholar] [CrossRef]
- García-Moreno, P.J.; Pelayo, A.; Yu, S.; Busolo, M.; Lagaron, J.M.; Chronakis, I.S.; Jacobsen, C. Physicochemical characterization and oxidative stability of fish oil-loaded electrosprayed capsules: Combined use of whey protein and carbohydrates as wall materials. J. Food Eng. 2018, 231, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Anwar, S.H.; Kunz, B. The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray granulation, spray drying, and freeze drying. J. Food Eng. 2011, 105, 367–378. [Google Scholar] [CrossRef]
- Ayache, J.; Beaunier, L.; Boumendil, J.; Ehret, G.; Laub, D. Sample Preparation Handbook for Transmission Electron Microscopy; Techniques, Springer: New York, NY, USA, 2010; pp. 54–57. [Google Scholar]
- Shantha, N.C.; Decker, E.A. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J. AOAC Int. 1994, 77, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Federation, I.D. Milk fat - determination of peroxide value. In International IDF Standards 2006; Vol. ISO3976 - IDF 74; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OSRAM. Osram ultra-vitalux. Available online: https://www.osram.com/pia/ecat/ULTRA-VITALUX-Ultraviolet%20lamps-Specialty%20lamps/com/en/GPS01_1028569/PP_EUROPE_Europe_eCat/ZMP_ 60829/ (accessed on 5 February 2020).
- Fernandez, A.; Torres-Giner, S.; Lagaron, J.M. Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids 2009, 23, 1427–1432. [Google Scholar] [CrossRef]
- Joye, I.J.; Corradini, M.G.; Duizer, L.M.; Bohrer, B.M.; LaPointe, G.; Farber, J.M.; Spagnuolo, P.A.; Rogers, M.A. Chapter one—A comprehensive perspective of food nanomaterials. In Advances in Food and Nutrition Research; Lim, L.-T., Rogers, M., Eds.; Academic Press: Cambridge, UK, 2019; Volume 88, pp. 1–45. [Google Scholar]
- GOED. Oxidation in Omega-3 oils: An Overview. A White Paper Prepared by the Global Organization for EPA and dha Omega-3s and the Council for Responsible Nutrition. 2015. Goedomega3.com. Available online: https://goedomega3.com/storage/app/media/scientific-reports/Oxidation%20in%20Omega3%20Oils_%20An%20Overview.pdf (accessed on 5 February 2020).
- Jacobsen, C.; Sørensen, A.D.M.; Nielsen, N.S. 4—Stabilization of omega-3 oils and enriched foods using antioxidants. In Food Enrichment with Omega-3 Fatty Acids; Jacobsen, C., Nielsen, N.S., Horn, A.F., Sørensen, A.-D.M., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 130–149. [Google Scholar]
- Tong, L.M.; Sasaki, S.; McClements, D.J.; Decker, E.A. Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J. Agric. Food. Chem. 2000, 48, 1473–1478. [Google Scholar] [CrossRef]
- Lintw, S.Y.; Hwangs, L.S.; Lins, C.C. Thermal analyser and micro ft-ir/dsc system used to determine the protective ability of microencapsulated squid oil. J. Microencapsulation 1995, 12, 165–172. [Google Scholar] [CrossRef]
- Guillén, M.D.; Cabo, N. Usefulness of the frequency data of the fourier transform infrared spectra to evaluate the degree of oxidation of edible oils. J. Agric. Food. Chem. 1999, 47, 709–719. [Google Scholar] [CrossRef]
- Guillén, M.D.; Cabo, N. Characterization of edible oils and lard by fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. J. Am. Oil Chem. Soc. 1997, 74, 1281–1286. [Google Scholar] [CrossRef]
- Safar, M.; Bertrand, D.; Robert, P.; Devaux, M.F.; Genot, C. Characterization of edible oils, butters and margarines by fourier transform infrared spectroscopy with attenuated total reflectance. J. Am. Oil Chem. Soc. 1994, 71, 371–377. [Google Scholar] [CrossRef]
- Ha, H.-K.; Rankin, A.S.; Lee, M.-R.; Lee, W.-J. Development and characterization of whey protein-based nano-delivery systems: A review. Molecules 2019, 24, 3254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López Rubio, A.; Lagaron, J.M. Method for the production of micro-, sub-micro- and nano-capsules, based on whey proteins. EP2724775A1 2014. Available online: https://worldwide.espacenet.com/patent/search/family/ 047422071/publication/EP2724775A1?q=pn%3DEP2724775A4 (accessed on 5 February 2020).
- Drusch, S.; Rätzke, K.; Shaikh, M.Q.; Serfert, Y.; Steckel, H.; Scampicchio, M.; Voigt, I.; Schwarz, K.; Mannino, S. Differences in free volume elements of the carrier matrix affect the stability of microencapsulated lipophilic food ingredients. Food Biophys. 2009, 4, 42–48. [Google Scholar] [CrossRef]
- Busolo, M.A.; Lagaron, J.M. Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innovative Food Sci. Emerg. Technol. 2012, 16, 211–217. [Google Scholar] [CrossRef]
- Hong, S.-I.; Krochta, J.M. Oxygen barrier properties of whey protein isolate coatings on polypropylene films. J. Food Sci. 2003, 68, 224–228. [Google Scholar] [CrossRef]
- Lee, S.J.; Ying, D.Y. 15—Encapsulation of fish oils. In Delivery and Controlled Release of Bioactives in Foods and Nutraceuticals; Garti, N., Ed.; Woodhead Publishing: Cambridge, UK, 2008; pp. 370–403. [Google Scholar]
Formulation | [Biopolymer] | [Surfactant] | Ratio | Ratio |
---|---|---|---|---|
(%wt.) | (%wt.) | O:W | biopolymer:algae oil | |
WPC - algae oil 2:1 | 22.5 | 9.1 | 11.0:89.0 | 2:1 |
WPC - algae oil 9:1 | 22.5 | 31.0 | 3.5:96.5 | 9:1 |
MD - algae oil 2:1 | 22.5 | 9.1 | 11.0:89.0 | 2:1 |
MD - algae oil 9:1 | 22.5 | 31.0 | 3.5:96.5 | 9:1 |
Formulation | Emulsion Droplet Size D (0.5) (µm) | Capsule Size (µm) | EO (%) | PV (meq/kg) |
---|---|---|---|---|
WPC-algae oil 2:1 | 0.207 ± 0.003 | 2.8 ± 0.9 | 35 ± 5 | 1.9 ± 0.4 |
MD-algae oil 2:1 | 0.272 ± 0.002 | 4.9 ± 1.3 | 15 ± 1 | 5.1 ± 2.8 |
WPC-algae oil 9:1 | 0.184 ± 0.002 | 3.0 ± 2.4 | 21 ± 2 | 3.0 ± 2.5 |
MD-algae oil 9:1 | 0.173 ± 0.001 | 3.4 ± 2.2 | 23 ± 9 | 4.8 ± 0.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto, C.; Lagaron, J.M. Nanodroplets of Docosahexaenoic Acid-Enriched Algae Oil Encapsulated within Microparticles of Hydrocolloids by Emulsion Electrospraying Assisted by Pressurized Gas. Nanomaterials 2020, 10, 270. https://doi.org/10.3390/nano10020270
Prieto C, Lagaron JM. Nanodroplets of Docosahexaenoic Acid-Enriched Algae Oil Encapsulated within Microparticles of Hydrocolloids by Emulsion Electrospraying Assisted by Pressurized Gas. Nanomaterials. 2020; 10(2):270. https://doi.org/10.3390/nano10020270
Chicago/Turabian StylePrieto, Cristina, and Jose M. Lagaron. 2020. "Nanodroplets of Docosahexaenoic Acid-Enriched Algae Oil Encapsulated within Microparticles of Hydrocolloids by Emulsion Electrospraying Assisted by Pressurized Gas" Nanomaterials 10, no. 2: 270. https://doi.org/10.3390/nano10020270
APA StylePrieto, C., & Lagaron, J. M. (2020). Nanodroplets of Docosahexaenoic Acid-Enriched Algae Oil Encapsulated within Microparticles of Hydrocolloids by Emulsion Electrospraying Assisted by Pressurized Gas. Nanomaterials, 10(2), 270. https://doi.org/10.3390/nano10020270