Supramolecular Gold Chemistry: From Atomically Precise Thiolate-Protected Gold Nanoclusters to Gold-Thiolate Nanostructures
Funding
Acknowledgments
Conflicts of Interest
References
- Gil-Rubio, J.; Vicente, J. The coordination and supramolecular chemistry of gold metalloligands. Chem. Eur. J. 2018, 24, 32–46. [Google Scholar] [CrossRef]
- Bürgi, T. Properties of the gold–sulphur interface: From self-assembled monolayers to clusters. Nanoscale 2015, 7, 15553–15567. [Google Scholar] [CrossRef] [Green Version]
- Comby-Zerbino, C.; Perić, M.; Bertorelle, F.; Chirot, F.; Dugourd, P.; Bonačić-Koutecký, V.; Antoine, R. Catenane Structures of Homoleptic Thioglycolic Acid-Protected Gold Nanoclusters Evidenced by Ion Mobility-Mass Spectrometry and DFT Calculations. Nanomaterials 2019, 9, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Chen, M.; Wang, S.; Zhu, M. Intramolecular metal exchange reaction promoted by thiol ligands. Nanomaterials 2018, 8, 1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, D.M.; Hoque, M.M.; Plascencia-Villa, G.; Whetten, R.L. New Evidence of the Bidentate Binding Mode in 3-MBA Protected Gold Clusters: Analysis of Aqueous 13–18 kDa Gold-Thiolate Clusters by HPLC-ESI-MS Reveals Special Compositions Aun (3-MBA) p,(n = 48–67, p = 26–30). Nanomaterials 2019, 9, 1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Q.; Qin, Z.; Xu, H.; Li, G. Heterogeneous Cross-Coupling over Gold Nanoclusters. Nanomaterials 2019, 9, 838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Z.; Xu, Y.; Cheng, L. New Perspectives on the Electronic and Geometric Structure of Au70S20 (PPh3) 12 Cluster: Superatomic-Network Core Protected by Novel Au12 (µ3-S) 10 Staple Motifs. Nanomaterials 2019, 9, 1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Zeng, C.; Li, Q.; Higaki, T.; Jin, R. Gold Nanoclusters: Bridging Gold Complexes and Plasmonic Nanoparticles in Photophysical Properties. Nanomaterials 2019, 9, 933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, H.-H.; Shi, X.-Q.; Balasubramanian, P.; Huang, K.-Y.; Xu, Y.-Y.; Huang, Z.-N.; Peng, H.-P.; Chen, W. 6-Aza-2-Thio-Thymine Stabilized Gold Nanoclusters as Photoluminescent Probe for Protein Detection. Nanomaterials 2020, 10, 281. [Google Scholar] [CrossRef] [Green Version]
- Kawawaki, T.; Negishi, Y. Gold Nanoclusters as Electrocatalysts for Energy Conversion. Nanomaterials 2020, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.-Q.; Peng, B.; Shan, B.-Q.; Zong, Y.-X.; Jiang, J.-G.; Wu, P.; Zhang, K. Origin of the Photoluminescence of Metal Nanoclusters: From Metal-Centered Emission to Ligand-Centered Emission. Nanomaterials 2020, 10, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veselska, O.; Guillou, N.; Ledoux, G.; Huang, C.-C.; Newell, K.D.; Elkaïm, E.; Fateeva, A.; Demessence, A. A New Lamellar Gold Thiolate Coordination Polymer, [Au (m-SPhCO2H)] n, for the Formation of Luminescent Polymer Composites. Nanomaterials 2019, 9, 1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nancy, P.; Nair, A.K.; Antoine, R.; Thomas, S.; Kalarikkal, N. In Situ Decoration of Gold Nanoparticles on Graphene Oxide via Nanosecond Laser Ablation for Remarkable Chemical Sensing and Catalysis. Nanomaterials 2019, 9, 1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungor, D.; Dékány, I.; Csapó, E. Reduction of tetrachloroaurate (Iii) ions with bioligands: Role of the thiol and amine functional groups on the structure and optical features of gold nanohybrid systems. Nanomaterials 2019, 9, 1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanc, J.; Bonačić-Koutecký, V.; Broyer, M.; Chevaleyre, J.; Dugourd, P.; Koutecký, J.; Scheuch, C.; Wolf, J.P.; Wöste, L. Evolution of the electronic structure of lithium clusters between four and eight atoms. J. Chem. Phys. 1992, 96, 1793–1809. [Google Scholar] [CrossRef]
- Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Jin, R. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoine, R. Supramolecular Gold Chemistry: From Atomically Precise Thiolate-Protected Gold Nanoclusters to Gold-Thiolate Nanostructures. Nanomaterials 2020, 10, 377. https://doi.org/10.3390/nano10020377
Antoine R. Supramolecular Gold Chemistry: From Atomically Precise Thiolate-Protected Gold Nanoclusters to Gold-Thiolate Nanostructures. Nanomaterials. 2020; 10(2):377. https://doi.org/10.3390/nano10020377
Chicago/Turabian StyleAntoine, Rodolphe. 2020. "Supramolecular Gold Chemistry: From Atomically Precise Thiolate-Protected Gold Nanoclusters to Gold-Thiolate Nanostructures" Nanomaterials 10, no. 2: 377. https://doi.org/10.3390/nano10020377
APA StyleAntoine, R. (2020). Supramolecular Gold Chemistry: From Atomically Precise Thiolate-Protected Gold Nanoclusters to Gold-Thiolate Nanostructures. Nanomaterials, 10(2), 377. https://doi.org/10.3390/nano10020377