Electrochemical Performance of Photovoltaic Cells Using HDA Capped-SnS Nanocrystal from bis (N-1,4-Phenyl-N-Morpho-Dithiocarbamato) Sn(II) Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Synthesis of SnS Nanoparticles with HDA Capping Agent
2.3. Synthesis of SnS Nanoparticles Without HDA Capping Agent
2.4. Fabrication and Assembling of Solar Cells
2.5. Physical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Astani, N.A.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seol, M.; Ramasamy, E.; Lee, J.; Yong, K. Highly Efficient and Durable Quantum Dot Sensitized ZnO Nanowire Solar Cell Using Noble-Metal-Free Counter Electrode. J. Phys. Chem. C 2011, 115, 22018–22024. [Google Scholar] [CrossRef]
- Santra, P.; Kamat, P. Tandem-Layered Quantum Dot Solar Cells: Tuning the Photovoltaic Response with Luminescent Ternary Cadmium Chalcogenides. J. Am. Chem. Soc. 2013, 135, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Beard, M.C. Multiple Exciton Generation in Semiconductor Quantum Dots. J. Phys. Chem. Lett. 2011, 2, 1282–1288. [Google Scholar] [CrossRef]
- Semonin, O.E.; Luther, J.M.; Choi, S.; Chen, H.-Y.; Gao, J.; Nozik, A.J.; Beard, M.C. Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell. Science 2011, 334, 1530–1533. [Google Scholar] [CrossRef]
- Shu, T.; Zhou, Z.; Wang, H.; Liu, G.; Xiang, P.; Rong, Y.; Han, H.; Zhao, Y. Efficient quantum dot-sensitized solar cell with tunable energy band CdSe × S (1 − x) quantum dots. J. Mater. Chem. 2012, 22, 10525–10529. [Google Scholar] [CrossRef]
- Dey, P.; Paul, J.; Bylsma, J.; Karaiskaj, D.; Luther, J.M.; Beard, M.C.; Romero, A. Origin of the temperature dependence of the band gap of PbS and PbSe quantum dots. Solid State Commun. 2013, 165, 49–54. [Google Scholar] [CrossRef]
- Sargent, E.H. Colloidal quantum dot solar cells. Nat. Photonics 2012, 6, 133–135. [Google Scholar] [CrossRef]
- Gimenez, S.; Mora-Seró, I.; Macor, L.; Guijarro, N.; Lana-Villarreal, T.; Gómez, R.; Diguna, L.J.; Shen, Q.; Toyoda, T.; Bisquert, J. Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 2009, 20, 295204. [Google Scholar] [CrossRef]
- Abbas, M.A.; Basit, M.A.; Park, T.J.; Bang, J.H. Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction. Phys. Chem. Chem. Phys. 2015, 17, 9752–9760. [Google Scholar] [CrossRef]
- Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Meyer, E.L.; Mbese, J.Z.; Agoro, M.A. The Frontiers of Nanomaterials (SnS, PbS and CuS) for Dye-Sensitized Solar Cell Applications: An Exciting New Infrared Material. Molecules 2019, 24, 4223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Leventis, H.C.; Moon, S.-J.; Chen, P.; Ito, S.; Haque, S.A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S.M.; et al. PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells: “Old Concepts, New Results”. Adv. Funct. Mater. 2009, 19, 2735–2742. [Google Scholar] [CrossRef]
- Hardin, B.E.; Hoke, E.T.; Armstrong, P.B.; Yum, J.H.; Comte, P.; Torres, T.; Fréchet, J.M.; Nazeeruddin, M.K.; Grätzel, M.; McGehee, M.D. Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nat. Photonics 2009, 3, 406. [Google Scholar] [CrossRef]
- Shankar, K.; Feng, X.; Grimes, C.A. Enhanced Harvesting of Red Photons in Nanowire Solar Cells: Evidence of Resonance Energy Transfer. ACS Nano 2009, 3, 788–794. [Google Scholar] [CrossRef]
- Shalom, M.; Albero, J.; Tachan, Z.; Martinez-Ferrero, E.; Zaban, A.; Palomares, E.J. Quantum Dot−Dye Bilayer-Sensitized Solar Cells: Breaking the Limits Imposed by the Low Absorbance of Dye Monolayers. J. Phys. Chem. Lett. 2010, 1, 1134–1138. [Google Scholar] [CrossRef]
- Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002, 298, 2176–2179. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Peng, Q.; Li, Y. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Wang, D.; Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. [Google Scholar] [CrossRef] [PubMed]
- Soliwoda, K.; Tomaszewska, E.; Tkacz-Szczesna, B.; Mackiewicz, E.; Rosowski, M.; Bald, A.; Blanck, C.; Schmutz, M.; Novak, J.; Schreiber, F.; et al. Effect of the Alkyl Chain Length of Secondary Amines on the Phase Transfer of Gold Nanoparticles from Water to Toluene. Langmuir 2014, 30, 6684–6693. [Google Scholar] [CrossRef] [PubMed]
- Barman, S.R.; Nain, A.; Jain, S.; Punjabi, N.; Mukherji, S.; Satija, J. Dendrimer as a multifunctional capping agent for metal nanoparticles for use in bioimaging, drug delivery and sensor applications. J. Mater. Chem. B 2018, 6, 2368–2384. [Google Scholar] [CrossRef]
- Gulati, S.; Sachdeva, M.; Bhasin, K.K. Capping agents in nanoparticle synthesis: Surfactant and solvent system. AIP Conf. Proc. 2018, 1953, 030214. [Google Scholar]
- Mbese, J.Z.; Ajibade, P.A.; Matebese, F.; Agoro, M.A. Optical and Structural Properties of TOPO/HDA Capped CuS Nanocrystals via Thermal Decomposition of Bis(N-Diisopropyldithiocarbamate)Cu(II) Complex. J. Nano Res. 2019, 59, 161–165. [Google Scholar] [CrossRef]
- Meher, S.K.; Justin, P.; Rao, G.R. Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis. Nanoscale 2011, 3, 683–692. [Google Scholar] [CrossRef]
- Patil, A.; Lokhande, A.; Shinde, P.; Shelke, H.; Lokhande, C. Electrochemical supercapacitor properties of SnS thin films deposited by low-cost chemical bath deposition route. Int. J. Eng. 2017, 10, 914–922. [Google Scholar]
- Wang, L.; Gu, X.; Zhao, Y.; Qiang, Y.; Huang, C.; Song, J. Preparation of ZnO/ZnS thin films for enhancing the photoelectrochemical performance of ZnO. Vacuum 2018, 148, 201–205. [Google Scholar] [CrossRef]
- Kafashan, H. Optoelectronic properties of In-doped SnS thin films. Ceram. Int. 2019, 45, 334–345. [Google Scholar] [CrossRef]
- Kafashan, H.; Azizieh, M.; Balak, Z. Electrochemical synthesis of nanostructured Se-doped SnS: Effect of Se-dopant on surface characterizations. Appl. Surf. Sci. 2017, 410, 186–195. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, C.-Y.; Liu, C.-W.; Chang, H.-T. Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells. Chem. Commun. 2010, 46, 5485. [Google Scholar] [CrossRef] [PubMed]
- Meyer, E.L.; Mbese, J.Z.; Agoro, M.A.; Taziwa, R. Optical and structural-chemistry of SnS nanocrystals prepared by thermal decomposition of bis(N-di-isopropyl-N-octyl dithiocarbamato)tin(II) complex for promising materials in solar cell applications. Opt. Quantum Electron. 2020, 52, 90. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Wang, N.; Yang, X.H.; Fang, W.Q.; Zhang, B.; Wang, H.F.; Lu, G.Z.; Hu, P.; Zhao, H.; Yang, H.G. Rational screening low-cost counter electrodes for dye-sensitized solar cells. Nat. Commun. 2013, 4, 1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-G.; Wei, H.-Y.; Ho, K.-C. Using modified poly(3,4-ethylene dioxythiophene): Poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 1472–1477. [Google Scholar] [CrossRef]
- Reddy, V.R.M.; Gedi, S.; Park, C.; Miles, R.W.; Reddy, K.T.R. Development of sulphurized SnS thin film solar cells. Curr. Appl. Phys. 2015, 15, 588–598. [Google Scholar] [CrossRef]
- Pan, J.; Li, J.Y.; Xiong, S.L.; Qian, Y. Ultrasonically Assisted Synthesis of Tin Sulfide Nanorods at Room Temperature. Adv. Mater. Res. 2009, 79, 313–316. [Google Scholar] [CrossRef]
- Jain, P.; Arun, P. Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films 2013, 548, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Caskey, C.M.; Holder, A.; Shulda, S.; Christensen, S.T.; Diercks, D.; Schwartz, C.P.; Biagioni, D.; Nordlund, D.; Kukliansky, A.; Natan, A.; et al. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures. J. Chem. Phys. 2016, 144, 144201. [Google Scholar] [CrossRef]
Dye | Photoanode | Electrolyte | CEs | JSC (mA/cm2) | VOC (mV) | FF | η (%) |
---|---|---|---|---|---|---|---|
SnS/HDA | TiO2 | HI-30 | Pt | 10.99 | 0.423 | 0.27 | 1.25 |
SnS | TiO2 | HI-30 | Pt | 1.802 | 0.375 | 0.63 | 0.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbese, J.Z.; Meyer, E.L.; Agoro, M.A. Electrochemical Performance of Photovoltaic Cells Using HDA Capped-SnS Nanocrystal from bis (N-1,4-Phenyl-N-Morpho-Dithiocarbamato) Sn(II) Complexes. Nanomaterials 2020, 10, 414. https://doi.org/10.3390/nano10030414
Mbese JZ, Meyer EL, Agoro MA. Electrochemical Performance of Photovoltaic Cells Using HDA Capped-SnS Nanocrystal from bis (N-1,4-Phenyl-N-Morpho-Dithiocarbamato) Sn(II) Complexes. Nanomaterials. 2020; 10(3):414. https://doi.org/10.3390/nano10030414
Chicago/Turabian StyleMbese, Johannes Z., Edson L. Meyer, and Mojeed A. Agoro. 2020. "Electrochemical Performance of Photovoltaic Cells Using HDA Capped-SnS Nanocrystal from bis (N-1,4-Phenyl-N-Morpho-Dithiocarbamato) Sn(II) Complexes" Nanomaterials 10, no. 3: 414. https://doi.org/10.3390/nano10030414
APA StyleMbese, J. Z., Meyer, E. L., & Agoro, M. A. (2020). Electrochemical Performance of Photovoltaic Cells Using HDA Capped-SnS Nanocrystal from bis (N-1,4-Phenyl-N-Morpho-Dithiocarbamato) Sn(II) Complexes. Nanomaterials, 10(3), 414. https://doi.org/10.3390/nano10030414