Porous Si Microparticles Infiltrated with Magnetic Nanospheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. pSi Fabrication and Carboxyl Functionalization
2.2. Samples Characterization
2.3. SPIONs Infiltration within the pSi-COOH Microparticles
3. Results and Discussion
3.1. SPIONs Characterization and Functionalization
3.2. pSi-SPIONs Structural Properties
3.3. pSi-SPIONs Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Canham, L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048. [Google Scholar] [CrossRef]
- Savage, D.J.; Liu, X.; Curley, S.A.; Ferrari, M.; Serda, R.E. Porous silicon advances in drug delivery and immunotherapy. Curr. Opin. Pharmacol. 2013, 13, 834–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.-W.; Lin, V.S.-Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278–1288. [Google Scholar] [CrossRef] [PubMed]
- Secret, E.; Maynadier, M.; Gallud, A.; Chaix, A.; Bouffard, E.; Gary-Bobo, M.; Marcotte, N.; Mongin, O.; Cheikh, K.E.; Hugues, V.; et al. Two-Photon Excitation of Porphyrin-Functionalized Porous Silicon Nanoparticles for Photodynamic Therapy. Adv. Mater. 2014, 26, 7643–7648. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009, 8, 331–336. [Google Scholar] [CrossRef]
- Wang, C.-F.; Sarparanta, M.P.; Mäkilä, E.M.; Hyvönen, M.L.K.; Laakkonen, P.M.; Salonen, J.J.; Hirvonen, J.T.; Airaksinen, A.J.; Santos, H.A. Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials 2015, 48, 108–118. [Google Scholar] [CrossRef]
- Martín-Palma, R.J.; Hernández-Montelongo, J.; Torres-Costa, V.; Manso-Silván, M.; Muñoz-Noval, Á. Nanostructured porous silicon-mediated drug delivery. Expert Opin. Drug Deliv. 2014, 11, 1273–1283. [Google Scholar] [CrossRef]
- Hong, C.; Lee, J.; Zheng, H.; Hong, S.-S.; Lee, C. Porous silicon nanoparticles for cancer photothermotherapy. Nanoscale Res. Lett. 2011, 6, 321. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Gu, L.; Howell, S.B.; Sailor, M.J. Porous Silicon Nanoparticle Photosensitizers for Singlet Oxygen and Their Phototoxicity against Cancer Cells. ACS Nano 2011, 5, 3651–3659. [Google Scholar] [CrossRef]
- Henstock, J.R.; Canham, L.T.; Anderson, S.I. Silicon: The evolution of its use in biomaterials. Acta Biomater. 2015, 11, 17–26. [Google Scholar] [CrossRef]
- Parkhutik, V. Porous silicon—mechanisms of growth and applications. Solid State Electron. 1999, 43, 1121–1141. [Google Scholar] [CrossRef]
- Nash, K.J.; Calcott, P.D.J.; Canham, L.T.; Kane, M.J.; Brumhead, D. The origin of efficient luminescence in highly porous silicon. J. Lumin. 1994, 60–61, 297–301. [Google Scholar] [CrossRef]
- Ghafarinazzari, A.; Paterlini, V.; Cortelletti, P.; Bettotti, P.; Scarpa, M.; Daldosso, N. Optical Study of Diamine Coupling on Carboxyl-Functionalized Mesoporous Silicon. J. Nanosci. Nanotechnol. 2017, 17, 1240–1246. [Google Scholar] [CrossRef]
- Chistè, E.; Ischia, G.; Scarpa, M.; Daldosso, N. Ultrasonication effect on size distribution of functionalized porous silicon microparticles. Mater. Res. Express 2019, 6, 075006. [Google Scholar] [CrossRef]
- Ghafarinazari, A.; Scarpa, M.; Zoccatelli, G.; Franchini, M.C.; Locatelli, E.; Daldosso, N. Hybrid luminescent porous silicon for efficient drug loading and release. RSC Adv. 2017, 7, 6724–6734. [Google Scholar] [CrossRef] [Green Version]
- Chistè, E.; Ghafarinazari, A.; Donini, M.; Cremers, V.; Dendooven, J.; Detavernier, C.; Benati, D.; Scarpa, M.; Dusi, S.; Daldosso, N. TiO2-coated luminescent porous silicon micro-particles as a promising system for nanomedicine. J. Mater. Chem. B 2018, 6, 1815–1824. [Google Scholar] [CrossRef]
- Stephen, Z.R.; Kievit, F.M.; Zhang, M. Magnetite nanoparticles for medical MR imaging. Mater. Today 2011, 14, 330–338. [Google Scholar] [CrossRef]
- McCarthy, J.R.; Weissleder, R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 2008, 60, 1241–1251. [Google Scholar] [CrossRef] [Green Version]
- Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 2004, 14, 2161–2175. [Google Scholar] [CrossRef]
- Serda, R.E.; Adolphi, N.L.; Bisoffi, M.; Sillerud, L.O. Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol. Imaging 2007, 6, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Weissleder, R.; Hahn, P.F.; Stark, D.D.; Rummeny, E.; Saini, S.; Wittenberg, J.; Ferrucci, J.T. MR imaging of splenic metastases: Ferrite-enhanced detection in rats. AJR Am. J. Roentgenol 1987, 149, 723–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandasamy, G.; Maity, D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J. Pharm. 2015, 496, 191–218. [Google Scholar] [CrossRef] [PubMed]
- Roch, A.; Muller, R.N.; Gillis, P. Theory of proton relaxation induced by superparamagnetic particles. J. Chem. Phys. 1999, 110, 5403–5411. [Google Scholar] [CrossRef]
- Bacon, B.R.; Stark, D.D.; Park, C.H.; Saini, S.; Groman, E.V.; Hahn, P.F.; Compton, C.C.; Ferrucci, J.T. Ferrite particles: A new magnetic resonance imaging contrast agent. Lack of acute or chronic hepatotoxicity after intravenous administration. J. Lab. Clin. Med. 1987, 110, 164–171. [Google Scholar] [PubMed]
- Gu, L.; Park, J.-H.; Duong, K.H.; Ruoslahti, E.; Sailor, M.J. Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small 2010, 6, 2546–2552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, Q.; Lu, X.; Yuan, Y.; Qian, J.; Zhou, H.; Lu, X.; Shi, J.; Liu, C. A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica. Biomaterials 2011, 32, 1932–1942. [Google Scholar] [CrossRef]
- Gabizon, A.; Shmeeda, H.; Horowitz, A.T.; Zalipsky, S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv. Drug Deliv. Rev. 2004, 56, 1177–1192. [Google Scholar] [CrossRef]
- Daldosso, N.; Ghafarinazari, A.; Cortelletti, P.; Marongiu, L.; Donini, M.; Paterlini, V.; Bettotti, P.; Guider, R.; Froner, E.; Dusi, S.; et al. Orange and blue luminescence emission to track functionalized porous silicon microparticles inside the cells of the human immune system. J. Mater. Chem. B 2014, 2, 6345–6353. [Google Scholar] [CrossRef]
- Lion, A.; Laidani, N.; Bettotti, P.; Piotto, C.; Pepponi, G.; Barozzi, M.; Scarpa, M. Angle resolved XPS for selective characterization of internal and external surface of porous silicon. Appl. Surf. Sci. 2017, 406, 144–149. [Google Scholar] [CrossRef]
- Joseph, J.; Mishra, N.; Mehto, V.R.; Banerjee, A.; Pandey, R.K. Structural, optical and magnetic characterisation of bifunctional core shell nanostructure of Fe3O4/CdS synthesised using a room temperature aqueous route. J. Exp. Nanosci. 2014, 9, 807–817. [Google Scholar] [CrossRef]
- Souza, T.G.F.; Ciminelli, V.S.T.; Mohallem, N.D.S. A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. J. Phys. Conf. Ser. 2016, 733, 012039. [Google Scholar] [CrossRef] [Green Version]
- Canham, L. (Ed.) Handbook of Porous Silicon; Springer International Publishing Switzerland: Basel, Switzerland, 2014; ISBN 978-3-319-05744-6. [Google Scholar]
- Rohrer, M.; Bauer, H.; Mintorovitch, J.; Requardt, M.; Weinmann, H.-J. Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths. Investig. Radiol. 2005, 40, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Legros, P.; Chevallier, P.; Lagueux, J.; Oh, J.K.; Fortin, M.-A. Superparamagnetic Iron Oxide Nanoparticles Stabilized with Multidentate Block Copolymers for Optimal Vascular Contrast in T1-Weighted Magnetic Resonance Imaging. ACS Appl. Nano Mater. 2018, 1, 894–907. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chistè, E.; Ischia, G.; Gerosa, M.; Marzola, P.; Scarpa, M.; Daldosso, N. Porous Si Microparticles Infiltrated with Magnetic Nanospheres. Nanomaterials 2020, 10, 463. https://doi.org/10.3390/nano10030463
Chistè E, Ischia G, Gerosa M, Marzola P, Scarpa M, Daldosso N. Porous Si Microparticles Infiltrated with Magnetic Nanospheres. Nanomaterials. 2020; 10(3):463. https://doi.org/10.3390/nano10030463
Chicago/Turabian StyleChistè, Elena, Gloria Ischia, Marco Gerosa, Pasquina Marzola, Marina Scarpa, and Nicola Daldosso. 2020. "Porous Si Microparticles Infiltrated with Magnetic Nanospheres" Nanomaterials 10, no. 3: 463. https://doi.org/10.3390/nano10030463
APA StyleChistè, E., Ischia, G., Gerosa, M., Marzola, P., Scarpa, M., & Daldosso, N. (2020). Porous Si Microparticles Infiltrated with Magnetic Nanospheres. Nanomaterials, 10(3), 463. https://doi.org/10.3390/nano10030463