Modeling of Complex Interfaces: From Surface Chemistry to Nano Chemistry
Funding
Acknowledgments
Conflicts of Interest
References
- Wei, B.; Tielens, F.; Calatayud, M. Understanding the role of rutile TiO2 surface orientation on molecular hydrogen activation. Nanomaterials 2019, 9, 1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hessou, E.P.; Ponce-Vargas, M.; Mensah, J.B.; Tielens, F.; Santos, J.C.; Badawi, M. Dibenzyl disulfide adsorption on cationic exchanged faujasites: A DFT study. Nanomaterials 2019, 9, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heijmans, K.; Pathak, A.D.; Solano-López, P.; Giordano, D.; Nedea, S.; Smeulders, D. Thermal boundary characteristics of homo-/heterogeneous interfaces. Nanomaterials 2019, 9, 663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, J.E.; Summers, A.Z.; Iacovella, C.R.; Cummings, P.T.; McCabe, C. Investigation of the impact of cross-polymerization on the structural and frictional properties of alkylsilane monolayers using molecular simulation. Nanomaterials 2019, 9, 639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, L.; Guo, H.; Zhang, Y.; Hu, Y.; Zhang, Y. Raman study of strain relaxation from grain boundaries in epitaxial graphene grown by chemical vapor deposition on SiC. Nanomaterials 2019, 9, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Kwon, S.H.; Kwon, S.; Cho, M.; Kim, K.H.; Han, T.H.; Lee, S.G. Tunable electronic properties of nitrogen and sulfur doped graphene: Density functional theory approach. Nanomaterials 2019, 9, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Lu, B.; Zhang, Y.; Zhang, Y.; Lv, Z. Drain current model for double gate tunnel-FETs with InAs/Si heterojunction and source-pocket architecture. Nanomaterials 2019, 9, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onwudinanti, C.; Tranca, I.; Morgan, T.; Tao, S. Tin, the enabler—Hydrogen diffusion into ruthenium. Nanomaterials 2019, 9, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friák, M.; Holec, D.; Šob, M. Quantum-mechanical study of nanocomposites with low and ultra-low interface energies. Nanomaterials 2018, 8, 1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chorfi, H.; Lobato, Á.; Boudjada, F.; Salvadó, M.A.; Franco, R.; Baonza, V.G.; Recio, J.M. Computational modeling of tensile stress effects on the structure and stability of prototypical covalent and layered materials. Nanomaterials 2019, 9, 1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vekeman, J.; Tielens, F. Modeling of Complex Interfaces: From Surface Chemistry to Nano Chemistry. Nanomaterials 2020, 10, 540. https://doi.org/10.3390/nano10030540
Vekeman J, Tielens F. Modeling of Complex Interfaces: From Surface Chemistry to Nano Chemistry. Nanomaterials. 2020; 10(3):540. https://doi.org/10.3390/nano10030540
Chicago/Turabian StyleVekeman, Jelle, and Frederik Tielens. 2020. "Modeling of Complex Interfaces: From Surface Chemistry to Nano Chemistry" Nanomaterials 10, no. 3: 540. https://doi.org/10.3390/nano10030540
APA StyleVekeman, J., & Tielens, F. (2020). Modeling of Complex Interfaces: From Surface Chemistry to Nano Chemistry. Nanomaterials, 10(3), 540. https://doi.org/10.3390/nano10030540