Mesoporous Bioactive Glass Combined with Graphene Oxide Quantum Dot as a New Material for a New Treatment Option for Dentin Hypersensitivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Spherical Nanoparticle of Mesoporous Bioactive Glass (MBN)
2.2. Synthesis of Spherical Nanoparticle of Graphene Oxide Quantum Dot Coated Mesoporous Bioactive Glass (MBN@GOQD)
2.3. Characterization of Composite Materials
2.4. In Vitro Mineralization Ability and Ion Releasing Test
2.5. Dentinal Tubule Sealing
3. Results
3.1. Sample Characterization
3.1.1. Mesoporous Bioactive Glass Nanoparticles (MBN) and Graphene Oxide Quantum Dots (GOQD)
3.1.2. Graphene Oxide Quantum Dots Coated Mesoporous Bioactive Glass Nanoparticles (MBN@GOQD)
3.2. In Vitro Ion Dissolution Test
3.3. In Vitro Mineralization Ability Test
3.3.1. XRD Analysis
3.3.2. FT-IR Analysis
3.3.3. In Vitro Bioactivity and HAp Formation Process of MBN and MBN@GOQD
3.4. Dentinal Tubule Sealing
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brännstrom, M.; Astrom, A. A study on the mechanism of pain elicited from the dentin. J. Dent. Res. 1964, 43, 619–625. [Google Scholar] [CrossRef]
- Jung, J.H.; Park, S.B.; Yoo, K.H.; Yoon, S.Y.; Bae, M.K.; Lee, D.J.; Kwon, Y.H.; Kim, Y.I. Effect of different sizes of bioactive glass-coated mesoporous silica nanoparticles on dentinal tubule occlusion and mineralization. Clin. Oral Investig. 2019, 23, 2129–2141. [Google Scholar] [CrossRef] [PubMed]
- Addy, M.; Mostafa, P.; Newcombe, R.G. Dentine hypersensitivity: The distribution of recession, sensitivity and plaque. J. Dent. 1987, 15, 242–248. [Google Scholar] [CrossRef]
- Hack, G.D.; Thompson, V.P. Occlusion of dentinal tubules with cavity varnishes. Arch. Oral Biol. 1994, 39, S149. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, X.; Jiang, T.; Wang, Y.; Feng, Y.; Li, R. The dentin tubule occlusion effects of desensitizing agents and the stability against acids and brushing challenges. Am. J. Dent. 2015, 28, 128–132. [Google Scholar] [PubMed]
- Hench, L.L.; Paschall, H. Direct chemical bond of bioactive glass ceramic materials to bone and muscle. J. Biomed. Mater. Res. 1973, 7, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Oonishi, H.; Hench, L.L.; Wilson, J.; Sugihara, F.; Tsuji, E.; Matsuura, M.; Kin, S.; Yamamoto, T.; Mizokawa, S. Quantitative comparison of bone growth behavior in granules of Bioglass, A-W glass-ceramic, and hydroxyapatite. J. Biomed. Mater. Res. 2000, 51, 37–46. [Google Scholar] [CrossRef]
- Xynos, I.D.; Hukkanen, M.V.; Batten, J.J.; Buttery, L.D.; Hench, L.L.; Polak, J.M. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering. Calcif Tissue Int. 2000, 67, 321–329. [Google Scholar] [CrossRef]
- Xynos, I.D.; Hukkanen, M.V.; Batten, J.J.; Buttery, L.D.; Hench, L.L.; Polak, J.M. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J. Biomed. Mater. Res. 2001, 55, 151–157. [Google Scholar] [CrossRef]
- Roether, J.A.; Boccaccini, A.R.; Hench, L.L.; Maquet, V.; Gautier, S.; Jérĵme, R. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. Biomaterials 2002, 23, 3871–3878. [Google Scholar] [CrossRef]
- Chen, W.C. Phosphorus effects of mesoporous bioactive glass on occlude exposed dentin. Materials 2013, 19, 5335–5351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houreh, A.B.; Labbaf, S.; Ting, H.K.; Ejeian, F.; Jones, J.R.; Esfahani, M.H.N. Influence of calcium and phosphorus release from bioactive glasses on viability and differentiation of dental pulp stem cells. J. Mater. Sci. 2017, 52, 8928–8941. [Google Scholar] [CrossRef]
- Bae, J.; Son, W.S.; Yoo, K.H.; Yoon, S.Y.; Bae, M.K.; Lee, D.J.; Ko, C.C.; Choi, Y.K.; Kim, Y.I. Effect of poly(amidoamine) dendrimer-coated mesoporous bioactive glass nanoparticles on dentin reminderalization. Nanomaterials 2019, 9, 591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forsback, A.P.; Areva, S.; Salonen, J.I. Mineralization of dentin induced by treatment with bioactive glass S53P4 in vitro. Acta Odontol. Scand. 2004, 62, 14–20. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, M.S.; Mahapatra, C.; Kim, H.W. Effect of aminated mesoporous bioactive glass nanoparticles on the differentiation of dental pulp stem cells. PLoS ONE 2016, 11, e01507727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathan, A.B.; Bolla, N.; Kavuri, S.R.; Sunil, C.R.; Damaraju, B.; Pattan, S.K. Ability of three desensitizing agents in dentinal tubule obliteration and durability: An in vitro study. J. Conserv. Dent. 2016, 19, 31–36. [Google Scholar] [CrossRef]
- Chen, W.C.; Kung, J.C.; Chen, C.H.; Hsiao, Y.C.; Shih, C.J.; Chien, C.S. Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion. Appl. Surf. Sci. 2013, 283, 833–842. [Google Scholar] [CrossRef]
- Yu, J.; Yang, H.; Li, K.; Lei, J.; Zhou, L.; Huang, C. A novel application of nanohydroxyapatite/mesoporous silica biocomposite on treating dentin hypersensitivity: An in vitro study. J. Dent. 2016, 50, 21–29. [Google Scholar] [CrossRef]
- Kim, F.; Cote, L.J.; Huang, J. Graphene oxide: Surface activity and two-dimensional assembly. Adv. Mater. 2010, 22, 1954–1958. [Google Scholar] [CrossRef]
- Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO. ISO DOCUMENT 23317. In Implants for Surgery: In Vitro Evaluation for Apatite-Forming Ability of Implant Materials; International Organization for Standardization: Geneva, Switzerland, 2007. [Google Scholar]
- Radev, L.; Vladov, D.; Michailova, I.; Cholakova, E.; Fernandes, M.F.V.; Salvado, I.M.M. In vitro bioactivity of polycaprolactone/bioglass composites. Int. J. Mater. Chem. 2013, 3, 91–98. [Google Scholar]
- Simpson, L.J. Electrochemically generated CaCO3 deposits on iron studied with FTIR and Raman spectroscopy. Electrochim. Acta 1998, 43, 2543–2547. [Google Scholar] [CrossRef]
- Shih, S.J.; Hong, B.J.; Lin, Y.C. Novel graphene oxide-containing antibacterial mesoporous bioactive glass. Ceram. Int. 2017, 43, S784–S788. [Google Scholar] [CrossRef]
- Li, R.; Clark, A.E.; Hench, L.L. An Investigation of Bioactive Glass Powders by Sol-Gel Processing. J. Appl. Biomater. 1991, 2, 231–239. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, J.; Chen, F.; Bai, D.; Shao, C.; Wang, J.; Xi, P.; Zheng, Z. Gelatin functionalized graphene oxide for mineralization of hydroxyapatite: Biomimetic and in vitro evaluation. Nanoscale 2014, 6, 5315–5322. [Google Scholar] [CrossRef]
- Ilyas, K.; Zahid, S.; Batool, M.; Chaudhry, A.A.; Jamal, A.; Iqbal, F.; Nawaz, M.H.; Goerke, O.; Gurlo, A.; Shah, A.T.; et al. In-vitro investigation of graphene oxide reinforced bioactive glass ceramics composites. J. Non-Cryst. Solids 2019, 505, 122–130. [Google Scholar] [CrossRef]
- Groh, D.; Döhler, F.; Brauer, D.S. Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation. Acta Biomater. 2014, 10, 4465–4473. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, S.-A.; Kim, D.-H.; Yoo, K.-H.; Yoon, S.-Y.; Kim, Y.-I. Mesoporous Bioactive Glass Combined with Graphene Oxide Quantum Dot as a New Material for a New Treatment Option for Dentin Hypersensitivity. Nanomaterials 2020, 10, 621. https://doi.org/10.3390/nano10040621
Son S-A, Kim D-H, Yoo K-H, Yoon S-Y, Kim Y-I. Mesoporous Bioactive Glass Combined with Graphene Oxide Quantum Dot as a New Material for a New Treatment Option for Dentin Hypersensitivity. Nanomaterials. 2020; 10(4):621. https://doi.org/10.3390/nano10040621
Chicago/Turabian StyleSon, Sung-Ae, Dong-Hyun Kim, Kyung-Hyeon Yoo, Seog-Young Yoon, and Yong-Il Kim. 2020. "Mesoporous Bioactive Glass Combined with Graphene Oxide Quantum Dot as a New Material for a New Treatment Option for Dentin Hypersensitivity" Nanomaterials 10, no. 4: 621. https://doi.org/10.3390/nano10040621
APA StyleSon, S. -A., Kim, D. -H., Yoo, K. -H., Yoon, S. -Y., & Kim, Y. -I. (2020). Mesoporous Bioactive Glass Combined with Graphene Oxide Quantum Dot as a New Material for a New Treatment Option for Dentin Hypersensitivity. Nanomaterials, 10(4), 621. https://doi.org/10.3390/nano10040621