Internalization of Metal–Organic Framework Nanoparticles in Human Vascular Cells: Implications for Cardiovascular Disease Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Chemical Analysis of NanoMIL-89
2.2. Cell Lines
2.3. Cell Culture
2.4. Viability, Cytotoxicity and Cytokine Release Assays
2.5. Light Microscope Imaging and Blind Scoring
2.6. Confocal Microscope Imaging
2.7. Sample Preparation for Scanning Transmission Electron Microscope and EDS Analysis
2.8. Statistical Analysis
3. Results
3.1. Chemical Characterization of NanoMIL-89
3.2. Effects of NanoMIL-89 on Cell Viability and Toxicity
3.3. Anti-Inflammatory Effect of NanoMIL-89
3.4. Internalization and Subcellular Localization of NanoMIL-89
3.4.1. Light Microscope
3.4.2. Confocal Microscope
3.4.3. Scanning Transmission Electron Microscope and EDS Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McCarthy, J.R. Nanomedicine and cardiovascular disease. Curr. Cardiovasc. Imaging Rep. 2010, 3, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaurav, C.; Saurav, B.; Goutam, R.; Goyal, A. Nano-systems for advanced therapeutics and diagnosis of atherosclerosis. Curr. Pharm. Des. 2015, 21, 4498–4508. [Google Scholar] [CrossRef] [PubMed]
- Fymat, A.L. Recent developments in nanomedicine research. J. Nanomed. Res. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R.A.; Alves, F.; Andrews, A.M.; Ashraf, S.; Balogh, L.P.; Ballerini, L.; Bestetti, A.; Brendel, C.; et al. Diverse applications of nanomedicine. ACS Nano 2017, 11, 2313–2381. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.-A.D.; Mi, G.; Webster, T.J. A status report on FDA approval of medical devices containing nanostructured materials. Trends Biotechnol. 2019, 37, 117–120. [Google Scholar] [CrossRef] [Green Version]
- Iafisco, M.; Alogna, A.; Miragoli, M.; Catalucci, D. Cardiovascular nanomedicine: The route ahead. Nanomedicine 2019, 14, 2391–2394. [Google Scholar] [CrossRef]
- Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011, 63, 131–135. [Google Scholar] [CrossRef]
- Holback, H.; Yeo, Y. Intratumoral drug delivery with nanoparticulate carriers. Pharm. Res. 2011, 28, 1819–1830. [Google Scholar] [CrossRef]
- Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79. [Google Scholar] [CrossRef]
- Giménez, V.M.M.; Kassuha, D.E.; Manucha, W. Nanomedicine applied to cardiovascular diseases: Latest developments. Ther. Adv. Cardiovasc. Dis. 2017, 11, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, Y.; Nie, G.; Zhao, Y. Precise design of nanomedicines: Perspectives for cancer treatment. Natl. Sci. Rev. 2019. [Google Scholar] [CrossRef] [Green Version]
- Katsuki, S.; Matoba, T.; Koga, J.-I.; Nakano, K.; Egashira, K. Anti-inflammatory nanomedicine for cardiovascular disease. Front. Cardiovasc. Med. 2017, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karagkiozaki, V.; Pappa, F.; Arvaniti, D.; Moumkas, A.; Konstantinou, D.; Logothetidis, S. The melding of nanomedicine in thrombosis imaging and treatment: A review. Futur. Sci. OA 2016, 2. [Google Scholar] [CrossRef] [PubMed]
- Molinaro, R.; Boada, C.; Del Rosal, G.M.; Hartman, K.A.; Corbo, C.; Andrews, E.D.; Furman, N.T.; Cooke, J.P.; Tasciotti, E. Vascular inflammation: A novel access route for nanomedicine. Methodist Debakey Cardiovasc. J. 2016, 12, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Khaja, F.A.; Koo, O.M.; Onyüksel, H. Nanomedicines for inflammatory diseases. Methods Enzymol 2012, 508, 355–375. [Google Scholar] [CrossRef]
- Ferreira, M.; Balasubramanian, V.; Hirvonen, J.T.; Ruskoaho, H.J.; Santos, H.A. Advanced nanomedicines for the treatment and diagnosis of myocardial infarction and heart failure. Curr. Drug Targets 2015, 16, 1682–1697. [Google Scholar] [CrossRef]
- Segura-Ibarra, V.; Wu, S.; Hassan, N.; Moran-Guerrero, J.A.; Ferrari, M.; Guha, A.; Karmouty-Quintana, H.; Blanco, E. Nanotherapeutics for treatment of pulmonary arterial hypertension. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef]
- Nakamura, K.; Matsubara, H.; Akagi, S.; Sarashina, T.; Ejiri, K.; Kawakita, N.; Yoshida, M.; Miyoshi, T.; Watanabe, A.; Nishii, N.; et al. Nanoparticle-mediated drug delivery system for pulmonary arterial hypertension. J. Clin. Med. 2017, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Lan, N.S.H.; Massam, B.; Kulkarni, S.S.; Lang, C.C. Pulmonary arterial hypertension: Pathophysiology and treatment. Diseases 2018, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Humbert, M.; Guignabert, C.; Bonnet, S.; Dorfmüller, P.; Klinger, J.R.; Nicolls, M.R.; Olschewski, A.J.; Pullamsetti, S.S.; Schermuly, R.T.; Stenmark, K.R.; et al. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur. Respir. J. 2019, 53, 1801887. [Google Scholar] [CrossRef] [Green Version]
- Ghasemian, E.; Motaghian, P.; Vatanara, A. D-optimal design for preparation and optimization of fast dissolving bosentan nanosuspension. Adv. Pharm. Bull. 2016, 6, 211–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.J.; Sanders, T.A.; Tormos, K.V.; Ameri, K.; Tsai, J.D.; Park, A.M.; Gonzalez, J.; Rajah, A.M.; Liu, X.; Quinonez, D.M.; et al. ECM-dependent HIF induction directs trophoblast stem cell fate via LIMK1-mediated cytoskeletal rearrangement. PLoS ONE 2013, 8, e56949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, N.A.; Davies, R.P.; Lickiss, P.D.; Ahmetaj-Shala, B.; Reed, D.M.; Gashaw, H.H.; Saleem, H.; Freeman, G.R.; George, P.M.; Wort, S.J.; et al. Chemical and biological assessment of metal organic frameworks (MOFs) in pulmonary cells and in an acute in vivo model: Relevance to pulmonary arterial hypertension therapy. Pulm. Circ. 2017, 7, 643–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, N.A.; Saleh, H.A.; Kameno, Y.; Marei, I.; De Nucci, G.; Ahmetaj-Shala, B.; Shala, F.; Kirkby, N.S.; Jennings, L.; Davies, R.P.; et al. Metal–organic framework (MOF) nanomedicine preparations of sildenafil designed for the future treatment of pulmonary arterial hypertension. BioRxiv 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 2006. [Google Scholar] [CrossRef]
- Baati, T.; Njim, L.; Neffati, F.; Kerkeni, A.; Bouttemi, M.; Gref, R.; Najjar, M.F.; Zakhama, A.; Couvreur, P.; Serre, C.; et al. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal–organic frameworks. Chem. Sci. 2013, 4, 1597. [Google Scholar] [CrossRef]
- Yücel, G.; Zhao, Z.; El-Battrawy, I.; Lan, H.; Lang, S.; Li, X.; Buljubasic, F.; Zimmermann, W.-H.; Cyganek, L.; Utikal, J.; et al. Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes. Sci. Rep. 2017, 7, 2935. [Google Scholar] [CrossRef]
- Carenza, E.; Barceló, V.; Morancho, A.; Montaner, J.; Rosell, A.; Roig, A. Rapid synthesis of water-dispersible superparamagnetic iron oxide nanoparticles by a microwave-assisted route for safe labeling of endothelial progenitor cells. Acta Biomater. 2014, 10, 3775–3785. [Google Scholar] [CrossRef]
- World Health Organization. Factsheets, Cardiovascular Diseases (CVDs). 2017. Available online: http://www.who.int/mediacentre/factsheets/fs317/en/ (accessed on 10 March 2020).
- Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Ferey, G. Flexible porous metal–organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 2008, 130, 6774–6780. [Google Scholar] [CrossRef]
- Saeidienik, F.; Shahraki, M.R.; Fanaei, H.; Badini, F. The effects of iron oxide nanoparticles administration on depression symptoms induced by LPS in male wistar rats. Basic Clin. Neurosci. J. 2018, 9, 209–216. [Google Scholar] [CrossRef]
- Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018, 13, 339. [Google Scholar] [CrossRef] [PubMed]
- Angelikopoulos, P.; Sarkisov, L.; Cournia, Z.; Gkeka, P. Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes. Nanoscale 2017, 9, 1040–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Q.; Huang, C.; Zhang, Y.; Zhao, T.; Zhao, P.; Butler, P.; Zhang, S. Mechanotargeting: Mechanics-dependent cellular uptake of nanoparticles. Adv. Mater. 2018, 30, 1707464. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ansari, D.E.; Mohamed, N.A.; Marei, I.; Zekri, A.; Kameno, Y.; Davies, R.P.; Lickiss, P.D.; Rahman, M.M.; Abou-Saleh, H. Internalization of Metal–Organic Framework Nanoparticles in Human Vascular Cells: Implications for Cardiovascular Disease Therapy. Nanomaterials 2020, 10, 1028. https://doi.org/10.3390/nano10061028
Al-Ansari DE, Mohamed NA, Marei I, Zekri A, Kameno Y, Davies RP, Lickiss PD, Rahman MM, Abou-Saleh H. Internalization of Metal–Organic Framework Nanoparticles in Human Vascular Cells: Implications for Cardiovascular Disease Therapy. Nanomaterials. 2020; 10(6):1028. https://doi.org/10.3390/nano10061028
Chicago/Turabian StyleAl-Ansari, Dana E., Nura A. Mohamed, Isra Marei, Atef Zekri, Yu Kameno, Robert P. Davies, Paul D. Lickiss, Md Mizanur Rahman, and Haissam Abou-Saleh. 2020. "Internalization of Metal–Organic Framework Nanoparticles in Human Vascular Cells: Implications for Cardiovascular Disease Therapy" Nanomaterials 10, no. 6: 1028. https://doi.org/10.3390/nano10061028
APA StyleAl-Ansari, D. E., Mohamed, N. A., Marei, I., Zekri, A., Kameno, Y., Davies, R. P., Lickiss, P. D., Rahman, M. M., & Abou-Saleh, H. (2020). Internalization of Metal–Organic Framework Nanoparticles in Human Vascular Cells: Implications for Cardiovascular Disease Therapy. Nanomaterials, 10(6), 1028. https://doi.org/10.3390/nano10061028