In-Situ Biofabrication of Silver Nanoparticles in Ceiba pentandra Natural Fiber Using Entada spiralis Extract with Their Antibacterial and Catalytic Dye Reduction Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Chemicals
2.2. Alkaline Treatment of C. pentandra Fiber
2.3. In-Situ Biofabrication of Treated C. pentandra Fiber with Ag-NPs
2.4. Characterization Studies of Untreated C. pentandra Fiber, Treated C. pentandra Fiber and C. pentandra/Ag-NPs
2.5. Silver Content Analysis and Silver Ions Release of C. pentandra/Ag-NPs
2.6. Antibacterial Application
2.6.1. Antibacterial Disk Diffusion Assay
2.6.2. Percentage of Bacterial Growth Inhibition
2.6.3. Statistical Analysis
2.7. Catalytic Dye Reduction Application
3. Results and Discussion
3.1. Characterization Studies of Alkaline Treated C. pentandra Fiber
3.2. In-Situ Biofabrication of Ag-NPs in C. pentandra Fiber(C. pentandra/Ag-NPs)
3.3. Characterization Studies of C. pentandra/Ag-NPs
3.3.1. UV-vis Spectroscopy Analysis
3.3.2. XRD Analysis
3.3.3. FETEM and SAED Pattern Analyses
3.3.4. SEM and EDX Analyses
3.3.5. TGA Analysis
3.3.6. FTIR Analysis
3.4. Silver Content Analysis in C. pentandra/Ag-NPs
3.5. Silver Ions Release of C. pentandra/Ag-NPs
3.6. Antibacterial Application
3.6.1. Antibacterial Disk Diffusion Assay
3.6.2. Percentage of Bacterial Growth Inhibition
3.7. Catalytic Dye Reduction Application
3.7.1. Rhodamine B Dye
3.7.2. Methylene Blue Dye
3.7.3. Kinetic Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shankar, S.; Rhim, J.W. Facile approach for large-scale production of metal and metal oxide nanoparticles and preparation of antibacterial cotton pads. Carbohydr. Polym. 2017, 163, 137–145. [Google Scholar] [CrossRef]
- Jeong, S.H.; Yeo, S.Y.; Yi, S.C. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J. Mater. Sci. 2005, 40, 5407–5411. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Messih, M.F.A.; El-Sherbeny, E.F.; El-Hafez, S.F.; Khalifa, A.M.M. Synthesis of metallic silver nanoparticles decorated mesoporous SnO2 for removal of methylene blue dye by coupling adsorption and photocatalytic processes. J. Photochem. Photobiol. A Chem. 2017, 346, 77–88. [Google Scholar] [CrossRef]
- Ahmad, A.; Wei, Y.; Syed, F.; Tahir, K.; Rehman, A.U.; Khan, A.; Ullah, S.; Yuan, Q. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microb. Pathog. 2017, 102, 133–142. [Google Scholar] [CrossRef]
- Chouhan, N.; Ameta, R.; Meena, R.K. Biogenic silver nanoparticles from Trachyspermum ammi (Ajwain) seeds extract for catalytic reduction of p-nitrophenol to p-aminophenol in excess of NaBH4. J. Mol. Liq. 2017, 230, 74–84. [Google Scholar] [CrossRef]
- Varadavenkatesan, T.; Selvaraj, R.; Vinayagam, R. Phyto-synthesis of silver nanoparticles from Mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye. J. Mol. Liq. 2016, 221, 1063–1070. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Nicoletti, F.; Vitale, G.; Prestipino, M.; Valenza, A. A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Compos. Part B Eng. 2016, 85, 150–160. [Google Scholar] [CrossRef]
- Ramesh, M.; Palanikumar, K.; Reddy, K.H. Plant fibre based bio-composites: Sustainable and renewable green materials. Renew. Sustain. Energy Rev. 2017, 79, 558–584. [Google Scholar] [CrossRef]
- Dong, B.H.; Hinestroza, J.P. Metal nanoparticles on natural cellulose fibers: Electrostatic assembly and in situ synthesis. ACS Appl. Mater. Interfaces 2009, 1, 797–803. [Google Scholar] [CrossRef]
- Xu, S.; Chen, S.; Zhang, F.; Jiao, C.; Song, J.; Chen, Y.; Lin, H.; Gotoh, Y.; Morikawa, H. Preparation and controlled coating of hydroxyl-modified silver nanoparticles on silk fibers through intermolecular interaction-induced self-assembly. Mater. Des. 2016, 95, 107–118. [Google Scholar] [CrossRef]
- Ravindra, S.; Murali Mohan, Y.; Narayana Reddy, N.; Mohana Raju, K. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Colloids Surf. A Physicochem. Eng. Asp. 2010, 367, 31–40. [Google Scholar] [CrossRef]
- Tye, Y.Y.; Lee, K.T.; Wan Abdullah, W.N.; Leh, C.P. Potential of Ceiba pentandra (L.) Gaertn. (kapok) fiber as a resource for second generation bioethanol: Parametric optimization and comparative study of various pretreatments prior enzymatic saccharification for sugar production. Bioresour. Technol. 2012, 116, 536–539. [Google Scholar] [CrossRef]
- Sivaranjana, P.; Nagarajan, E.R.; Rajini, N.; Jawaid, M.; Rajulu, A.V. Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as a reducing agent. Int. J. Biol. Macromol. 2017, 99, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Wan Mat Khalir, W.K.A.; Shameli, K.; Miyake, M.; Othman, N.A.N.A. Efficient one-pot biosynthesis of silver nanoparticles using Entada spiralis stem powder extraction. Res. Chem. Intermed. 2018, 44, 7013–7028. [Google Scholar] [CrossRef]
- Rehan, M.; Barhoum, A.; Van Assche, G.; Dufresne, A.; Gätjen, L.; Wilken, R. Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics. Int. J. Biol. Macromol. 2017, 98, 877–886. [Google Scholar] [CrossRef]
- Hussain, M.; Zahoor, T.; Akhtar, S.; Ismail, A.; Hameed, A. Thermal stability and haemolytic effects of depolymerized guar gum derivatives. J. Food Sci. Technol. 2018, 55, 1047–1055. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, H.; Wang, Y.; Yang, G.; Zhao, H.; Sun, D. Fabrication and durable antibacterial properties of 3D porous wet electrospun RCSC/PCL nanofibrous scaffold with silver nanoparticles. Appl. Surf. Sci. 2017, 414, 52–62. [Google Scholar] [CrossRef]
- Liu, G.; Haiqi, G.; Li, K.; Xiang, J.; Lan, T.; Zhang, Z. Fabrication of silver nanoparticle sponge leather with durable antibacterial property. J. Colloid Interface Sci. 2018, 51, 4338–4348. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Al-Mulla, E.A.J.; Shabanzadeh, P. Antibacterial effect of silver nanoparticles on talc composites. Res. Chem. Intermed. 2015, 41, 251–263. [Google Scholar] [CrossRef]
- Joseph, S.; Mathew, B. Facile synthesis of silver nanoparticles and their application in dye degradation. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2015, 195, 90–97. [Google Scholar] [CrossRef]
- Vidhu, V.K.; Philip, D. Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 2014, 56, 54–62. [Google Scholar] [CrossRef]
- Qing, W.; Chen, K.; Wang, Y.; Liu, X.; Lu, M. Green synthesis of silver nanoparticles by waste tea extract and degradation of organic dye in the absence and presence of H2O2. Appl. Surf. Sci. 2017, 423, 1019–1024. [Google Scholar] [CrossRef]
- Ridzuan, M.J.M.; Abdul Majid, M.S.; Afendi, M.; Aqmariah Kanafiah, S.N.; Zahri, J.M.; Gibson, A.G. Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Mater. Des. 2016, 89, 839–847. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Applied surface science effects of chemical treatments on hemp fibre structure. Appl. Surf. Sci. 2013, 276, 13–23. [Google Scholar] [CrossRef]
- Asim, M.; Jawaid, M.; Abdan, K.; Ishak, M.R. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. J. Bionic Eng. 2016, 13, 426–435. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, M.; Chen, L. Interface and bonding mechanisms of plant fibre composites: An overview. Compos. Part B Eng. 2016, 101, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose, and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Williams, P.T.; Besler, S. The influence of temperature and heating rate on the slow pyrolysis of biomass, Renew. Energy 1996, 3, 233–250. [Google Scholar] [CrossRef]
- Komal, U.K.; Verma, V.; Aswani, T.; Verma, N.; Singh, I. Effect of chemical treatment on mechanical behavior of banana fiber reinforced polymer composites. Mater. Today Proc. 2018, 5, 16983–16989. [Google Scholar] [CrossRef]
- Dong, C.; Zhang, X.; Cai, H.; Cao, C. Green synthesis of biocompatible silver nanoparticles mediated by Osmanthus fragrans extract in aqueous solution. Optik (Stuttg) 2016, 127, 10378–10388. [Google Scholar] [CrossRef]
- Emam, H.E.; Saleh, N.H.; Nagy, K.S.; Zahran, M.K. Functionalization of medical cotton by direct incorporation of silver nanoparticles. Int. J. Biol. Macromol. 2015, 78, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, A.; Chakraborty, S. Coating of silver nanoparticles on jute fibre by in situ synthesis. Cellulose 2017, 24, 1563–1577. [Google Scholar] [CrossRef]
- Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int. J. Mol. Sci. 2018, 19, 444. [Google Scholar] [CrossRef] [Green Version]
- Greulich, C.; Braun, D.; Peetsch, A.; Diendorf, J.; Siebers, B.; Epple, M.; Köller, M. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv. 2012, 2, 6981–6987. [Google Scholar] [CrossRef]
- Kourmouli, A.; Valenti, M.; Van Rijn, E.; Beaumont, H.J.E.; Kalantzi, O.I.; Schmidt-Ott, A.; Biskos, G. Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles. J. Nanopart. Res. 2018, 20, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Alsammarraie, F.K.; Wang, W.; Zhou, P.; Mustapha, A.; Lin, M. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf. B Biointerfaces 2018, 171, 398–405. [Google Scholar] [CrossRef]
- Sowmyya, T.; Lakshmi, G.V. Spectroscopic investigation on catalytic and bactericidal properties of biogenic silver nanoparticles synthesized using Soymida febrifuga aqueous stem bark extract. J. Environ. Chem. Eng. 2018, 6, 3590–3601. [Google Scholar] [CrossRef]
- Patil, M.P.; Singh, R.D.; Koli, P.B.; Patil, K.T.; Jagdale, B.S.; Tipare, A.R.; Do Kim, G. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb. Pathog. 2018, 121, 184–189. [Google Scholar] [CrossRef]
- Nithya, A.; Jeeva Kumari, H.L.; Rokesh, K.; Ruckmani, K.; Jeganathan, K.; Jothivenkatachalam, K. A versatile effect of chitosan-silver nanocomposite for surface plasmonic photocatalytic and antibacterial activity. J. Photochem. Photobiol. B Biol. 2015, 153, 412–422. [Google Scholar] [CrossRef]
- Pollini, M.; Russo, M.; Licciulli, A.; Sannino, A.; Maffezzoli, A. Characterization of antibacterial silver coated yarns. J. Mater. Sci. Mater. Med. 2009, 20, 2361–2366. [Google Scholar] [CrossRef] [PubMed]
- Ghayempour, S.M. Montazer, Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric. Ultrason. Sonochem. 2017, 34, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, M.; Barik, S.K.; Mubarak Ali, D.; Prakash, P.; Pugazhendhi, A. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb. Pathog. 2018, 116, 221–226. [Google Scholar] [CrossRef]
- Arya, G.; Sharma, N.; Ahmed, J.; Gupta, N.; Kumar, A.; Chandra, R.; Nimesh, S. Degradation of anthropogenic pollutant and organic dyes by biosynthesized silver nano-catalyst from Cicer arietinum leaves. J. Photochem. Photobiol. B Biol. 2017, 174, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Mondal, S.; Das, P.; Bhawal, P.; Kanti Das, T.; Bose, M.; Choudhary, S.; Gangopadhyay, S.; Das, A.K.; Das, N.C. Natural saponin stabilized nano-catalyst as efficient dye-degradation catalyst. Nano-Struct. Nano-Objects 2018, 16, 86–95. [Google Scholar] [CrossRef]
- Ismail, M.; Khan, M.I.; Khan, S.B.; Akhtar, K.; Khan, M.A.; Asiri, A.M. Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J. Mol. Liq. 2018, 268, 87–101. [Google Scholar] [CrossRef]
- Saha, J.; Begum, A.; Mukherjee, A.; Kumar, S. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of methylene blue dye. Sustain. Environ. Res. 2017, 27, 245–250. [Google Scholar] [CrossRef]
- Naseem, K.; Begum, R.; Wu, W.; Irfan, A.; Al-Sehemi, A.G.; Farooqi, Z.H. Catalytic reduction of toxic dyes in the presence of silver nanoparticles impregnated core-shell composite microgels. J. Clean. Prod. 2019, 211, 855–864. [Google Scholar] [CrossRef]
- Ofomaja, A.E.; Naidoo, E.B.; Modise, S.J. Kinetic and pseudo-second-order modeling of lead biosorption onto pine cone powder. Ind. Eng. Chem. Res. 2010, 49, 2562–2572. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000, 34, 735–742. [Google Scholar] [CrossRef]
- Senthil Kumar, P.; Ramalingam, S.; Sathyaselvabala, V.; Kirupha, S.D.; Sivanesan, S. Removal of Copper(II) ions from aqueous solution by adsorption using cashew nut shell. Desalination 2011, 266, 63–71. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo second order model for sorption process. Process Biochem. 1999, 76, 451–465. [Google Scholar] [CrossRef]
- Yihan, S.; Mingming, L.; Guo, Z. Ag nanoparticles loding of polypyrrole-coated superwetting mesh for on-demand separation of oil-water mixtures and catalytic reduction of aromatic dyes. J. Colloids Interface Sci. 2018, 527, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Rajegaonkar, P.S.; Deshpande, B.A.; More, M.S.M.S.; Waghmare, S.S.; Sangawe, V.V.; Inamdar, A.; Shirsat, M.D.; Adhapure, N.N. Catalytic reduction of p-nitrophenol and methylene blue by microbiologically synthesized silver nanoparticles. Mater. Sci. Eng. C 2018, 93, 623–629. [Google Scholar] [CrossRef]
- Choudhary, M.K.; Kataria, J.; Sharma, S. Evaluation of the kinetic and catalytic properties of biogenically synthesized silver nanoparticles. J. Clean. Prod. 2018, 198, 882–890. [Google Scholar] [CrossRef]
- Tahir, K.; Nazir, S.; Li, B.; Ullah, A.; Ul, Z.; Khan, H.; Ahmad, A. An efficient photo catalytic activity of green synthesized silver nanoparticles. Sep. Purif. Technol. 2015, 150, 316–324. [Google Scholar] [CrossRef]
The Diameter of Growth Inhibition Zone (mm) a | ||||
---|---|---|---|---|
Bacteria Species | ||||
Sample | E. coli | P. vulgaris | E. faecalis | S. aureus |
Mass of C. pentandra/Ag-NPs (mg) | ||||
a) 1 | 7.25 ± 0.20 | 6.00 ± 0.82 | 6.75 ± 0.61 | 8.25 ± 0.20 |
b) 2 | 8.00 ± 0.41 | 6.50 ± 0.41 | 7.50 ± 1.22 | 8.75 ± 1.02 |
c) 4 | 9.50 ± 0.41 | 7.50 ± 0.71 | 8.25 ± 0.20 | 9.75 ± 0.20 |
Control | ||||
Gentamicin (positive control) (10 µg) | 19.50 ± 0.71 | 23.50 ± 0.41 | 15.50 ± 0.41 | 21.75 ± 0.20 |
E. spiralis extract (negative control) | NA | NA | NA | NA |
Treated fiber (negative control) | NA | NA | NA | NA |
Untreated fiber (negative control) | NA | NA | NA | NA |
Supporting Material | Bacteria | The Zone of Growth Inhibition (mm) | Ref. |
---|---|---|---|
Ag-NPs loaded in C. pentandra fiber | E. coli P. vulgaris E. faecalis S.aurues | 6.5 ± 0.4 4.3 ± 0.7 5.3 ± 0.2 6.8 ± 0.2 | This study |
Ag-NPs loaded in cotton pad | E. coli L. monocytogens S.aureus S. epidermis | 6.2 ± 1.4 3.1 ± 1.1 3.3 ± 1.2 3.3 ± 1.2 | [1] |
ZnO loaded in cotton | S.aureus E. coli | 3.1 ± 0.1 3.3 ± 0.1 | [42] |
Ag-NPs loaded in Jute fiber | B. subtillus E. coli | 1.0 ± 0.9 2.5 ± 0.8 | [33] |
Ag-NPs loaded in cotton | E. coli | 1.5 | [11] |
The Percentage of Bacterial Growth Inhibition (%) a | ||||
---|---|---|---|---|
Bacteria Species | ||||
Sample | E. coli | P. vulgaris | E. faecalis | S. aureus |
Mass of C. pentandra/Ag-NPs (mg) | ||||
a) 1 | 80.91 | 93.23 | 93.87 | 88.76 |
b) 2 | 95.45 | 93.69 | 97.96 | 89.28 |
c) 4 | 96.61 | 97.40 | 99.60 | 92.50 |
Ampicillin (positive control) (8 µg/mL) | 81.31 | 50.27 | 96.00 | 97.63 |
Pseudo-First-Order | Pseudo-Second-Order | |||
---|---|---|---|---|
Dye | k (min−1) | R2 | k (min−1) | R2 |
RhB | 0.7475 | 0.9912 | 1.5101 | 0.8284 |
MB | 0.3582 | 0.9765 | 1.8653 | 0.8767 |
Method | Catalyst | Dye | Concentration (mg/L) | Reduction Time (min) | k (min−1) | Ref. |
---|---|---|---|---|---|---|
NaBH4 | Ag-NPs loading on C. pentandra fiber | MB RhB | 20 | 10 5 | 0.75 0.36 | This study |
NaBH4 | Ag-NPs | MB RhB | 0.001 | 12 10 | 0.18 0.22 | [38] |
NaBH4 | Ag-NPs loading on polypyrrole coated | MB RhB | 1.5 | 10 10 | - - | [53] |
NaBH4 | Ag-NPs | MB | 5 | 30 | - | [54] |
Photocatalytic | Ag-NPs | MB | 5 | 60 | 0.007 | [55] |
Photocatalytic | Ag-NPs | MB | 15 | 80 | - | [56] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan Mat Khalir, W.K.A.; Shameli, K.; Jazayeri, S.D.; Othman, N.A.; Che Jusoh, N.W.; Mohd Hassan, N. In-Situ Biofabrication of Silver Nanoparticles in Ceiba pentandra Natural Fiber Using Entada spiralis Extract with Their Antibacterial and Catalytic Dye Reduction Properties. Nanomaterials 2020, 10, 1104. https://doi.org/10.3390/nano10061104
Wan Mat Khalir WKA, Shameli K, Jazayeri SD, Othman NA, Che Jusoh NW, Mohd Hassan N. In-Situ Biofabrication of Silver Nanoparticles in Ceiba pentandra Natural Fiber Using Entada spiralis Extract with Their Antibacterial and Catalytic Dye Reduction Properties. Nanomaterials. 2020; 10(6):1104. https://doi.org/10.3390/nano10061104
Chicago/Turabian StyleWan Mat Khalir, Wan Khaima Azira, Kamyar Shameli, Seyed Davoud Jazayeri, Nor Azizi Othman, Nurfatehah Wahyuny Che Jusoh, and Norazian Mohd Hassan. 2020. "In-Situ Biofabrication of Silver Nanoparticles in Ceiba pentandra Natural Fiber Using Entada spiralis Extract with Their Antibacterial and Catalytic Dye Reduction Properties" Nanomaterials 10, no. 6: 1104. https://doi.org/10.3390/nano10061104
APA StyleWan Mat Khalir, W. K. A., Shameli, K., Jazayeri, S. D., Othman, N. A., Che Jusoh, N. W., & Mohd Hassan, N. (2020). In-Situ Biofabrication of Silver Nanoparticles in Ceiba pentandra Natural Fiber Using Entada spiralis Extract with Their Antibacterial and Catalytic Dye Reduction Properties. Nanomaterials, 10(6), 1104. https://doi.org/10.3390/nano10061104