One-, Two-, and Three-Dimensional Self-Assembly of Atomically Precise Metal Nanoclusters
Abstract
:1. Introduction
1.1. Metal Nanoclusters for Nanotechnology
1.2. Controlled Assembly of Metal Nanoclusters
1.3. Contents of This Review
2. One-Dimensional Structures
2.1. Direct Connection via Metal−Metal Bonds
2.2. Connection via Ag−O Bonds
2.3. Control of Counterions
2.4. Introduction of Linker Molecules
3. Two-Dimensional Structures
3.1. Connection via Ag−O Bonds
3.2. Introduction of Linker Molecules
4. Three-Dimensional Structures
4.1. Connection via Ag−O, Ag−S, or Ag−Cl Bonds
4.2. Control of Counterions
4.3. Introduction of Linker Molecules
5. Summary
- (1)
- Methods. The methods to connect metal NCs that have been reported to date can be roughly divided into the following five categories: (i) direct connection by formation of metal−metal bonds (Figure 2A); (ii) connection by Ag−O, Ag−S, or Ag−Cl bond formation (Figure 2B); (iii) connection by counterions (Figure 2C); (iv) connection by linker molecules (Figure 2D); and (v) connection by inter-ligand interactions (Figure 2E; not introduced in this review).
- (2)
- Diversity. Among CSs produced by the above methods, there are many examples of the formation of 1D, 2D, and 3D CSs through the use of methods (ii) and (iv). An important point when constructing CSs by these methods is the design of the ligand of the NCs and linker, respectively. It is presumed that the control of these species is relatively easy, which has led to the wider utilization of methods (ii) and (iv) than of the other methods. In particular, for method (iv), existing knowledge obtained in the study of normal MOFs can be considered.
- (3)
- Metal element. To directly connect metal NCs, it is effective to use Au as a main element because it forms strong aurophilic interactions (intermetal interactions). In the connections involving metal−O or metal−Cl bonds, it is effective to use Ag as a main element because it readily bonds with O or Cl. Moreover, in the connections using bpy as a linker, Ag is attractive as the main element because of the high affinity of N and Ag.
- (4)
- Stability. The formation of a CS generally improves the thermal stability of the component metal NCs regardless of the connection mode.
- (5)
- Electronic structure. The formation of a CS often causes the band gap of the NC to narrow. This means that CS formation allows the use of a broader wavelength range of light, opening up the possibility of visible-light-driven photocatalysis by using CSs.
- (6)
- PL properties. For 2D and 3D CS using linkers, CS formation often leads to an increase in PL emission intensity. When metal NCs are the PL source, there are many cases in which dual emission peaks appear upon connection with a linker. In addition, the PL color of a CS often changes depending on the kind of VOC trapped in its pores.
- (7)
- Electrical conduction. The electron conductivity of CSs changes dramatically depending on the distance between each metal NC and the mode of connection; 1D CS formed by the direct connection via metal−metal bond shows the higher conductivity than 1D CS connected through counter ion.
- (8)
- Possible applications. The reported CSs have potential applications in fields such as electronic devices, luminescent devices, gas and temperature sensing, and photocatalysis.
6. Outlook
- (1)
- Use of other metal elements. At present, mostly Au and Ag are used as the metal element in CSs. This is largely related to the high stability of Au and Ag NCs. For Ag NCs, the good connectivity between Ag and linker molecules is also related to this fact. On the other hand, several syntheses of individual copper (Cu) NCs have been reported recently [10,180,181,182,183]. In addition, other metal ions are often used in normal MOFs with metal ions as nodes [153]. CS formation of NCs based on Cu or other metals may also lead to materials with high thermal stability. In the future, it is expected that many elements will be used in CSs, thereby realizing various functions and decreased cost of such materials.
- (2)
- Use of the alloying effect. At present, there are few examples in which alloy NCs are connected to form CSs [142,143,146]. Mixing different elements leads to NCs with physical/chemical properties and functions that are different from those of monometal NCs. In fact, for individual metal NCs, many cases have been reported in which new physical properties/functions appeared because of mixing/synergistic effects [66,184,185,186,187,188,189,190,191,192,193,194]. The previous studies have established basic techniques for the formation of CSs consisting of Ag NCs. In the future, it is expected that more functional materials will be created by extending such CS formation techniques to Ag-based alloy NCs.
- (3)
- Connection of reported metal NCs. Ag NC-based MOFs are interesting because they can be synthesized by a one-pot process. However, in CSs formed by such a method, metal NCs that are stable only in the CS are often found as nodes. For individual metal NCs, many NCs have already been synthesized with atomic precision [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65]. In addition, much information has been obtained on methods to generate novel functions in such NCs, including alloying [66,67,68]. In the future, it is expected that a method to more effectively utilize the reported metal NCs in CSs will be found. To achieve this, it may be necessary to establish new connection methods different from those described in this review (Figure 2).
- (4)
- Elucidation of electronic conductivity. We believe that 1D CSs may be applied as nanodevices. However, at present, few experiments on the conductivity of 1D CSs have been reported [146,152]. In the future, it is expected that the conductivity of 1D CSs will be measured as a basic physical property. It is anticipated that the accumulation of such information will eventually lead to the production of nanodevices based on 1D CSs of metal NCs.
- (5)
- Exploration of other possible applications of connected structures. Various applications, such as gas storage, gas separation, gas conversion, and reaction-selective catalysis, have been studied for normal MOFs with metal ions as nodes [117]. It has also been reported that, in the case of self-assembled complexes, a reaction different from that in the case of using an ordinary flask proceeds in the cage structure (i.e., the cage behaves as a nanoflask) [116]. In the future, it is expected that these possibilities will be investigated for metal NC-based MOFs and that their functions will be much higher than those of conventional MOFs and self-assembled complexes.
Author Contributions
Funding
Conflicts of Interest
References
- Pradeep, T. Nano: The Essentials, 3rd ed.; Tata McGraw-Hill Education: New Delhi, India, 2008. [Google Scholar]
- Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 2016, 116, 10346–10413. [Google Scholar] [CrossRef] [PubMed]
- Nasaruddin, R.R.; Chen, T.; Yan, N.; Xie, J. Roles of Thiolate Ligands in the Synthesis, Properties and Catalytic Application of Gold Nanoclusters. Coord. Chem. Rev. 2018, 368, 60–79. [Google Scholar] [CrossRef]
- Du, Y.; Sheng, H.; Astruc, D.; Zhu, M. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chem. Rev. 2020, 120, 526–622. [Google Scholar] [CrossRef] [PubMed]
- Sakthivel, N.A.; Dass, A. Aromatic Thiolate-Protected Series of Gold Nanomolecules and a Contrary Structural Trend in Size Evolution. Acc. Chem. Res. 2018, 51, 1774–1783. [Google Scholar] [CrossRef]
- Kawasaki, H.; Kumar, S.; Li, G.; Zeng, C.; Kauffman, D.R.; Yoshimoto, J.; Iwasaki, Y.; Jin, R. Generation of Singlet Oxygen by Photoexcited Au25(SR)18 Clusters. Chem. Mater. 2014, 26, 2777–2788. [Google Scholar] [CrossRef]
- Yamamoto, K.; Imaoka, T.; Tanabe, M.; Kambe, T. New Horizon of Nanoparticle and Cluster Catalysis with Dendrimers. Chem. Rev. 2020, 120, 1397–1437. [Google Scholar] [CrossRef]
- Whetten, R.L.; Weissker, H.-C.; Pelayo, J.J.; Mullins, S.M.; López-Lozano, X.; Garzón, I.L. Chiral-Icosahedral (I) Symmetry in Ubiquitous Metallic Cluster Compounds (145A,60X): Structure and Bonding Principles. Acc. Chem. Res. 2019, 52, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakar, M.A.; Sugiuchi, M.; Iwasaki, M.; Shichibu, Y.; Konishi, K. Hydrogen Bonds to Au Atoms in Coordinated Gold Clusters. Nat. Commun. 2017, 8, 576. [Google Scholar] [CrossRef]
- Sharma, S.; Chakrahari, K.K.; Saillard, J.-Y.; Liu, C.W. Structurally Precise Dichalcogenolate-Protected Copper and Silver Superatomic Nanoclusters and Their Alloys. Acc. Chem. Res. 2018, 51, 2475–2483. [Google Scholar] [CrossRef]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-Phase Liquid-Liquid System. J. Chem. Soc. Chem. Commun. 1994, 801–802. [Google Scholar] [CrossRef]
- Whetten, R.L.; Khoury, J.T.; Alvarez, M.M.; Murthy, S.; Vezmar, I.; Wang, Z.L.; Stephens, P.W.; Cleveland, C.L.; Luedtke, W.D.; Landman, U. Nanocrystal Gold Molecules. Adv. Mater. 1996, 8, 428–433. [Google Scholar] [CrossRef]
- Schaaff, T.G.; Shafigullin, M.N.; Khoury, J.T.; Vezmar, I.; Whetten, R.L.; Cullen, W.G.; First, P.N.; Gutiérrez-Wing, C.; Ascensio, J.; Jose-Yacamán, M.J. Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra. J. Phys. Chem. B 1997, 101, 7885–7891. [Google Scholar] [CrossRef]
- Donkers, R.L.; Lee, D.; Murray, R.W. Synthesis and Isolation of the Molecule-Like Cluster Au38(PhCH2CH2S)24. Langmuir 2004, 20, 1945–1952. [Google Scholar] [CrossRef]
- Ingram, R.S.; Hostetler, M.J.; Murray, R.W.; Schaaff, T.G.; Khoury, J.T.; Whetten, R.L.; Bigioni, T.P.; Guthrie, D.K.; First, P.N. 28 kDa Alkanethiolate-Protected Au Clusters Give Analogous Solution Electrochemistry and STM Coulomb Staircases. J. Am. Chem. Soc. 1997, 119, 9279–9280. [Google Scholar] [CrossRef]
- Schaaff, T.G.; Shafigullin, M.N.; Khoury, J.T.; Vezmar, I.; Whetten, R.L. Properties of a Ubiquitous 29 kDa Au:SR Cluster Compound. J. Phys. Chem. B 2001, 105, 8785–8796. [Google Scholar] [CrossRef]
- Murthy, S.; Bigioni, T.P.; Wang, Z.L.; Khoury, J.T.; Whetten, R.L. Liquid-Phase Synthesis of Thiol-Derivatized Silver Nanocrystals. Mater. Lett. 1997, 30, 321–325. [Google Scholar] [CrossRef]
- Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M.A.; Schaaff, T.G.; Whetten, R.L. Visible to Infrared Luminescence from a 28-Atom Gold Cluster. J. Phys. Chem. B 2002, 106, 3410–3415. [Google Scholar] [CrossRef]
- Hostetler, M.J.; Wingate, J.E.; Zhong, C.-J.; Harris, J.E.; Vachet, R.W.; Clark, M.R.; Londono, J.D.; Green, S.J.; Stokes, J.J.; Wignall, G.D.; et al. Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size. Langmuir 1998, 14, 17–30. [Google Scholar] [CrossRef]
- Hostetler, M.J.; Stokes, J.J.; Murray, R.W. Infrared Spectroscopy of Three-Dimensional Self-Assembled Monolayers: N-Alkanethiolate Monolayers on Gold Cluster Compounds. Langmuir 1996, 12, 3604–3612. [Google Scholar] [CrossRef]
- Terrill, R.H.; Postlethwaite, T.A.; Chen, C.-H.; Poon, C.-D.; Terzis, A.; Chen, A.; Hutchison, J.E.; Clark, M.R.; Wignall, G.; Londono, J.D.; et al. Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters. J. Am. Chem. Soc. 1995, 117, 12537–12548. [Google Scholar] [CrossRef]
- Schaaff, T.G.; Knight, G.; Shafigullin, M.N.; Borkman, R.F.; Whetten, R.L. Isolation and Selected Properties of a 10.4 kDa Gold: Glutathione Cluster Compound. J. Phys. Chem. B 1998, 102, 10643–10646. [Google Scholar] [CrossRef]
- Schaaff, T.G.; Whetten, R.L. Giant Gold–Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions. J. Phys. Chem. B 2000, 104, 2630–2641. [Google Scholar] [CrossRef]
- Alvarez, M.M.; Chen, J.; Plascencia-Villa, G.; Black, D.M.; Griffith, W.P.; Garzón, I.L.; José-Yacamán, M.; Demeler, B.; Whetten, R.L. Hidden Components in Aqueous “Gold-144” Fractionated by PAGE: High-Resolution Orbitrap ESI-MS Identifies the Gold-102 and Higher All-Aromatic Au-pMBA Cluster Compounds. J. Phys. Chem. B 2016, 120, 6430–6438. [Google Scholar] [CrossRef]
- Plascencia-Villa, G.; Demeler, B.; Whetten, R.L.; Griffith, W.P.; Alvarez, M.; Black, D.M.; José-Yacamán, M. Analytical Characterization of Size-Dependent Properties of Larger Aqueous Gold Nanoclusters. J. Phys. Chem. C 2016, 120, 8950–8958. [Google Scholar] [CrossRef]
- Bootharaju, M.S.; Burlakov, V.M.; Besong, T.M.D.; Joshi, C.P.; AbdulHalim, L.G.; Black, D.M.; Whetten, R.L.; Goriely, A.; Bakr, O.M. Reversible Size Control of Silver Nanoclusters via Ligand-Exchange. Chem. Mater. 2015, 27, 4289–4297. [Google Scholar] [CrossRef] [Green Version]
- Heaven, M.W.; Dass, A.; White, P.S.; Holt, K.M.; Murray, R.W. Crystal Structure of the Gold Nanoparticle [N(C8H17)4] [Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 2008, 130, 3754–3755. [Google Scholar] [CrossRef] [PubMed]
- Negishi, Y.; Sakamoto, C.; Ohyama, T.; Tsukuda, T. Synthesis and the Origin of the Stability of Thiolate-Protected Au130 and Au187 Clusters. J. Phys. Chem. Lett. 2012, 3, 1624–1628. [Google Scholar] [CrossRef]
- Negishi, Y.; Nakazaki, T.; Malola, S.; Takano, S.; Niihori, Y.; Kurashige, W.; Yamazoe, S.; Tsukuda, T.; Häkkinen, H. A Critical Size for Emergence of Nonbulk Electronic and Geometric Structures in Dodecanethiolate-Protected Au Clusters. J. Am. Chem. Soc. 2015, 137, 1206–1212. [Google Scholar] [CrossRef]
- Negishi, Y.; Kurashige, W.; Niihori, Y.; Iwasa, T.; Nobusada, K. Isolation, Structure, and Stability of a Dodecanethiolate-Protected Pd1Au24 Cluster. Phys. Chem. Chem. Phys. 2010, 12, 6219–6225. [Google Scholar] [CrossRef]
- Negishi, Y.; Iwai, T.; Ide, M. Continuous Modulation of Electronic Structure of Stable Thiolate-Protected Au25 Cluster by Ag Doping. Chem. Commun. 2010, 46, 4713–4715. [Google Scholar] [CrossRef]
- Negishi, Y.; Kurashige, W.; Kobayashi, Y.; Yamazoe, S.; Kojima, N.; Seto, M.; Tsukuda, T. Formation of a Pd@Au12 Superatomic Core in Au24Pd1(SC12H25)18 Probed by 197Au Mössbauer and Pd K-Edge EXAFS Spectroscopy. J. Phys. Chem. Lett. 2013, 4, 3579–3583. [Google Scholar] [CrossRef]
- Negishi, Y.; Munakata, K.; Ohgake, W.; Nobusada, K. Effect of Copper Doping on Electronic Structure, Geometric Structure, and Stability of Thiolate-Protected Au25 Nanoclusters. J. Phys. Chem. Lett. 2012, 3, 2209–2214. [Google Scholar] [CrossRef] [PubMed]
- Niihori, Y.; Matsuzaki, M.; Pradeep, T.; Negishi, Y. Separation of Precise Compositions of Noble Metal Clusters Protected with Mixed Ligands. J. Am. Chem. Soc. 2013, 135, 4946–4949. [Google Scholar] [CrossRef] [PubMed]
- Niihori, Y.; Matsuzaki, M.; Uchida, C.; Negishi, Y. Advanced Use of High-Performance Liquid Chromatography for Synthesis of Controlled Metal Clusters. Nanoscale 2014, 6, 7889–7896. [Google Scholar] [CrossRef]
- Niihori, Y.; Kikuchi, Y.; Kato, A.; Matsuzaki, M.; Negishi, Y. Understanding Ligand Exchange Reactions on Thiolate-Protected Gold Clusters by Probing Isomer Distributions Using Reversed-Phase High-Performance Liquid Chromatography. ACS Nano 2015, 9, 9347–9356. [Google Scholar] [CrossRef]
- Niihori, Y.; Eguro, M.; Kato, A.; Sharma, S.; Kumar, B.; Kurashige, W.; Nobusada, K.; Negishi, Y. Improvements in the Ligand-Exchange Reactivity of Phenylethanethiolate-Protected Au25 Nanocluster by Ag or Cu Incorporation. J. Phys. Chem. C 2016, 120, 14301–14309. [Google Scholar] [CrossRef]
- Niihori, Y.; Koyama, Y.; Watanabe, S.; Hashimoto, S.; Hossain, S.; Nair, L.V.; Kumar, B.; Kurashige, W.; Negishi, Y. Atomic and Isomeric Separation of Thiolate-Protected Alloy Clusters. J. Phys. Chem. Lett. 2018, 9, 4930–4934. [Google Scholar] [CrossRef] [PubMed]
- Niihori, Y.; Hashimoto, S.; Koyama, Y.; Hossain, S.; Kurashige, W.; Negishi, Y. Dynamic Behavior of Thiolate-Protected Gold–Silver 38-Atom Alloy Clusters in Solution. J. Phys. Chem. C 2019, 123, 13324–13329. [Google Scholar] [CrossRef]
- Niihori, Y.; Kikuchi, Y.; Shima, D.; Uchida, C.; Sharma, S.; Hossain, S.; Kurashige, W.; Negishi, Y. Separation of Glutathionate-Protected Gold Clusters by Reversed-Phase Ion-Pair High-Performance Liquid Chromatography. Ind. Eng. Chem. Res. 2017, 56, 1029–1035. [Google Scholar] [CrossRef]
- Niihori, Y.; Shima, D.; Yoshida, K.; Hamada, K.; Nair, L.V.; Hossain, S.; Kurashige, W.; Negishi, Y. High-Performance Liquid Chromatography Mass Spectrometry of Gold and Alloy Clusters Protected by Hydrophilic Thiolates. Nanoscale 2018, 10, 1641–1649. [Google Scholar] [CrossRef]
- Murayama, H.; Narushima, T.; Negishi, Y.; Tsukuda, T. Structures and Stabilities of Alkanethiolate Monolayers on Palladium Clusters As Studied by Gel Permeation Chromatography. J. Phys. Chem. B 2004, 108, 3496–3503. [Google Scholar] [CrossRef]
- Tsunoyama, H.; Negishi, Y.; Tsukuda, T. Chromatographic Isolation of “Missing” Au55 Clusters Protected by Alkanethiolates. J. Am. Chem. Soc. 2006, 128, 6036–6037. [Google Scholar] [CrossRef] [PubMed]
- Negishi, Y.; Arai, R.; Niihori, Y.; Tsukuda, T. Isolation and Structural Characterization of Magic Silver Clusters Protected by 4-(tert-butyl) benzyl mercaptan. Chem. Commun. 2011, 47, 5693–5695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurashige, W.; Yamazoe, S.; Yamaguchi, M.; Nishido, K.; Nobusada, K.; Tsukuda, T.; Negishi, Y. Au25 Clusters Containing Unoxidized Tellurolates in the Ligand Shell. J. Phys. Chem. Lett. 2014, 5, 2072–2076. [Google Scholar] [CrossRef]
- Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda, T. Structures, Stabilities and Physicochemical Properties of Organometallic Hybrid Clusters. J. Am. Chem. Soc. 2004, 126, 6518–6519. [Google Scholar] [CrossRef]
- Shichibu, Y.; Negishi, Y.; Tsunoyama, H.; Kanehara, M.; Teranishi, T.; Tsukuda, T. Extremely High Stability of Glutathionate-Protected Au25 Clusters Against Core Etching. Small 2007, 3, 835–839. [Google Scholar] [CrossRef]
- Shichibu, Y.; Negishi, Y.; Tsukuda, T.; Teranishi, T. Large-Scale Synthesis of Thiolated Au25 Clusters via Ligand Exchange Reactions of Phosphine-Stabilized Au11 Clusters. J. Am. Chem. Soc. 2005, 127, 13464–13465. [Google Scholar] [CrossRef]
- Ikeda, K.; Kobayashi, Y.; Negishi, Y.; Seto, M.; Iwasa, T.; Nobusada, K.; Tsukuda, T.; Kojima, N. Thiolate-Induced Structural Reconstruction of Gold Clusters Probed by 197Au Mössbauer Spectroscopy. J. Am. Chem. Soc. 2007, 129, 7230–7231. [Google Scholar] [CrossRef]
- Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda, T. Kinetic Stabilization of Growing Gold Clusters by Passivation with Thiolates. J. Phys. Chem. B 2006, 110, 12218–12221. [Google Scholar] [CrossRef]
- Omoda, T.; Takano, S.; Yamazoe, S.; Koyasu, K.; Negishi, Y.; Tsukuda, T. An Au25(SR)18 Cluster with a Face-Centered Cubic Core. J. Phys. Chem. C 2018, 122, 13199–13204. [Google Scholar] [CrossRef]
- Jadzinsky, P.D.; Calero, G.; Ackerson, C.J.; Bushnell, D.A.; Kornberg, R.D. Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution. Science 2007, 318, 430–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, M.; Aikens, C.M.; Hollander, F.J.; Schatz, G.C.; Jin, R. Correlating the Crystal Structure of a Thiol-Protected Au25 Cluster and Optical Properties. J. Am. Chem. Soc. 2008, 130, 5883–5885. [Google Scholar] [CrossRef]
- Qian, H.; Eckenhoff, W.T.; Zhu, Y.; Pintauer, T.; Jin, R. Total Structure Determination of Thiolate-Protected Au38 Nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280–8281. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zeng, C.; Liu, C.; Kirschbaum, K.; Gayathri, C.; Gil, R.R.; Rosi, N.L.; Jin, R. Crystal Structure of Barrel-Shaped Chiral Au130(p-MBT)50 Nanocluster. J. Am. Chem. Soc. 2015, 137, 10076–10079. [Google Scholar] [CrossRef]
- Desireddy, A.; Conn, B.E.; Guo, J.; Yoon, B.; Barnett, R.N.; Monahan, B.M.; Kirschbaum, K.; Griffith, W.P.; Whetten, R.L.; Landman, U.; et al. Ultrastable Silver Nanoparticles. Nature 2013, 501, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, Y.; Huang, H.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. All-Thiol-Stabilized Ag44 and Au12Ag32 Nanoparticles with Single-Crystal Structures. Nat. Commun. 2013, 4, 2422. [Google Scholar] [CrossRef] [Green Version]
- Joshi, C.P.; Bootharaju, M.S.; Alhilaly, M.J.; Bakr, O.M. [Ag25(SR)18]−: The “Golden” Silver Nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578–11581. [Google Scholar] [CrossRef] [Green Version]
- Lei, Z.; Wan, X.-K.; Yuan, S.-F.; Guan, Z.-J.; Wang, Q.-M. Alkynyl Approach toward the Protection of Metal Nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474. [Google Scholar] [CrossRef]
- Kwak, K.; Lee, D. Electrochemistry of Atomically Precise Metal Nanoclusters. Acc. Chem. Res. 2019, 52, 12–22. [Google Scholar] [CrossRef]
- Kurashige, W.; Hayashi, R.; Wakamatsu, K.; Kataoka, Y.; Hossain, S.; Iwase, A.; Kudo, A.; Yamazoe, S.; Negishi, Y. Atomic-Level Understanding of the Effect of Heteroatom Doping of the Cocatalyst on Water-Splitting Activity in AuPd or AuPt Alloy Cluster-Loaded BaLa4Ti4O15. ACS Appl. Energy Mater. 2019, 2, 4175–4187. [Google Scholar] [CrossRef]
- Wang, S.; Meng, X.; Das, A.; Li, T.; Song, Y.; Cao, T.; Zhu, X.; Zhu, M.; Jin, R. A 200-Fold Quantum Yield Boost in the Photoluminescence of Silver-Doped AgxAu25−x Nanoclusters: The 13 th Silver Atom Matters. Angew. Chem. Int. Ed. 2014, 53, 2376–2380. [Google Scholar] [CrossRef]
- Li, Z.; Yang, X.; Liu, C.; Wang, J.; Li, G. Effects of Doping in 25-Atom Bimetallic Nanocluster Catalysts for Carbon–Carbon Coupling Reaction of Iodoanisole and Phenylacetylene. Prog. Nat. Sci. Mater. Int. 2016, 26, 477–482. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chai, X.; Cai, X.; Chen, M.; Jin, R.; Ding, W.; Zhu, Y. Central Doping of a Foreign Atom into the Silver Cluster for Catalytic Conversion of CO2 toward C–C Bond Formation. Angew. Chem. Int. Ed. 2018, 57, 9775–9779. [Google Scholar] [CrossRef]
- Tsukuda, T. Toward an Atomic-Level Understanding of Size-Specific Properties of Protected and Stabilized Gold Clusters. Bull. Chem. Soc. Jpn. 2012, 85, 151–168. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.; Niihori, Y.; Nair, L.V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy Clusters: Precise Synthesis and Mixing Effects. Acc. Chem. Res. 2018, 51, 3114–3124. [Google Scholar] [CrossRef]
- Takano, S.; Hasegawa, S.; Suyama, M.; Tsukuda, T. Hydride Doping of Chemically Modified Gold-Based Superatoms. Acc. Chem. Res. 2018, 51, 3074–3083. [Google Scholar] [CrossRef]
- Yan, J.; Teo, B.K.; Zheng, N. Surface Chemistry of Atomically Precise Coinage—Metal Nanoclusters: From Structural Control to Surface Reactivity and Catalysis. Acc. Chem. Res. 2018, 51, 3084–3093. [Google Scholar] [CrossRef]
- Gan, Z.; Xia, N.; Wu, Z. Discovery, Mechanism, and Application of Antigalvanic Reaction. Acc. Chem. Res. 2018, 51, 2774–2783. [Google Scholar] [CrossRef]
- Niihori, Y.; Kurashige, W.; Matsuzaki, M.; Negishi, Y. Remarkable Enhancement in Ligand-Exchange Reactivity of Thiolate-Protected Au25 Nanoclusters by Single Pd Atom Doping. Nanoscale 2013, 5, 508–512. [Google Scholar] [CrossRef]
- Xie, S.; Tsunoyama, H.; Kurashige, W.; Negishi, Y.; Tsukuda, T. Enhancement in Aerobic Alcohol Oxidation Catalysis of Au25 Clusters by Single Pd Atom Doping. ACS Catal. 2012, 2, 1519–1523. [Google Scholar] [CrossRef]
- Negishi, Y.; Igarashi, K.; Munakata, K.; Ohgake, W.; Nobusada, K. Palladium Doping of Magic Gold Cluster Au38(SC2H4Ph)24: Formation of Pd2Au36(SC2H4Ph)24 with Higher Stability than Au38(SC2H4Ph)24. Chem. Commun. 2012, 48, 660–662. [Google Scholar] [CrossRef]
- Yamazoe, S.; Kurashige, W.; Nobusada, K.; Negishi, Y.; Tsukuda, T. Preferential Location of Coinage Metal Dopants (M = Ag or Cu) in [Au25–xMx(SC2H4Ph)18]− (x~1) As Determined by Extended X-ray Absorption Fine Structure and Density Functional Theory Calculations. J. Phys. Chem. C 2014, 118, 25284–25290. [Google Scholar] [CrossRef]
- Hossain, S.; Ono, T.; Yoshioka, M.; Hu, G.; Hosoi, M.; Chen, Z.; Nair, L.V.; Niihori, Y.; Kurashige, W.; Jiang, D.-E.; et al. Thiolate-Protected Trimetallic Au~20Ag~4Pd and Au~20Ag~4Pt Alloy Clusters with Controlled Chemical Composition and Metal Positions. J. Phys. Chem. Lett. 2018, 9, 2590–2594. [Google Scholar] [CrossRef]
- Sharma, S.; Kurashige, W.; Nobusada, K.; Negishi, Y. Effect of Trimetallization in Thiolate-Protected Au24–nCunPd Clusters. Nanoscale 2015, 7, 10606–10612. [Google Scholar] [CrossRef]
- Sharma, S.; Yamazoe, S.; Ono, T.; Kurashige, W.; Niihori, Y.; Nobusada, K.; Tsukuda, T.; Negishi, Y. Tuning the Electronic Structure of Thiolate-Protected 25-Atom Clusters by Co-Substitution with Metals Having Different Preferential Sites. Dalton Trans. 2016, 45, 18064–18068. [Google Scholar] [CrossRef]
- Nair, L.V.; Hossain, S.; Takagi, S.; Imai, Y.; Hu, G.; Wakayama, S.; Kumar, B.; Kurashige, W.; Jiang, D.-E.; Negishi, Y. Hetero-Biicosahedral [Au24Pd(PPh3)10(SC2H4Ph)5Cl2]+ Nanocluster: Selective Synthesis and Optical and Electrochemical Properties. Nanoscale 2018, 10, 18969–18979. [Google Scholar] [CrossRef] [PubMed]
- Kurashige, W.; Yamaguchi, M.; Nobusada, K.; Negishi, Y. Ligand-Induced Stability of Gold Nanoclusters: Thiolate Versus Selenolate. J. Phys. Chem. Lett. 2012, 3, 2649–2652. [Google Scholar] [CrossRef]
- Kurashige, W.; Munakata, K.; Nobusada, K.; Negishi, Y. Synthesis of Stable CunAu25–n Nanoclusters (n = 1–9) Using Selenolate Ligands. Chem. Commun. 2013, 49, 5447–5449. [Google Scholar] [CrossRef]
- Hossain, S.; Imai, Y.; Negishi, Y. Precise Synthesis of Platinum and Alloy Clusters and Elucidation of Their Structures. AIP Conf. Proc. 2019, 2186, 030018. [Google Scholar]
- Kawawaki, T.; Negishi, Y.; Kawasaki, H. Photo/Electrocatalysis and Photosensitization Using Metal Nanoclusters for Green Energy and Medical Applications. Nanoscale Adv. 2020, 2, 17–36. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.; Imai, Y.; Suzuki, D.; Choi, W.; Chen, Z.; Suzuki, T.; Yoshioka, M.; Kawawaki, T.; Lee, D.; Negishi, Y. Elucidating Ligand Effects in Thiolate-Protected Metal Clusters Using Au24Pt(TBBT)18 as a Model Cluster. Nanoscale 2019, 11, 22089–22098. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Takano, S.; Tsukuda, T. Alkynyl-Protected Au22(C≡CR)18 Clusters Featuring New Interfacial Motifs and R-Dependent Photoluminescence. J. Phys. Chem. Lett. 2019, 10, 6892–6896. [Google Scholar] [CrossRef]
- Briant, C.E.; Theobald, B.R.C.; White, J.W.; Bell, L.K.; Mingos, D.M.P.; Welch, A.J. Synthesis and X-ray Structural Characterization of the Centred Icosahedral Gold Cluster Compound [Aul3(PMe2Ph)10Cl2](PF6)3; the Realization of a Theoretical Prediction. J. Chem. Soc. Chem. Commun. 1981, 201–202. [Google Scholar] [CrossRef]
- Schmid, G.; Pfeil, R.; Boese, R.; Bandermann, F.; Meyer, S.; Calis, G.H.M.; Van der Velden, J.W.A. Au55[P(C6H5)3]12CI6-Ein Goldcluster Ungewöhnlicher Größe. Chem. Ber. 1981, 114, 3634–3642. [Google Scholar] [CrossRef]
- Kurasov, S.S.; Eremenko, N.K.; Slovokhotov, Y.L.; Struchkov, Y.T. High-Nuclearity Icosahedral Carbonylphosphineplatinum Clusters: Synthesis and Crystal Structure of Pt17(μ2-CO)4(CO)8(PEt3)8. J. Organomet. Chem. 1989, 361, 405–408. [Google Scholar] [CrossRef]
- McPartlin, M.; Mason, R.; Malatesta, L. Novel Cluster Complexes of Gold(0)-Gold(I). J. Chem. Soc. D 1969, 7, 334. [Google Scholar] [CrossRef]
- Mednikov, E.G.; Dahl, L.F. Syntheses, Structures and Properties of Primarily Nanosized Homo/Heterometallic Palladium CO/PR3-Ligated Clusters. Philos. Trans. R. Soc. A 2010, 368, 1301–1332. [Google Scholar] [CrossRef] [Green Version]
- Schmid, G. Large Clusters and Colloids. Metals in the Embryonic State. Chem. Rev. 1992, 92, 1709–1727. [Google Scholar] [CrossRef]
- Schulz-Dobrick, M.; Jansen, M. Characterization of Gold Clusters by Crystallization with Polyoxometalates: The Intercluster Compounds [Au9(dpph)4] [Mo8O26], [Au9(dpph)4] [PW12O40] and [Au11(PPh3)8Cl2]2[W6O19]. Z. Anorg. Allg. Chem. 2007, 633, 2326–2331. [Google Scholar] [CrossRef]
- Teo, B.K.; Shi, X.; Zhang, H. Pure Gold Cluster of 1:9:9:1:9:9:1 Layered Structure: A Novel 39-Metal-Atom Cluster [(Ph3P)14Au39Cl6]Cl2 with an Interstitial Gold Atom in a Hexagonal Antiprismatic Cage. J. Am. Chem. Soc. 1992, 114, 2743–2745. [Google Scholar] [CrossRef]
- Vollenbroek, F.A.; Bour, J.J.; van der Veden, J.W.A. Gold-Phosphine Cluster Compounds: The Reactions of [Au9L8]3+ (L = PPh3) with L, SCN− and Cl− to [Au8L8]2+ (Au11L8(SCN)2]+ and [Au11L8Cl2]+. Recueil des Travaux Chimiques des Pays-Bas 1980, 99, 137–141. [Google Scholar] [CrossRef]
- Chini, P. Large Metal Carbonyl Clusters (LMCC). J. Organomet. Chem. 1980, 200, 37–61. [Google Scholar] [CrossRef]
- Roth, J.D.; Lewis, G.J.; Safford, L.K.; Jiang, X.; Dahl, L.F.; Weaver, M.J. Exploration of the Ionizable Metal Cluster-Electrode Surface Analogy: Infrared Spectroelectrochemistry of [Pt24(CO)30]n, [Pt26(CO)32]n, and [Pt38(CO)44]n (n = 0 to −10) and Comparisons with Potential-Dependent Spectra of CO Adlayers on Platinum Surfaces. J. Am. Chem. Soc. 1992, 114, 6159–6169. [Google Scholar] [CrossRef]
- Ceriotti, A.; Masciocchi, N.; Macchi, P.; Longoni, G. [Pt19(CO)21(NO)]3− and [Pt38(CO)44]2−: Nitrosyl Bending through Intramolecular Electron Transfer as an Intermediate Step in the Nucleation Process from Polydecker to ccp Platinum Carbonyl Clusters. Angew. Chem. Int. Ed. 1999, 38, 3724–3727. [Google Scholar] [CrossRef]
- Ciabatti, I.; Femoni, C.; Iapalucci, M.C.; Longoni, G.; Zacchini, S. Platinum Carbonyl Clusters Chemistry: Four Decades of Challenging Nanoscience. J. Clust. Sci. 2014, 25, 115–146. [Google Scholar] [CrossRef]
- Negishi, Y.; Shimizu, N.; Funai, K.; Kanako, R.; Wakamatsu, K.; Harasawa, A.; Hossain, S.; Schuster, M.E.; Ozkaya, D.; Kurashige, W.; et al. γ-Alumina-Supported Pt17 Cluster: Controlled Loading, Geometrical Structure, and Size-Specific Catalytic Activity for Carbon Monoxide and Propylene Oxidation. Nanoscale Adv. 2020, 2, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.; Spivak, G.J.; Xiao, J.; Vittal, J.J.; Puddephatt, R.J. First Octahedral Platinum Cluster: Structure as a Function of Electron Count in Pt6 Clusters. J. Am. Chem. Soc. 1995, 117, 7011–7012. [Google Scholar] [CrossRef]
- Cattabriga, E.; Ciabatti, I.; Femoni, C.; Funaioli, T.; Iapalucci, M.C.; Zacchini, S. Syntheses, Structures, and Electrochemistry of the Defective ccp [Pt33(CO)38]2− and the bcc [Pt40(CO)40]6− Molecular Nanoclusters. Inorg. Chem. 2016, 55, 6068–6079. [Google Scholar] [CrossRef]
- Cesari, C.; Ciabatti, I.; Femoni, C.; Iapalucci, M.C.; Mancini, F.; Zacchini, S. Heteroleptic Chini-Type Platinum Clusters: Synthesis and Characterization of Bis-Phospine Derivatives of [Pt3n(CO)6n]2− (n = 2–4). Inorg. Chem. 2017, 56, 1655–1668. [Google Scholar] [CrossRef]
- Kawawaki, T.; Negishi, Y. Gold Nanoclusters as Electrocatalysts for Energy Conversion. Nanomaterials 2020, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Zheng, Y.; Ying, J.Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem. Commun. 2010, 46, 961–963. [Google Scholar] [CrossRef]
- Li, G.; Jin, R. Atomically Precise Gold Nanoclusters as New Model Catalysts. Acc. Chem. Res. 2013, 46, 1749–1758. [Google Scholar] [CrossRef]
- Kurashige, W.; Kumazawa, R.; Ishii, D.; Hayashi, R.; Niihori, Y.; Hossain, S.; Nair, L.V.; Takayama, T.; Iwase, A.; Yamazoe, S.; et al. Au25-Loaded BaLa4Ti4O15 Water-Splitting Photocatalyst with Enhanced Activity and Durability Produced Using New Chromium Oxide Shell Formation Method. J. Phys. Chem. C 2018, 122, 13669–13681. [Google Scholar] [CrossRef]
- Negishi, Y.; Matsuura, Y.; Tomizawa, R.; Kurashige, W.; Niihori, Y.; Takayama, T.; Iwase, A.; Kudo, A. Controlled Loading of Small Aun Clusters (n = 10–39) onto BaLa4Ti4O15 Photocatalysts: Toward an Understanding of Size Effect of Cocatalyst on Water-Splitting Photocatalytic Activity. J. Phys. Chem. C 2015, 119, 11224–11232. [Google Scholar] [CrossRef]
- Kurashige, W.; Mori, Y.; Ozaki, S.; Kawachi, M.; Hossain, S.; Kawawaki, T.; Shearer, C.J.; Iwase, A.; Metha, G.F.; Yamazoe, S.; et al. Activation of Water-Splitting Photocatalysts by Loading with Ultrafine Rh–Cr Mixed-Oxide Cocatalyst Nanoparticles. Angew. Chem. Int. Ed. 2020, 59, 7076–7082. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Choi, H.; Kamat, P.V. Metal-Cluster-Sensitized Solar Cells. A New Class of Thiolated Gold Sensitizers Delivering Efficiency Greater Than 2%. J. Am. Chem. Soc. 2013, 135, 8822–8825. [Google Scholar] [CrossRef]
- Sakai, N.; Tatsuma, T. Photovoltaic Properties of Glutathione-Protected Gold Clusters Adsorbed on TiO2 Electrodes. Adv. Mater. 2010, 22, 3185–3188. [Google Scholar] [CrossRef]
- Teranishi, T.; Sugawara, A.; Shimizu, T.; Miyake, M. Planar Array of 1D Gold Nanoparticles on Ridge-and-Valley Structured Carbon. J. Am. Chem. Soc. 2002, 124, 4210–4211. [Google Scholar] [CrossRef]
- Yonezawa, T.; Onoue, S.-Y.; Kimizuka, N. Metal Coating of DNA Molecules by Cationic, Metastable Gold Nanoparticles. Chem. Lett. 2002, 31, 1172–1173. [Google Scholar] [CrossRef]
- Negishi, Y.; Tsunoyama, H.; Yanagimoto, Y.; Tsukuda, T. Subnanometer-sized Gold Clusters with Dual Molecular Receptors: Synthesis and Assembly in One-dimensional Arrangements. Chem. Lett. 2005, 34, 1638–1639. [Google Scholar] [CrossRef]
- Yokoyama, T.; Hirata, N.; Tsunoyama, H.; Negishi, Y.; Nakajima, A. Characterization of Floating-Gate Memory Device with Thiolate-Protected Gold and Gold-Palladium Nanoclusters. AIP Adv. 2018, 8, 065002. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yasutake, Y.; Shichibu, Y.; Teranishi, T.; Majima, Y. Tunneling Resistance of Double-Barrier Tunneling Structures with an Alkanethiol-Protected Au Nanoparticle. Phys. Rev. B 2005, 72, 205441. [Google Scholar] [CrossRef]
- Yoon, B.; Luedtke, W.D.; Barnett, R.N.; Gao, J.; Desireddy, A.; Conn, B.E.; Bigioni, T.; Landman, U. Hydrogen-Bonded Structure and Mechanical Chiral Response of a Silver Nanoparticle Superlattice. Nat. Mater. 2014, 13, 807–811. [Google Scholar] [CrossRef]
- Zeng, C.; Chen, Y.; Kirschbaum, K.; Lambright, K.J.; Jin, R. Emergence of Hierarchical Structural Complexities in Nanoparticles and Their Assembly. Science 2016, 354, 1580–1584. [Google Scholar] [CrossRef] [Green Version]
- Yoshizawa, M.; Tamura, M.; Fujita, M. Diels-Alder in Aqueous Molecular Hosts: Unusual Regioselectivity and Efficient Catalysis. Science 2006, 312, 251–254. [Google Scholar] [CrossRef]
- Kitao, T.; Zhang, Y.; Kitagawa, S.; Wang, B.; Uemura, T. Hybridization of MOFs and Polymers. Chem. Soc. Rev. 2017, 46, 3108–3133. [Google Scholar] [CrossRef]
- Kang, X.; Zhu, M. Intra-Cluster Growth Meets Inter-Cluster Assembly: The Molecular and Supramolecular Chemistry of Atomically Precise Nanoclusters. Coord. Chem. Rev. 2019, 394, 1–38. [Google Scholar] [CrossRef]
- Wu, Z.; Yao, Q.; Zang, S.; Xie, J. Directed Self-Assembly of Ultrasmall Metal Nanoclusters. ACS Mater. Lett. 2019, 1, 237–248. [Google Scholar] [CrossRef]
- Wu, Z.; Du, Y.; Liu, J.; Yao, Q.; Chen, T.; Cao, Y.; Zhang, H.; Xie, J. Aurophilic Interactions in the Self-Assembly of Gold Nanoclusters into Nanoribbons with Enhanced Luminescence. Angew. Chem. Int. Ed. 2019, 58, 8139–8144. [Google Scholar] [CrossRef]
- Goswami, N.; Lin, F.; Liu, Y.; Leong, D.T.; Xie, J. Highly Luminescent Thiolated Gold Nanoclusters Impregnated in Nanogel. Chem. Mater. 2016, 28, 4009–4016. [Google Scholar] [CrossRef]
- Nardi, M.D.; Antonello, S.; Jiang, D.-E.; Pan, F.; Rissanen, K.; Ruzzi, M.; Venzo, A.; Zoleo, A.; Maran, F. Gold Nanowired: A Linear (Au25)n Polymer from Au25 Molecular Clusters. ACS Nano 2014, 8, 8505–8512. [Google Scholar] [CrossRef] [PubMed]
- Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold (I)–Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270. [Google Scholar] [CrossRef]
- Kang, X.; Chong, H.; Zhu, M. Au25(SR)18: The Captain of the Great Nanocluster Ship. Nanoscale 2018, 10, 10758–10834. [Google Scholar] [CrossRef]
- Luo, Z.; Nachammai, V.; Zhang, B.; Yan, N.; Leong, D.T.; Jiang, D.-E.; Xie, J. Toward Understanding the Growth Mechanism: Tracing All Stable Intermediate Species from Reduction of Au(I)–Thiolate Complexes to Evolution of Au25 Nanoclusters. J. Am. Chem. Soc. 2014, 136, 10577–10580. [Google Scholar] [CrossRef]
- Dharmaratne, A.C.; Krick, T.; Dass, A. Nanocluster Size Evolution Studied by Mass Spectrometry in Room Temperature Au25(SR)18 Synthesis. J. Am. Chem. Soc. 2009, 131, 13604–13605. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.F.; Fields-Zinna, C.A.; Murray, R.W. The Story of a Monodisperse Gold Nanoparticle: Au25L18. Acc. Chem. Res. 2010, 43, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Shibu, E.S.; Muhammed, M.A.H.; Tsukuda, T.; Pradeep, T. Ligand Exchange of Au25SG18 Leading to Functionalized Gold Clusters: Spectroscopy, Kinetics, and Luminescence. J. Phys. Chem. C 2008, 112, 12168–12176. [Google Scholar] [CrossRef]
- Ni, T.W.; Tofanelli, M.A.; Phillips, B.D.; Ackerson, C.J. Structural Basis for Ligand Exchange on Au25(SR)18. Inorg. Chem. 2014, 53, 6500–6502. [Google Scholar] [CrossRef]
- Dainese, T.; Antonello, S.; Gascón, J.A.; Pan, F.; Perera, N.V.; Ruzzi, M.; Venzo, A.; Zoleo, A.; Rissanen, K.; Maran, F. Au25(SEt)18, a Nearly Naked Thiolate-Protected Au25 Cluster: Structural Analysis by Single Crystal X-ray Crystallography and Electron Nuclear Double Resonance. ACS Nano 2014, 8, 3904–3912. [Google Scholar] [CrossRef]
- Jiang, D.-E.; Kühn, M.; Tang, Q.; Weigend, F. Superatomic Orbitals under Spin–Orbit Coupling. J. Phys. Chem. Lett. 2014, 5, 3286–3289. [Google Scholar] [CrossRef]
- Liu, C.; Lin, S.; Pei, Y.; Zeng, X.C. Semiring Chemistry of Au25(SR)18: Fragmentation Pathway and Catalytic Active site. J. Am. Chem. Soc. 2013, 135, 18067–18079. [Google Scholar] [CrossRef] [PubMed]
- Tlahuice-Flores, A.; Whetten, R.L.; Jose-Yacaman, M. Ligand Effects on the Structure and the Electronic Optical Properties of Anionic Au25(SR)18 Clusters. J. Phys. Chem. C 2013, 117, 20867–20875. [Google Scholar] [CrossRef]
- Zhang, P. X-ray Spectroscopy of Gold–Thiolate Nanoclusters. J. Phys. Chem. C 2014, 118, 25291–25299. [Google Scholar] [CrossRef]
- Chong, H.; Li, P.; Wang, S.; Fu, F.; Xiang, J.; Zhu, M.; Li, Y. Au25 Clusters as Electron-Transfer Catalysts Induced the Intramolecular Cascade Reaction of 2-nitrobenzonitrile. Sci. Rep. 2013, 3, 3214. [Google Scholar] [CrossRef] [Green Version]
- Kwak, K.; Kumar, S.S.; Pyo, K.; Lee, D. Ionic Liquid of a Gold Nanocluster: A Versatile Matrix for Electrochemical Biosensors. ACS Nano 2014, 8, 671–679. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, D.-E.; Mann, A.K.P.; Mullins, D.R.; Qiao, Z.-A.; Allard, L.F.; Zeng, C.; Jin, R.; Overbury, S.H. Thiolate Ligands as a Double-Edged Sword for CO Oxidation on CeO2 Supported Au25(SCH2CH2Ph)18 Nanoclusters. J. Am. Chem. Soc. 2014, 136, 6111–6122. [Google Scholar] [CrossRef] [PubMed]
- Stamplecoskie, K.G.; Kamat, P.V. Size-Dependent Excited State Behavior of Glutathione-Capped Gold Clusters and Their Light-Harvesting Capacity. J. Am. Chem. Soc. 2014, 136, 11093–11099. [Google Scholar] [CrossRef] [PubMed]
- Negishi, Y. Toward the Creation of Functionalized Metal Nanoclusters and Highly Active Photocatalytic Materials Using Thiolate-Protected Magic Gold Clusters. Bull. Chem. Soc. Jpn. 2014, 87, 375–389. [Google Scholar] [CrossRef] [Green Version]
- Antonello, S.; Dainese, T.; Pan, F.; Rissanen, K.; Maran, F. Electrocrystallization of Monolayer-Protected Gold Clusters: Opening the Door to Quality, Quantity, and New Structures. J. Am. Chem. Soc. 2017, 139, 4168–4174. [Google Scholar] [CrossRef] [Green Version]
- Fei, W.; Antonello, S.; Dainese, T.; Dolmella, A.; Lahtinen, M.; Rissanen, K.; Venzo, A.; Maran, F. Metal Doping of Au25(SR)18− Clusters: Insights and Hindsights. J. Am. Chem. Soc. 2019, 141, 16033–16045. [Google Scholar] [CrossRef]
- Hossain, S.; Imai, Y.; Motohashi, Y.; Chen, Z.; Suzuki, D.; Suzuki, T.; Kataoka, Y.; Hirata, M.; Ono, T.; Kurashige, W.; et al. Understanding and Designing One-Dimensional Assemblies of Ligand-Protected Metal Nanoclusters. Mater. Horiz. 2020, 7, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, L.; Liu, X.; Liao, L.; Zhuang, S.; Zhou, S.; Yang, J.; Wu, Z. Gold-Doping of Double-Crown Pd Nanoclusters. Chem. Eur. J. 2017, 23, 18187–18192. [Google Scholar] [CrossRef]
- Jiang, D.-E.; Dai, S. From Superatomic Au25(SR)18− to Superatomic M@Au24(SR)18q Core–Shell Clusters. Inorg. Chem. 2009, 48, 2720–2722. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Jiang, D.-E.; Li, G.; Gayathri, C.; Das, A.; Gil, R.R.; Jin, R. Monoplatinum Doping of Gold Nanoclusters and Catalytic Application. J. Am. Chem. Soc. 2012, 134, 16159–16162. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Zhang, R.; Selenius, E.; Ruan, P.; Yao, Y.; Zhou, Y.; Malola, S.; Häkkinen, H.; Teo, B.K.; Cao, Y.; et al. Solvent-Mediated Assembly of Atom-Precise Gold–Silver Nanoclusters to Semiconducting One-Dimensional Materials. Nat. Commun. 2020, 11, 2229. [Google Scholar] [CrossRef]
- Zhou, K.; Qin, C.; Wang, X.-L.; Shao, K.-Z.; Yan, L.-K.; Su, Z.-M. Unexpected 1D Self-Assembly of Carbonate-Templated Sandwich-Like Macrocycle-Based Ag20S10 Luminescent Nanoclusters. CrystEngComm 2014, 16, 7860–7864. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Tam, D.Y.S.; Zhang, L.L.-M.; Mak, T.C.W. Silver Thiolate Nano-Sized Molecular Clusters and Their Supramolecular Covalent Frameworks: An Approach Toward Pre-Templated Synthesis. Chem. Asian J. 2017, 12, 2763–2769. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.-M.; Qu, Q.-P.; Liang, Y.-X.; Wang, X.-P.; Liu, Q.-Y.; Kurmoo, M.; Su, H.-F.; Tung, C.-H.; Sun, D. Enclosing Classical Polyoxometallates in Silver Nanoclusters. Nanoscale 2019, 11, 10927–10931. [Google Scholar] [CrossRef]
- Wen, Z.-R.; Guan, Z.-J.; Zhang, Y.; Lin, Y.-M.; Wang, Q.-M. [Au7Ag9(dppf)3(CF3CO2)7BF4]n: A Linear Nanocluster Polymer from Molecular Au7Ag8 Clusters Covalently Linked by Silver Atoms. Chem. Commun. 2019, 55, 12992–12995. [Google Scholar] [CrossRef]
- Li, Q.; Luo, T.-Y.; Taylor, M.G.; Wang, S.; Zhu, X.; Song, Y.; Mpourmpakis, G.; Rosi, N.L.; Jin, R. Molecular “Surgery” on a 23-Gold-Atom Nanoparticle. Sci. Adv. 2017, 3, e1603193. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Russell, J.C.; Luo, T.-Y.; Roy, X.; Rosi, N.L.; Zhu, Y.; Jin, R. Modulating the Hierarchical Fibrous Assembly of Au Nanoparticles with Atomic Precision. Nat. Commun. 2018, 9, 3871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AbdulHalim, L.G.; Bootharaju, M.S.; Tang, Q.; Gobbo, S.D.; AbdulHalim, R.G.; Eddaoudi, M.; Jiang, D.-E.; Bakr, O.M. Ag29(BDT)12(TPP)4: A Tetravalent Nanocluster. J. Am. Chem. Soc. 2015, 137, 11970–11975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Kang, X.; Yuan, Q.; Qin, C.; Jin, S.; Wang, S.; Zhu, M. Capture of Cesium Ions with Nanoclusters: Effects on Inter- and Intramolecular Assembly. Chem. Mater. 2019, 31, 4945–4952. [Google Scholar] [CrossRef]
- Kitagawa, S.; Kitaura, R.; Noro, S.-I. Functional Porous Coordination Polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Wang, M.-Q.; Li, Y.-L.; Luo, P.; Jia, T.-T.; Huang, R.-W.; Zang, S.-Q.; Mak, T.C.W. Atomically Precise Site-Specific Tailoring and Directional Assembly of Superatomic Silver Nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069–1076. [Google Scholar] [CrossRef]
- Ma, X.-H.; Wang, J.-Y.; Guo, J.-J.; Wang, Z.-Y.; Zang, S.-Q. Reversible Wide-Range Tuneable Luminescence of a Dual-Stimuli-Responsive Silver Cluster-Assembled Material. Chin. J. Chem. 2019, 37, 1120–1124. [Google Scholar] [CrossRef]
- Alhilaly, M.J.; Huang, R.-W.; Naphade, R.; Alamer, B.; Hedhili, M.N.; Emwas, A.-H.; Maity, P.; Yin, J.; Shkurenko, A.; Mohammed, O.F.; et al. Assembly of Atomically Precise Silver Nanoclusters into Nanocluster-Based Frameworks. J. Am. Chem. Soc. 2019, 141, 9585–9592. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.-H.; Li, Y.; Yang, S.-X.; Zhao, R.-D.; Lu, Z.-X.; Liu, X.-L.; Qin, Y.; Zheng, L.-Y.; Cao, Q.-E. Three Silver Coordination Polymers with Diverse Architectures Constructed from Pyridine Carboxylic Hydrazide Ligands. Inorg. Chem. 2019, 58, 11793–11800. [Google Scholar] [CrossRef]
- Wang, Z.-K.; Sheng, M.-M.; Qin, S.-S.; Shi, H.-T.; Strømme, M.; Zhang, Q.-F.; Xu, C. Assembly of Discrete Chalcogenolate Clusters into a One-Dimensional Coordination Polymer with Enhanced Photocatalytic Activity and Stability. Inorg. Chem. 2020, 59, 2121–2126. [Google Scholar] [CrossRef]
- Xu, C.; Hedin, N.; Shi, H.-T.; Zhang, Q.-F. A Semiconducting Microporous Framework of Cd6Ag4(SPh)16 Clusters Interlinked Using Rigid and Conjugated Bipyridines. Chem. Commun. 2014, 50, 3710–3712. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Sheng, M.-M.; Shi, H.-T.; Strømme, M.; Zhang, Q.-F. Interlinking Supertetrahedral Chalcogenolate Clusters with Bipyridines to Form Two-Dimensional Coordination Polymers for Photocatalytic Degradation of Organic Dye. Dalton Trans. 2019, 48, 5505–5510. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Mohammed, O.F.; Bakr, O.M. Atomic-Level Doping of Metal Clusters. Acc. Chem. Res. 2018, 51, 3094–3103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattarai, B.; Zaker, Y.; Atnagulov, A.; Yoon, B.; Landman, U.; Bigioni, T.P. Chemistry and Structure of Silver Molecular Nanoparticles. Acc. Chem. Res. 2018, 51, 3104–3113. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, I.; Pradeep, T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev. 2017, 117, 8208–8271. [Google Scholar] [CrossRef]
- Li, X.-Y.; Su, H.-F.; Xu, J. A 2D Layer Network Assembled from an Open Dendritic Silver Cluster Cl@Ag11N24 and an N-Donor Ligand. Inorg. Chem. Front. 2019, 6, 3539–3544. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Huang, R.-W.; Wei, Y.-S.; Dong, X.-Y.; Wu, X.-H.; Du, C.-X.; Zang, S.-Q.; Mak, T.C.W. Hypersensitive Dual-Function Luminescence Switching of a Silver-Chalcogenolate Cluster-Based Metal–Organic Framework. Nat. Chem. 2017, 9, 689–697. [Google Scholar] [CrossRef]
- Huang, R.-W.; Dong, X.-Y.; Yan, B.-J.; Du, X.-S.; Wei, D.-H.; Zang, S.-Q.; Mak, T.C.W. Tandem Silver Cluster Isomerism and Mixed Linkers to Modulate the Photoluminescence of Cluster-Assembled Materials. Angew. Chem. Int. Ed. 2018, 57, 8560–8566. [Google Scholar] [CrossRef]
- Du, X.-S.; Yan, B.-J.; Wang, J.-Y.; Xi, X.-J.; Wang, Z.-Y.; Zang, S.-Q. Layer-Sliding-Driven Crystal Size and Photoluminescence Change in a Novel SCC-MOF. Chem. Commun. 2018, 54, 5361–5364. [Google Scholar] [CrossRef]
- Cao, M.; Pang, R.; Wang, Q.-Y.; Han, Z.; Wang, Z.-Y.; Dong, X.-Y.; Li, S.-F.; Zang, S.-Q.; Mak, T.C.W. Porphyrinic Silver Cluster Assembled Material for Simultaneous Capture and Photocatalysis of Mustard-Gas Simulant. J. Am. Chem. Soc. 2019, 141, 14505–14509. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Zhang, J.-W.; Wang, Q.-Y.; Li, H.-Y.; Dong, X.-Y.; Wang, S.; Zang, S.-Q. Fabrication of Silver Chalcogenolate Cluster Hybrid Membranes with Enhanced Structural Stability and Luminescence Efficiency. Chem. Commun. 2019, 55, 14677–14680. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Yin, D.; Hu, X.; Yang, B.; Liu, H.; Xie, Y.-P.; Liu, S.-X.; Ma, L.; Gao, G.-G. A Disulfur Ligand Stabilization Approach to Construct a Silver(I)-Cluster-Based Porous Framework as a Sensitive SERS Substrate. Nanoscale 2019, 11, 16293–16298. [Google Scholar] [CrossRef]
- Su, W.; Hong, M.; Jiang, F.; Liu, H.; Zhou, Z.; Wu, D.; Mak, T.C.W. A Cleavage of the S–C Bond in 2-aminothiophenal: Synthesis and Crystal Structure of [Ag11(μ5-S)(μ4-S2CNEt2)6(μ3-S2CNEt2)3]. Polyhedron 1996, 15, 4047–4051. [Google Scholar] [CrossRef]
- Chen, S.; Du, W.; Qin, C.; Liu, D.; Tang, L.; Liu, Y.; Wang, S.; Zhu, M. Assembly of the Thiolated [Au1Ag22(S-Adm)12]3+ Superatom Complex into a Framework Material through Direct Linkage by SbF6− Anions. Angew. Chem. Int. Ed. 2020, 59, 7542–7547. [Google Scholar] [CrossRef]
- Dong, X.-Y.; Huang, H.-L.; Wang, J.-Y.; Li, H.-Y.; Zang, S.-Q. A Flexible Fluorescent SCC-MOF for Switchable Molecule Identification and Temperature. Chem. Mater. 2018, 30, 2160–2167. [Google Scholar] [CrossRef]
- Wei, Z.; Wu, X.-H.; Luo, P.; Wang, J.-Y.; Li, K.; Zang, S.-Q. Matrix Coordination Induced Emission in a Three-Dimensional Silver Cluster-Assembled Material. Chem. Eur. J. 2019, 25, 2750–2756. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.-H.; Luo, P.; Wei, Z.; Li, Y.-Y.; Huang, R.-W.; Dong, X.-Y.; Li, K.; Zang, S.-Q.; Tang, B.Z. Guest-Triggered Aggregation-Induced Emission in Silver Chalcogenolate Cluster Metal–Organic Frameworks. Adv. Sci. 2019, 6, 1801304. [Google Scholar] [CrossRef] [Green Version]
- Lei, Z.; Pei, X.-L.; Jiang, Z.-G.; Wang, Q.-M. Cluster Linker Approach: Preparation of a Luminescent Porous Framework with NbO Topology by Linking Silver Ions with Gold(I) Clusters. Angew. Chem. Int. Ed. 2014, 53, 12771–12775. [Google Scholar] [CrossRef]
- Nguyen, T.-A.D.; Jones, Z.R.; Goldsmith, B.R.; Buratto, W.R.; Wu, G.; Scott, S.L.; Hayton, T.W. A Cu25 Nanocluster with Partial Cu(0) Character. J. Am. Chem. Soc. 2015, 137, 13319–13324. [Google Scholar] [CrossRef] [Green Version]
- Cook, A.W.; Jones, Z.R.; Wu, G.; Scott, S.L.; Hayton, T.W. An Organometallic Cu20 Nanocluster: Synthesis, Characterization, Immobilization on Silica, and “Click” Chemistry. J. Am. Chem. Soc. 2018, 140, 394–400. [Google Scholar] [CrossRef]
- Nguyen, T.-A.D.; Jones, Z.R.; Leto, D.F.; Wu, G.; Scott, S.L.; Hayton, T.W. Ligand-Exchange-Induced Growth of an Atomically Precise Cu29 Nanocluster from a Smaller Cluster. Chem. Mater. 2016, 28, 8385–8390. [Google Scholar] [CrossRef] [Green Version]
- Chakrahari, K.K.; Liao, J.-H.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C.W. [Cu13{S2CNnBu2}6(acetylide)4]+: A Two-Electron Superatom. Angew. Chem. Int. Ed. 2016, 55, 14704–14708. [Google Scholar] [CrossRef] [PubMed]
- Negishi, Y.; Kurashige, W.; Niihori, Y.; Nobusada, K. Toward the Creation of Stable, Functionalized Metal Clusters. Phys. Chem. Chem. Phys. 2013, 15, 18736–18751. [Google Scholar] [CrossRef]
- Puls, A.; Jerabek, P.; Kurashige, W.; Förster, M.; Molon, M.; Bollermann, T.; Winter, M.; Gemel, C.; Negishi, Y.; Frenking, G.; et al. A Novel Concept for the Synthesis of Multiply Doped Gold Clusters [(M@AunM′m)Lk]q+. Angew. Chem. Int. Ed. 2014, 53, 4327–4331. [Google Scholar] [CrossRef]
- Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Recent Progress in the Functionalization Methods of Thiolate-Protected Gold Clusters. J. Phys. Chem. Lett. 2014, 5, 4134–4142. [Google Scholar] [CrossRef]
- Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Precise Synthesis, Functionalization and Application of Thiolate-Protected Gold Clusters. Coord. Chem. Rev. 2016, 320–321, 238–250. [Google Scholar] [CrossRef]
- Niihori, Y.; Hossain, S.; Kumar, B.; Nair, L.V.; Kurashige, W.; Negishi, Y. Perspective: Exchange Reactions in Thiolate-Protected Metal Clusters. APL Mater. 2017, 5, 053201. [Google Scholar] [CrossRef]
- Niihori, Y.; Hossain, S.; Sharma, S.; Kumar, B.; Kurashige, W.; Negishi, Y. Understanding and Practical Use of Ligand and Metal Exchange Reactions in Thiolate-Protected Metal Clusters to Synthesize Controlled Metal Clusters. Chem. Rec. 2017, 17, 473–484. [Google Scholar] [CrossRef]
- Kumar, B.; Kawawaki, T.; Shimizu, N.; Imai, Y.; Suzuki, D.; Hossain, S.; Nair, L.V.; Negishi, Y. Gold Nanoclusters as Electrocatalysts: Size, Ligands, Heteroatom Doping, and Charge Dependences. Nanoscale 2020, 12, 9969–9979. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Catalytically Highly Active Top Gold Atom on Palladium Nanocluster. Nat. Mater. 2012, 11, 49–52. [Google Scholar] [CrossRef]
- Kusada, K.; Yamauchi, M.; Kobayashi, H.; Kitagawa, H.; Kubota, Y. Hydrogen-Storage Properties of Solid-Solution Alloys of Immiscible Neighboring Elements with Pd. J. Am. Chem. Soc. 2010, 132, 15896–15898. [Google Scholar] [CrossRef] [PubMed]
- Akutsu, M.; Koyasu, K.; Atobe, J.; Hosoya, N.; Miyajima, K.; Mitsui, M.; Nakajima, A. Experimental and Theoretical Characterization of Aluminum-Based Binary Superatoms of Al12X and Their Cluster Salts. J. Phys. Chem. A 2006, 110, 12073–12076. [Google Scholar] [CrossRef] [PubMed]
- Negishi, Y.; Nakamura, Y.; Nakajima, A.; Kaya, K. Photoelectron Spectroscopy of Gold–Silver Binary Cluster Anions (AunAgm−; 2 ≤ n + m ≤ 4). J. Chem. Phys. 2001, 115, 3657. [Google Scholar] [CrossRef]
Connection Mode | NC | Linker | Year | Ref. |
---|---|---|---|---|
Formation of metal−metal bond (Figure 2A) | [Au25(S-Bu)18]0 | - | 2014 | [122] |
[Au25(S-Pen)18]0 | - | 2017 | [140] | |
[Au24Hg(S-Bu)18]0 | - | 2019 | [141] | |
[Au24Cd(S-Bu)18]0 | - | |||
[Au4Pd2(PET)8]0 | - | 2017 | [143] | |
[Au4Pt2(SCH2PhCl)8]0 | - | 2020 | [142] | |
[Au4Pt2(PET)8]0 | - | |||
(AuAg)34(A-Adm)20 | - | 2020 | [146] | |
Formation of Ag−O, Ag−S, Ag−Cl bond, etc. (Figure 2B) | Ag20(CO3)(S-tBu)10(CH3COO)8(DMF)2 | - | 2014 | [147] |
Ag18(CO3)(S-tBu)10(NO3)6(DMF)4 | - | 2017 | [148] | |
Ag44(V10O28)(S-Et)20(PhSO3)18(H2O)2 | - | 2019 | [149] | |
Au7Ag8(dppf)3(CF3COO)7 | - | 2019 | [150] | |
Control of counter ion (Figure 2C) | [Au21(S-c-C6H11)12(DPPM)2]+ | [AgCl2]− | 2018 | [152] |
[Au21(S-c-C6H11)12(DPPM)2]+ | [Cl]− | |||
[Ag29(BDT)12(PPh3)4]3− | [Cs]+ | 2019 | [154] | |
Introduction of linker molecule (Figure 2D) | Ag14(DT-o-C)6 | pyrazine a | 2018 | [156] |
Ag18(PhPO3)(S-tBu)10(CF3COO)2(PhPO3H)4 | bpy-NH2 a | 2019 | [157] | |
Ag15Cl(S-tBu)8(CF3COO)5.67(NO3)0.33(DMF)2 | bpy a | 2019 | [158] | |
Ag10(CF3COO)4(S-tBu)6(CH3CN)2 | p-iah a | 2019 | [159] | |
Ag10(CF3COO)4(S-tBu)6(CH3CN) | o-iah a | |||
Cd6Ag4(S-Ph)16(DMF)3(CH3OH) | bpe a | 2020 | [160] |
Connection Mode | NC | Linker | Year | Ref. |
---|---|---|---|---|
Formation of Ag−O, Ag−S, Ag−Cl bond, etc. (Figure 2B) | Ag20(CO3)(S-iPr)10(CF3COO)9(CF3COOH)(CH3OH)2 | - | 2017 | [148] |
Ag20(CO3)(S-Cy)10(CF3COO)10(CF3COOH)2(H2O)2 | - | |||
Ag46(V10O28)(S-Et)23(PhSO3)15(CO3) | - | 2019 | [149] | |
Ag11Cl(N-L)8(CF3COO)2·2CHCl3 | - | 2019 | [166] | |
Ag11Cl(N-L)8(NO3)2·2CHCl3 | - | |||
Ag11Cl(N-L)8(CF3SO3)2·2CHCl3 | - | |||
Introduction of linker molecule (Figure 2D) | Ag12(S-tBu)6(CF3COO)6 | bpy a | 2018 | [169] |
Ag14(DT-o-C)6 | dipyridin-4-yl-diazene a | 2018 | [156] | |
Ag12(S-tBu)6(CF3COO)6 | TPPA a | 2018 | [170] | |
Ag12(S-tBu)6(CF3COO)3 | TPyP a | 2019 | [171] | |
Ag14Cl(S-tBu)8(CF3COO)5(DMF) | bpy a | 2019 | [158] | |
Ag10(CF3COO)4(S-tBu)6(CH3CN)4 | m-iah a | 2019 | [159] | |
Ag12(S-tBu)6(CF3COO)6(CH3CN)6 | bpz-NH2 a | 2019 | [172] |
Connection Mode | NC or Metal Ion | Linker | Year | Ref. |
---|---|---|---|---|
Formation of Ag−O, Ag−S, Ag−Cl bond, etc. (Figure 2B) | Ag14(S-iPr)6(CF3COO)11(H2O)3(CH3OH) | - | 2017 | [148] |
Ag44(Mo6O19)(S-Et)24(SCl4)3 | - | 2019 | [149] | |
Ag17(C5NS2H10)14 | - | 2019 | [173] | |
Control of counter ion (Figure 2C) | [Au1Ag22(S-Adm)12Cl]2+ | SbF6− | 2020 | [175] |
[Au1Ag22(S-Adm)12]3+ | SbF6− | |||
Introduction of linker molecule (Figure 2D) | Ag12(S-tBu)8(CF3COO)4 | bpy a | 2017 | [168] |
Ag14(DT-o-C)6 | 1,4-bis(4- pyridyl)benzene a | 2018 | [156] | |
Ag10(S-tBu)6(CF3COO)2(PhPO3H)2 | bpy a | 2018 | [176] | |
Ag12(S-tBu)6(CF3COO)6 | CPPP a | 2019 | [177] | |
Ag12(S-tBu)6(CF3COO)6 Ag8(S-tBu)4(CF3COO)4 | tppe a | 2019 | [178] | |
Ag+ | [C(Au-mdppz)6](BF4)2 a | 2014 | [179] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebina, A.; Hossain, S.; Horihata, H.; Ozaki, S.; Kato, S.; Kawawaki, T.; Negishi, Y. One-, Two-, and Three-Dimensional Self-Assembly of Atomically Precise Metal Nanoclusters. Nanomaterials 2020, 10, 1105. https://doi.org/10.3390/nano10061105
Ebina A, Hossain S, Horihata H, Ozaki S, Kato S, Kawawaki T, Negishi Y. One-, Two-, and Three-Dimensional Self-Assembly of Atomically Precise Metal Nanoclusters. Nanomaterials. 2020; 10(6):1105. https://doi.org/10.3390/nano10061105
Chicago/Turabian StyleEbina, Ayano, Sakiat Hossain, Hikaru Horihata, Shuhei Ozaki, Shun Kato, Tokuhisa Kawawaki, and Yuichi Negishi. 2020. "One-, Two-, and Three-Dimensional Self-Assembly of Atomically Precise Metal Nanoclusters" Nanomaterials 10, no. 6: 1105. https://doi.org/10.3390/nano10061105
APA StyleEbina, A., Hossain, S., Horihata, H., Ozaki, S., Kato, S., Kawawaki, T., & Negishi, Y. (2020). One-, Two-, and Three-Dimensional Self-Assembly of Atomically Precise Metal Nanoclusters. Nanomaterials, 10(6), 1105. https://doi.org/10.3390/nano10061105