Thermal Conductivity Performance of 2D h-BN/MoS2/-Hybrid Nanostructures Used on Natural and Synthetic Esters
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, R. The challenges and opportunities of nanofluids. In Proceedings of the 2019 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 7–10 April 2019; pp. 110–114. [Google Scholar]
- Amin, D.; Walvekar, R.; Khalid, M.; Vaka, M.; Mujawar, N.M.; Gupta, T.C.S.M. Recent Progress and Challenges in Transformer Oil Nanofluid Development: A Review on Thermal and Electrical Properties. IEEE Access 2019, 7, 151422–151438. [Google Scholar] [CrossRef]
- Rafiq, M.; Lv, Y.Z.; Zhou, Y.; Ma, K.B.; Wang, W.; Li, C.R.; Wang, Q. Use of vegetable oils as transformer oils—A review. Renew. Sustain. Energy Rev. 2015, 52, 308–324. [Google Scholar] [CrossRef]
- Wong, K.V.; De Leon, O. Applications of nanofluids: Current and future. Adv. Mech. Eng. 2010, 2, 519659. [Google Scholar] [CrossRef] [Green Version]
- Salehirad, M.; Nikje, M.M.A. Properties of modified hexagonal boron nitride as stable nanofluids for thermal management applications. Russ. J. Appl. Chem. 2019, 92, 78–86. [Google Scholar] [CrossRef]
- Fofana, I. 50 years in the development of insulating liquids. IEEE Electr. Insul. Mag. 2013, 29, 13–25. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.; Narayanan, T.N.; Gao, G.; Rohde, M.; Tsentalovich, D.A.; Pasquali, M.; Ajayan, P.M. Electrically insulating thermal nano-oils using 2D fillers. ACS Nano 2012, 6, 1214–1420. [Google Scholar] [CrossRef]
- Rouabeh, J.; M’barki, L.; Hammami, A.; Jallouli, I.; Driss, A. Studies of different types of insulating oils and their mixtures as an alternative to mineral oil for cooling power transformers. Heliyon 2019, 5, e01159. [Google Scholar] [CrossRef] [Green Version]
- Madanhire, I.; Mbohwa, C.; Madanhire, I.; Mbohwa, C. Development of lubricants. In Mitigating Environmental Impact of Petroleum Lubricants; Madanhire, I., Mbohwa, C., Eds.; Springer: Cham, Switzerland, 2016; pp. 85–101. [Google Scholar]
- Nowak, P.; Kucharska, K.; Kamiński, M. Ecological and health effects of lubricant oils emitted into the environment. Int. J. Environ. Res. Public Health 2019, 16, 3002. [Google Scholar] [CrossRef] [Green Version]
- Krolczyk, G.M.; Maruda, R.W.; Krolczyk, J.B.; Wojciechowski, S.; Mia, M.; Nieslony, P.; Budzike, G. Ecological trends in machining as a key factor in sustainable production—A review. J. Clean. Prod. 2019, 218, 601–615. [Google Scholar] [CrossRef]
- Benedicto, E.; Carou, D.; Rubio, E.M. Technical, economic and environmental review of the Lubrication/Cooling systems used in machining processes. Procedia Eng. 2017, 184, 99–116. [Google Scholar] [CrossRef]
- Peña-Parás, L.; Maldonado-Cortés, D.; Taha-Tijerina, J. Eco-friendly nanoparticle additives for lubricants and their tribological characterization. In Handbook of Ecomaterials; Torres, L.M., Kharissova, O.V., Kharisov, B.I., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 1–21. [Google Scholar]
- Taha-Tijerina, J.; Narayanan, T.N.; Avali, S.; Ajayan, P.M. 2D structures-based energy management nanofluids. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9–15 November 2012. IMECE 2012-87890. [Google Scholar]
- Huang, Z.; Li, J.; Yao, W.; Wang, F.; Wan, F.; Tan, Y.; Mehmood, M.A. Electrical and thermal properties of insulating oil-based nanofluids: A comprehensive overview. IET Nanodielectr. 2019, 2, 27–40. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.J. Thermal transport and challenges on nanofluids performance. In Microfluidics and Nanofluidics; Kandelousi, M.S., Ed.; IntechOpen: Rijeka, Croatia, 2018; pp. 215–256. [Google Scholar]
- Nagendramma, P.; Kaul, S. Development of ecofriendly/biodegradable lubricants: An overview. Renew. Sustain. Energy Rev. 2012, 16, 764–774. [Google Scholar] [CrossRef]
- Heikal, E.K.; Elmelawy, M.S.; Khalil, S.A.; Elbasuny, N.M. Manufacturing of environment friendly biolubricants from vegetable oils. Egypt. J. Pet. 2017, 26, 53–55. [Google Scholar] [CrossRef] [Green Version]
- Woma, T.Y.; Lawal, S.A.; Abdulrahman, A.S.; Olutoye, M.A.; Ojapah, M.M. Vegetable oil based lubricants: Challenges and prospects. Tribology 2019, 14, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, H.S.; Patel, S. The performance and oxidation stability of sustainable metalworking fluid derived from vegetable extracts. Proc. Inst. Mech. Eng. B 2006, 220, 2027–2040. [Google Scholar] [CrossRef]
- Petlyuk, A.M.; Adams, R.J. Oxidation stability and tribological behavior of vegetable oil hydraulic fluids. Tribol. Trans. 2004, 47, 182–187. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.; Aviña, K.; Diabb, J.M. Tribological and Thermal Transport Performance of SiO2-Based Natural Lubricants. Lubricants 2019, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, H.M.; Tulio, L.; Jasinski, R.; Almeida, G. Aging markers for in-service natural ester-based insulating fluids. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 714–719. [Google Scholar] [CrossRef]
- Ghani, A.S.; Muhamad, N.A.; Noorden, Z.A.; Zainuddin, H.; Bakar, A.; Talib, M.A. Methods for improving the workability of natural ester insulating oils in power transformer applications: A review. Electr. Power Syst. Res. 2018, 163, 655–667. [Google Scholar] [CrossRef]
- Yao, W.; Wang, W.; Sun, P.; Mehmood, M.A.; Huang, Z. Effect of h-BN and Fe3O4 nanoparticles on streamer propagation and dissipation in vegetable oil based nanofluids. AIP Adv. 2019, 9, 085306. [Google Scholar] [CrossRef] [Green Version]
- Maharana, M.; Baruah, N.; Nayak, S.K.; Meher, N.; Iyer, P.K. Condition assessment of aged ester-based nanofluid through physicochemical and spectroscopic measurement. IEEE Trans. Instrum. Meas. 2019, 68, 4853–4863. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 2012, 16, 143–169. [Google Scholar] [CrossRef]
- Eberhardt, R.; Muhr, H.M.; Lick, W.; Baumann, F.; Pukel, G. Comparison of alternative insulating fluids. In Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Quebec, QC, Canada; IEEE: Piscataway, NJ, USA, 2008; pp. 591–593. [Google Scholar]
- IEEE Power Engineering Society. C57.147-2018—IEEE Guide for Acceptance and Maintenance of Natural Ester Insulating Liquid in Transformers. 2018. Available online: https://standards.ieee.org/standard/C57_147-2018.html (accessed on 3 March 2020).
- Srikant, R.R.; Rao, P.N. Use of vegetable-based cutting fluids for sustainable machining. In Sustainable Machining; Davim, J.P., Ed.; Springer: Cham, Switzerland, 2017; pp. 31–46. [Google Scholar]
- Azmi, W.H.; Sharma, K.V.; Mamat, R.; Najafi, G.; Mohamad, M.S. The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids—A review. Renew. Sustain. Energy Rev. 2016, 53, 1046–1058. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.J.; Narayanan, T.N.; Tiwary, C.S.; Lozano, K.; Chipara, M.; Ajayan, P.M. Nanodiamond-based thermal fluids. ACS Appl. Mater. Interfaces 2014, 6, 4778–4785. [Google Scholar] [CrossRef] [PubMed]
- Sarviya, R.M.; Fuskele, V. Review on Thermal Conductivity of Nanofluids. Mater. Today Proc. 2017, 4, 4022–4031. [Google Scholar] [CrossRef]
- Leong, K.Y.; Ku, A.K.Z.; Ong, H.C.; Ghazali, M.J.; Baharum, A. Synthesis and thermal conductivity characteristic of hybrid nanofluids—A review. Renew. Sustain. Energy Rev. 2017, 75, 868–878. [Google Scholar] [CrossRef]
- Koshy, C.P.; Rajendrakumar, P.K.; Thottackkad, M.V. Evaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperatures. Wear 2015, 330–331, 288–308. [Google Scholar] [CrossRef]
- Padmini, R.; Vamsi Krishna, P.; Rao, K.M. Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel. Tribol. Int. 2016, 94, 490–501. [Google Scholar] [CrossRef]
- Ribeiro, H.; Trigueiro, J.P.C.; Lopes, M.C.; Pedrotti, J.J.; Woellner, C.F.; Silva, W.M.; Silva, G.G.; Ajayan, P.M. Enhanced thermal conductivity and mechanical properties of hybrid MoS2/h-BN polyurethane nanocomposites. J. Appl. Polym. Sci. 2018, 135, 46560. [Google Scholar] [CrossRef]
- Ribeiro, H.; Trigueiro, J.P.C.; Silva, W.M.; Woellner, C.F.; Owuor, P.S.; Chipara, A.C.; Lopes, M.C.; Tiwary, C.S.; Pedrotti, J.J.; Villegas, R.; et al. Hybrid MoS2/h-BN nanofillers as synergic heat dissipation and reinforcement additives in epoxy nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 24485–24492. [Google Scholar] [CrossRef]
- Ribeiro, H.; Trigueiro, J.P.C.; Woellner, C.F.; Pedrotti, J.J.; Miquita, D.R.; Silva, W.M.; Lopes, M.C.; Fechinee, G.J.M.; Luciano, M.A.; Silva, G.G.; et al. Higher thermal conductivity and mechanical enhancements in hybrid 2D polymer nanocomposites. Polym. Test. 2020, 87, 106510. [Google Scholar] [CrossRef]
- Charoo, M.S.; Wani, M.F. Tribological properties of h-BN nanoparticles as lubricant additive on cylinder liner and piston ring. Lubr. Sci. 2017, 29, 241–254. [Google Scholar] [CrossRef]
- Ribeiro, H.; Trigueiro, J.P.C.; Owuor, P.S.; Machado, L.D.; Woellner, C.F.; Pedrotti, J.J.; Jaques, Y.M.; Kosolwattana, S.; Chipara, A.; Silva, W.M.; et al. Hybrid 2D nanostructures for mechanical reinforcement and thermal conductivity enhancement in polymer composites. Compos. Sci. Technol. 2018, 159, 103–110. [Google Scholar] [CrossRef]
- Du, B.X.; Li, X.L.; Li, J.; Tao, X.Y. Effects of BN nanoparticles on thermal conductivity and breakdown strength of vegetable oil. In Proceedings of the 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, Australia, 19–22 July 2015; pp. 476–479. [Google Scholar]
- Mohamad, N.A.; Azis, N.; Jasni, J.; Ab Kadir, M.Z.A.; Yunus, R.; Yaakub, Z. Impact of Fe3O4, CuO and Al2O3 on the AC breakdown voltage of palm oil and coconut oil in the presence of CTAB. Energies 2019, 12, 1605. [Google Scholar] [CrossRef] [Green Version]
- Kurimský, J.; Rajňák, M.; Cimbala, R.; Rajnič, J.; Timko, M.; Kopčanský, P. Effect of magnetic nanoparticles on partial discharges in transformer oil. J. Magn. Magn. Mater. 2020, 496, 165923. [Google Scholar]
- Ghoneim, S.S.M.; Sabiha, N.A.; Hessien, M.M.; Alahmadi, A. Evaluation of dielectric breakdown strength of transformer oil with BaTiO3 and NiFe2O4 nanoparticles. Electr. Eng. 2019, 101, 369–377. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J.; Luo, Z.; Tung, S.; Schneider, E.; Wu, J.; Li, X. Investigation on two abnormal phenomena about thermal conductivity enhancement of BN/EG nanofluids. Nanoscale Res. Lett. 2011, 6, 443. [Google Scholar] [CrossRef] [Green Version]
- Ilhan, B.; Kurt, M.; Ertürk, H. Experimental investigation of heat transfer enhancement and viscosity change of hBN nanofluids. Exp. Therm. Fluid Sci. 2016, 77, 272–283. [Google Scholar] [CrossRef]
- Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227. [Google Scholar] [CrossRef]
- Liu, G.; Robertson, A.W.; Li, M.M.J.; Kuo, W.C.H.; Darby, M.T.; Muhieddine, M.H.; Lin, Y.C.; Suenaga, K.; Stamatakis, M.; Warner, J.H.; et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–816. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, V.; Kumar, R.; Said, Z. A review on thermophysical properties of nanofluids and heat transfer applications. Renew. Sustain. Energy Rev. 2017, 74, 638–670. [Google Scholar] [CrossRef]
- Babita; Sharma, S.K.; Gupta, S.M. Preparation and evaluation of stable nanofluids for heat transfer application: A review. Exp. Therm. Fluid Sci. 2016, 79, 202–212. [Google Scholar] [CrossRef]
- Su, Y.; Gong, L.; Li, B.; Chen, D. An experimental investigation on thermal properties of molybdenum disulfide nanofluids. In Proceedings of the 2015 International Conference on Materials, Environmental and Biological Engineering, Guilin, China, 28–30 March 2015; pp. 881–885. [Google Scholar]
- Zeng, Y.-X.; Zhong, X.-W.; Liu, Z.-Q.; Chen, S.; Li, N. Preparation and enhancement of thermal conductivity of heat transfer oil-based MoS2 nanofluids. J. Nanomater. 2013, 2013, 1–6. [Google Scholar]
- Ellahi, R.; Sait, S.M.; Shehzad, N.; Ayaz, Z. A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. Int. J. Numer. Methods Heat Fluid Flow. 2019, 30, 834–854. [Google Scholar] [CrossRef]
- Aboalhamayie, A.; Festa, L.; Ghamari, M. Evaporation rate of colloidal droplets of jet fuel and carbon-based nanoparticles: Effect of thermal conductivity. Nanomaterials 2019, 9, 1297. [Google Scholar] [CrossRef] [Green Version]
- GE Prolec—VG-100: Fluid Natural Ester-based Fluid for Transformers. Monterrey. Available online: http://prolecge.com/wp-content/uploads/2017/10/VG-100_Technical_Information.pdf (accessed on 10 March 2020).
- M&I Materials Ltd. MIDEL 7131 Technical Datasheet No 14, Thermal Properties. Available online: https://www.midel.com/app/uploads/2018/09/MIDEL_7131_Thermal_Properties.pdf (accessed on 28 February 2020).
- Cargil Inc. Envirotemp FR3TM fluid Formulated for Performance. Minnesota, USA. Available online: https://www.cargill.com/doc/1432076501275/envirotemp-fr3-brochure.pdf (accessed on 28 February 2020).
- Rodríguez-Díaz, J.; Contreras, J.E.; Montes, J.A. Aplicación de un éster natural base soya en transformadores. In Proceedings of the 2018 IEEE 38th Central America and Panama Convention (CONCAPAN XXXVIII), San Salvador, El Salvador, 7–9 November 2018. [Google Scholar]
- Cai, Q.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E.J.G.; Li, L.H. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 2019, 5, eaav0129. [Google Scholar] [CrossRef] [Green Version]
- Gandi, A.N.; Schwingenschlögl, U. Thermal conductivity of bulk and monolayer MoS2. Europhys. Lett. 2016, 113, 36002. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.; Rajak, P.; Norouzzadeh, P.; Singh, D.J.; Kalia, R.K.; Nakano, A.; Vashishta, P. Thermal conductivity of MoS2 monolayers from molecular dynamics simulations. AIP Adv. 2019, 9, 035042. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar] [CrossRef]
- Nadolny, Z.; Dombek, G.; Nadolny, Z.; Dombek, G. Electro-insulating nanofluids based on synthetic ester and TiO2 or C60 nanoparticles in power transformer. Energies 2018, 11, 1953. [Google Scholar] [CrossRef] [Green Version]
- Salama, M.M.M.; Mansour, D.E.A.; Daghrah, M.; Abdelkasoud, S.M.; Abbas, A.A. Thermal performance of transformers filled with environmentally friendly oils under various loading conditions. Int. J. Electr. Power Energy Syst. 2020, 118, 105743. [Google Scholar] [CrossRef]
- Bartels, T.; Bock, W.; Braun, J.; Busch, C.; Buss, W.; Dresel, W.; Freiler, C.; Harpescheid, M.; Heckler, R.-P.; Hörner, D.; et al. Lubricants and Lubrication. In Ullmann’s Encyclopedia of Industrial Chemistry; Bohnet, M., Ed.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2003. [Google Scholar]
- Song, I.; Park, C.; Choi, H.C. Synthesis and properties of molybdenum disulphide: From bulk to atomic layers. RSC Adv. 2015, 5, 7495–7514. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhu, J.; Liu, Z.; Yan, Z.; Fan, X.; Lin, J.; Wang, G.; Yan, Q.; Yu, T.; Ajayan, P.M.; et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res. 2014, 7, 1232–1240. [Google Scholar] [CrossRef]
- Yan, R.; Simpson, J.R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X.; Kis, A.; Luo, T.; Walker, A.R.H.; Xing, H.G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent raman spectroscopy. ACS Nano 2014, 8, 986–993. [Google Scholar] [CrossRef]
- Lee, S.L.; Saidur, R.; Sabri, M.F.M.; Min, T.K. Molecular dynamic simulation: Studying the effects of Brownian motion and induced micro-convection in nanofluids. Numer. Heat Transf. Part A Appl. 2016, 69, 643–658. [Google Scholar] [CrossRef]
- Peña-Parás, L.; García-Pineda, P.; Maldonado-Cortés, D.; Garza, G.T.; Taha-Tijerina, J. Temperature dependence of the extreme-pressure behavior of CuO and TiO2 nanoparticle additives in metal-forming polymeric lubricants. Ind. Lubr. Tribol. 2017, 69, 730–737. [Google Scholar] [CrossRef]
- Teruel, M.; Aguilar, T.; Martínez-Merino, P.; Carrillo-Berdugo, I.; Gallardo-Bernal, J.J.; Gómez-Villarejo, R.; Alcántara, R.; Fernández-Lorenzo, C.; Navas, J. 2D MoSe2-based nanofluids prepared by liquid phase exfoliation for heat transfer applications in concentrating solar power. Sol. Energy Mater. Sol. Cells. 2019, 200, 109972. [Google Scholar] [CrossRef]
- Shin, S.; Chen, R. Thermal transport measurements of nanostructures using suspended micro-devices. Nanoscale Energy Transp. 2020, 12-1, 12–33. [Google Scholar]
- Taha-Tijerina, J.; Peña-Parás, L.; Maldonado-Cortés, D. 2D-Based Nanofluids: Materials Evaluation and Performance. In Two-Dimensional Materials—Synthesis, Characterization and Potential Applications; Nayak, P.K., Ed.; IntechOpen: Rijeka, Croatia, 2016; pp. 153–198. [Google Scholar]
- Taha-Tijerina, J.; Cadena-de la Peña, N.; Cue-Sampedro, R.; Rivera-Solorio, C. Thermo-physical evaluation of dielectric mineral oil-based nitride and oxide nanofluids for thermal transport applications. J. Therm. Sci. Technol. 2019, 14, JTST0007. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, S.M.; Raj, C.S.; Michael, J.J.; Irfan, A.M. A Comparative Investigation of Al2O3/H2O, SiO2/H2O and ZrO2/H2O Nanofluid for Heat Transfer Applications. Dig. J. Nanomater. Biostruct. 2017, 12, 255–264. [Google Scholar]
- Parto, K.; Pal, A.; Xie, X.; Cao, W.; Banerjee, K. Interfacial thermal conductivity of 2D layered materials: An atomistic approach. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018. [Google Scholar]
- Liu, Y.; Ong, Z.Y.; Wu, J.; Zhao, Y.; Watanabe, K.; Taniguchi, T.; Chi, D.; Zhang, G.; Thong, J.T.L.; Qiu, C.-W.; et al. Thermal conductance of the 2D MoS2/h-BN and graphene/h-BN interfaces. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, V.; Kagdada, H.L.; Jha, P.K.; Śpiewak, P.; Kurzydłowski, K.J. Thermal transport properties of boron nitride based materials: A review. Renew. Sustain. Energy Rev. 2020, 120, 109622. [Google Scholar] [CrossRef]
General Properties | Materials | ||||
---|---|---|---|---|---|
Units | Standard | Envirotemp ® FR3 TM | Midel 7131 | VG-100 | |
Density @ 25 °C | g/cm3 | ASTM D924 | 0.92 | 0.95 | 0.92 |
Kinematic viscosity @ 25 °C | mm2/s | ASTM D445 | - | 53 | - |
Kinematic viscosity @ 40 °C | mm2/s | ASTM D445 | 33 | 29.5 | 31 |
Kinematic Viscosity @ 100 °C | mm2/s | ASTM D445 | 8 | 5.3 | 6 |
Thermal conductivity @ 25 °C | (W m−1 K−1) | ASTM D7896 | 0.167 | 0.147 | - |
Thermal conductivity @ 50 °C | (W m−1 K−1) | ASTM D7896 | - | 0.145 | - |
Pour point | (°C) | ASTM D97 | −18 to −23 | −56 | −12 to −15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha-Tijerina, J.; Ribeiro, H.; Aviña, K.; Martínez, J.M.; Godoy, A.P.; Cremonezzi, J.M.d.O.; Luciano, M.A.; Gimenes Benega, M.A.; Andrade, R.J.E.; Fechine, G.J.M.; et al. Thermal Conductivity Performance of 2D h-BN/MoS2/-Hybrid Nanostructures Used on Natural and Synthetic Esters. Nanomaterials 2020, 10, 1160. https://doi.org/10.3390/nano10061160
Taha-Tijerina J, Ribeiro H, Aviña K, Martínez JM, Godoy AP, Cremonezzi JMdO, Luciano MA, Gimenes Benega MA, Andrade RJE, Fechine GJM, et al. Thermal Conductivity Performance of 2D h-BN/MoS2/-Hybrid Nanostructures Used on Natural and Synthetic Esters. Nanomaterials. 2020; 10(6):1160. https://doi.org/10.3390/nano10061160
Chicago/Turabian StyleTaha-Tijerina, Jaime, Hélio Ribeiro, Karla Aviña, Juan Manuel Martínez, Anna Paula Godoy, Josué Marciano de Oliveira Cremonezzi, Milene Adriane Luciano, Marcos Antônio Gimenes Benega, Ricardo Jorge Espanhol Andrade, Guilhermino José Macedo Fechine, and et al. 2020. "Thermal Conductivity Performance of 2D h-BN/MoS2/-Hybrid Nanostructures Used on Natural and Synthetic Esters" Nanomaterials 10, no. 6: 1160. https://doi.org/10.3390/nano10061160
APA StyleTaha-Tijerina, J., Ribeiro, H., Aviña, K., Martínez, J. M., Godoy, A. P., Cremonezzi, J. M. d. O., Luciano, M. A., Gimenes Benega, M. A., Andrade, R. J. E., Fechine, G. J. M., Babu, G., & Castro, S. (2020). Thermal Conductivity Performance of 2D h-BN/MoS2/-Hybrid Nanostructures Used on Natural and Synthetic Esters. Nanomaterials, 10(6), 1160. https://doi.org/10.3390/nano10061160