Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar Absorption
Abstract
:Contents
1. Introduction | 3 |
2. Carbon-Based Nanofluids: Preparation and Stability | 4 |
2.1. Carbon Nanomaterials | 4 |
2.2. Preparation of Carbon-Based Nanofluids | 6 |
2.3. Stability of Carbon-Based Nanofluids | 6 |
2.3.1. Use Surface-Functionalized and Sonication Technique for Nanofluid Dispersion and Stability | 7 |
2.3.2. Addition of Surfactants | 8 |
3. Properties of Carbon-Based Nanofluids | 9 |
3.1. Optical Properties | 9 |
3.1.1. Theories for Modeling Optical Properties | 9 |
3.1.2. Experiments on Optical Properties | 13 |
3.1.3. Photothermal Conversion Performance | 16 |
3.2. Thermal Conductivity | 17 |
3.2.1. Thermal Conductivity of Graphene-Based Nanofluids | 17 |
3.2.2. Thermal Conductivity of CNT-Based Nanofluids | 20 |
3.3. Viscosity of Nanofluids Containing Carbon Structures | 21 |
3.4. Solar Steam Generation of Nanofluids Containing Carbon Structures | 22 |
3.5. Other Properties | 25 |
4. Carbon-Based Nanofluids for Direct Solar Absorption | 25 |
4.1. Carbon Nanotube-Based Nanofluids | 25 |
4.2. Graphene-Based Nanofluids | 27 |
4.3. Hybrid Carbon Nanomaterial-Based Nanofluids | 28 |
4.4. Other Carbon Nanomaterial-Based Nanofluids | 31 |
5. Challenges and Recommendations for Future Work | 32 |
5.1. Challenges | 32 |
5.1.1. Instability of Nanoparticles Dispersion | 32 |
5.1.2. High Cost | 32 |
5.1.3. Pump Power and Pressure Loss | 32 |
5.1.4. Erosion of Components | 32 |
5.2. Recommendations for Future Work | 32 |
6. Conclusions | 33 |
References | 33 |
1. Introduction
2. Carbon-Based Nanofluids: Preparation and Stability
2.1. Carbon Nanomaterials
2.2. Preparation of Carbon-Based Nanofluids
2.3. Stability of Carbon-Based Nanofluids
2.3.1. Use Surface-Functionalization and Sonication Technique for Nanofluid Dispersion and Stability
2.3.2. Addition of Surfactants
3. Properties of Carbon-Based Nanofluids
3.1. Optical Properties
3.1.1. Theories for Modeling Optical Properties
Lambert–Beer Approach
Rayleigh Scattering Approximation
Maxwell–Garnett Approximation
Mie and Gans Approach
Discrete Dipole Approximation
3.1.2. Experiments on Optical Properties
3.1.3. Photothermal Conversion Performance
3.2. Thermal Conductivity
3.2.1. Thermal Conductivity of Graphene-Based Nanofluids
3.2.2. Thermal Conductivity of CNT-Based Nanofluids
3.3. Viscosity of Nanofluids Containing Carbon Structures
3.4. Solar Steam Generation of Nanofluids Containing Carbon Structures
3.5. Other Properties
4. Carbon-Based Nanofluids for Direct Solar Absorption
4.1. Carbon Nanotube-Based Nanofluids
4.2. Graphene-Based Nanofluids
4.3. Hybrid Carbon Nanomaterial-Based Nanofluids
4.4. Other Carbon Nanomaterial-Based Nanofluids
5. Challenges and Recommendations for Future Work
5.1. Challenges
5.1.1. Instability of Nanoparticles Dispersion
5.1.2. High Cost
5.1.3. Pump Power and Pressure Loss
5.1.4. Erosion of Components
5.2. Recommendations for Future Work
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CNMs | Carbon nanomaterials |
CNSs | Carbon nanospheres |
CNTs | Carbon nanotubes |
CTAB | Cetyl trimethyl ammonium bromide |
D | Diameter |
DA | Denatured alcohol |
DB | Dodecyl betaine |
DI | Deionized |
DTAB | Dodecyl trimethyl ammonium bromide |
SWCNTs | Single-walled carbon nanotubes |
DWCNTs | Double-walled carbon nanotubes |
MWCNTs | Multiwalled carbon nanotubes |
PUMWCNTs | Partially unzipped multiwalled carbon nanotubes |
f-CNTs | Functionalized carbon nanotubes |
CNHs | Carbon nanohorns |
SWCNHs | Single-walled carbon nanohorns |
EG | Ethylene glycol |
GNPts | Graphene Nanoplatelets |
GNPs | Graphite nanoparticles |
GO | Graphene oxide |
Gr | Graphene |
rGO | Reduced graphene oxide |
L | Length |
PG | Propylene glycol |
PVP | Polyvinyl pyrrolidone |
SDBS | Sodium dodecyl benzene sulfonate |
SDS | Sodium dodecyl sulfate |
SOCT | Sodium octanoate |
TH | Therminol |
DASCs | Direct absorption solar collectors |
(β-CD) | β-cyclodextrin |
References
- Thirugnanasambandam, M.; Iniyan, S.; Goic, R. A review of solar thermal technologies. Renew. Sustain. Energy Rev. 2010, 14, 312–322. [Google Scholar] [CrossRef]
- Lewis, N.S. Toward cost-effective solar energy use. Science 2007, 315, 798–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okujagu, C.U.; Adjepong, S.K. Performance of a simple flat plate solar collector at an equatorial location. Sol. Wind Technol. 1989, 6, 283–289. [Google Scholar] [CrossRef]
- Tyagi, H.; Phelan, P.; Prasher, R. Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. J. Sol. Energy Eng. 2009, 131, 041004. [Google Scholar] [CrossRef]
- Abdelrahman, M.; Fumeaux, P.; Suter, P. Study of solid-gas-suspensions used for direct absorption of concentrated solar radiation. Sol. Energy 1979, 22, 45–48. [Google Scholar] [CrossRef]
- Kameya, Y.; Hanamura, K. Enhancement of solar radiation absorption using nanoparticle suspension. Sol. Energy 2011, 85, 299–307. [Google Scholar] [CrossRef]
- Taylor, R.A.; Phelan, P.E.; Otanicar, T.P.; Adrian, R.; Prasher, R. Nanofluid optical property characterization: Towards efficient direct absorption solar collectors. Nanoscale Res. Lett. 2011, 6, 225. [Google Scholar] [CrossRef] [Green Version]
- Bakthavatchalam, B.; Habib, K.; Saidur, R.; Shahabuddin, S.; Saha, B.B. Influence of solvents on the enhancement of thermophysical properties and stability of multi-walled carbon nanotubes nanofluid. Nanotechnology 2020, 31, 235402. [Google Scholar] [CrossRef]
- Yousefi, T.; Veysi, F.; Shojaeizadeh, E.; Zinadini, S. An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 2012, 39, 293–298. [Google Scholar] [CrossRef]
- Sani, E.; Mercatelli, L.; Zaccanti, G.; Martelli, F.; Di Ninni, P.; Barison, S.; Pagura, C.; Giannini, A.; Jafrancesco, D.; Fontani, D.; et al. Optical characterisation of carbon-nanohorn based nanofluids for solar energy and life science applications. In Proceedings of the 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), Munich, Germany, 22–26 May 2011. [Google Scholar] [CrossRef]
- Saidur, R.; Meng, T.C.; Said, Z.; Hasanuzzaman, M.; Kamyar, A. Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int. J. Heat Mass Transf. 2012, 55, 5899–5907. [Google Scholar] [CrossRef]
- Otanicar, T.P.; Phelan, P.E.; Taylor, R.A.; Tyagi, H. Spatially varying extinction coefficient for direct absorption solar thermal collector optimization. J. Sol. Energy Eng. 2011, 133, 024501. [Google Scholar] [CrossRef]
- Borode, A.; Ahmed, N.; Olubambi, P. A review of solar collectors using carbon-based nanofluids. J. Clean. Product. 2019, 241, 118311. [Google Scholar] [CrossRef]
- Mercatelli, L.; Sani, E.; Fontani, D.; Zaccanti, G.; Martelli, F.; di Ninni, P. Scattering and absorption properties of carbon nanohorn-based nanofluids for solar energy applications. J. Eur. Opt. Soc. 2011, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Phelan, P.; Otanicar, T.; Taylor, R.; Tyagi, H. Trends and opportunities in direct-absorption solar thermal collectors. J. Therm. Sci. Eng. Appl. 2013, 5, 021003. [Google Scholar] [CrossRef]
- Otanicar, T.P.; Phelan, P.E.; Prasher, R.S.; Rosengarten, G.; Taylor, R.A. Nanofluid-based direct absorption solar collector. J. Renew. Sustain. Energy 2010, 2, 033102. [Google Scholar] [CrossRef] [Green Version]
- Otanicar, T.P.; Phelan, P.E.; Golden, J.S. Optical properties of liquids for direct absorption solar thermal energy systems. Sol. Energy 2009, 83, 969–977. [Google Scholar] [CrossRef]
- Mesgari, S.; Hjerrild, N.; Arandiyan, H.; Taylor, R.A. Carbon nanotube heat transfer fluids for solar radiant heating of buildings. Energy Build. 2018, 175, 11–16. [Google Scholar] [CrossRef]
- Otanicar, T.P.; Golden, J.S. Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies. Environ. Sci. Technol. 2009, 43, 6082–6087. [Google Scholar] [CrossRef]
- Taylor, R.A.; Phelan, P.E.; Otanicar, T.; Adrian, R.J.; Prasher, R.S. Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser. Appl. Phys. Lett. 2009, 95, 2007–2010. [Google Scholar] [CrossRef] [Green Version]
- Zayed, M.E.; Zhao, J.; Du, Y.; Kabeel, A.E.; Shalaby, S.M. Factors affecting the thermal performance of the flat plate solar collector using nanofluids: A review. Sol. Energy 2019, 182, 382–396. [Google Scholar] [CrossRef]
- Leong, K.Y.; Ku Ahmad, K.Z.; Ong, H.C.; Ghazali, M.J.; Baharum, A. Synthesis and thermal conductivity characteristic of hybrid nanofluids—A review. Renew. Sustain. Energy Rev. 2017, 75, 868–878. [Google Scholar] [CrossRef]
- Wan, M.; Yadav, R.R.; Mishra, G.; Singh, D.; Joshi, B. Temperature dependent heat transfer performance of multi-walled carbon nanotube-based aqueous nanofluids at very low particle loadings. Johnson Matthey Technol. Rev. 2015, 59, 199–206. [Google Scholar] [CrossRef]
- Sharaf, O.Z.; Taylor, R.A.; Abu-Nada, E. On the colloidal and chemical stability of solar nanofluids: From nanoscale interactions to recent advances. Phys. Rep. 2020, 867, 1–84. [Google Scholar] [CrossRef]
- Tao, F.; Green, M.; Garcia, A.V. Recent progress of nanostructured interfacial solar vapor generators. App. Mater. Today 2019, 17, 45–84. [Google Scholar] [CrossRef]
- Wahab, A.; Hassan, A.; Qasim, M.A.; Ali, H.M.; Babar, H.; Sajid, M.U. Solar energy systems—Potential of nanofluids. J. Mol. Liq. 2019, 289, 111049. [Google Scholar] [CrossRef]
- Arshad, A.; Jabbal, M.; Yan, Y.; Reay, D. A review on graphene based nanofluids: Preparation, characterization and applications. J. Mol. Liq. 2019, 279, 444–484. [Google Scholar] [CrossRef]
- Ambreen, T.; Kim, M.H. Influence of particle size on the effective thermal conductivity of nanofluids: A critical review. Appl. Energy 2020, 26415, 114684. [Google Scholar] [CrossRef]
- Esfe, M.H.; Kamyab, M.H.; Valadkhani, M. Application of nanofluids and fluids in photovoltaic thermal system: An updated review. Sol. Energy 2020, 19915, 796–818. [Google Scholar] [CrossRef]
- Shah, T.R.; Ali, H.M. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: A critical review. Sol. Energy 2019, 1831, 173–203. [Google Scholar] [CrossRef]
- Veeraragavan, A.; Lenert, A.; Yilbas, B.; Al-Dini, S.; Wang, E.N. Analytical model for the design of volumetric solar flow receivers. Int. J. Heat Mass Transf. 2012, 55, 556–564. [Google Scholar] [CrossRef]
- Farhana, K.; Kadirgama, K.; Rahman, M.M.; Ramasamy, D.; Noor, M.M.; Najafi, G.; Samykano, M.; Mahamude, A.S.F. Improvement in the performance of solar collectors with nanofluids—A state-of-the-art review. Nano Struct. Nano Obj. 2019, 18, 100276. [Google Scholar] [CrossRef]
- Kaggwa, A.; Carson, J.K. Developments and future insights of using nanofluids for heat transfer enhancements in thermal systems: A review of recent literature. Int. Nano Lett. 2019, 9, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Tien, C.L. Dependent scattering and absorption of radiation by small particles. In American Society of Mechanical Engineers, Heat Transfer Division, HTD; ASME: New York, NY, USA, 1987; Volume 72, pp. 1–7. [Google Scholar]
- Tien, C.L. Thermal radiation in packed and fluidized beds. J. Heat Transf. 1988, 110, 1230. [Google Scholar] [CrossRef]
- Prasher, R. Thermal radiation in dense nano- and microparticulate media. J. Appl. Phys. 2007, 102, 074316. [Google Scholar] [CrossRef]
- Sani, E.; Barison, S.; Pagura, C.; Mercatelli, L.; Sansoni, P.; Fontani, D.; Jafrancesco, D.; Francini, F. Carbon nanohorns-based nanofluids as direct sunlight absorbers. Opt. Express 2010, 18, 5179. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Liu, Z.H.; Xiao, H.S. Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors. Part 1: Indoor experiment. Sol. Energy 2011, 85, 379–387. [Google Scholar] [CrossRef]
- Taylor, R.A.; Phelan, P.E.; Otanicar, T.P.; Walker, C.A.; Nguyen, M.; Trimble, S.; Prasher, R. Applicability of nanofluids in high flux solar collectors. J. Renew. Sustain. Energy 2011, 3, 023104. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Meng, Z.; Wu, D.; Zhang, C.; Zhu, H. Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res. Lett. 2011, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sani, E.; Mercatelli, L.; Barison, S.; Pagura, C.; Agresti, F.; Colla, L.; Sansoni, P. Potential of carbon nanohorn-based suspensions for solar thermal collectors. Sol. Energy Mater. Sol. Cells 2011, 95, 2994–3000. [Google Scholar] [CrossRef]
- Yousefi, T.; Shojaeizadeh, E.; Veysi, F.; Zinadini, S. An experimental investigation on the effect of pH variation of MWCNT-H2O nanofluid on the efficiency of a flat-plate solar collector. Sol. Energy 2012, 86, 771–779. [Google Scholar] [CrossRef]
- Chamsa-ard, W.; Brundavanam, S.; Fung, C.; Fawcett, D.; Poinern, G. Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A review. Nanomaterials 2017, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech. Eng. Congr. Expo. 1995, 66, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Hussein, A.K. Applications of nanotechnology to enhance the performance of the direct absorption solar collectors. J. Therm. Eng. 2015, 2, 529–540. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, N.; Feng, Y.; Michaelides, E.E.; Zyla, G. Review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Phys. Rep. 2020, 843, 1–81. [Google Scholar] [CrossRef]
- Choudhary, N.; Hwang, S.; Choi, W. Carbon Nanomaterials: A Review. In Handbook of Nanomaterials Properties; Springer: Berlin/Heidelberg, Germany, 2014; pp. 709–769. ISBN 9783642311079. [Google Scholar]
- Kim, P.; Shi, L.; Majumdar, A.; McEuen, P.L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001, 87, 215502. [Google Scholar] [CrossRef] [Green Version]
- Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006, 6, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Berber, S.; Kwon, Y.; Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616. [Google Scholar] [CrossRef] [Green Version]
- Hass, J.; De Heer, W.A.; Conrad, E.H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 2008, 20. [Google Scholar] [CrossRef]
- Li, S.; Ren, H.; Zhang, Y.; Xie, X.; Cai, K.; Li, C.; Wei, N. Thermal conductivity of two types of 2D Carbon allotropes: A molecular dynamics study. Nanoscale Res. Lett. 2019, 14. [Google Scholar] [CrossRef]
- Casari, C.S.; Tommasini, M.; Tykwinski, R.R.; Milani, A. Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 2016, 8, 4414–4435. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wu, Q.; Mishra, C.; Kang, J.; Zhang, H.; Cho, K.; Cai, W.; Balandin, A.A.; Ruoff, R.S. Thermal conductivity of isotopically modified graphene. Nat. Mater. 2012, 11, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Moore, A.L.; Zhu, Y.; Li, X.; Chen, S.; Shi, L.; Ruoff, R.S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651. [Google Scholar] [CrossRef] [PubMed]
- Noh, Y.J.; Kim, H.S.; Ku, B.C.; Khil, M.S.; Kim, S.Y. Thermal conductivity of polymer composites with geometric characteristics of carbon allotropes. Adv. Eng. Mater. 2016, 18, 1127–1132. [Google Scholar] [CrossRef]
- Saito, K.; Nakamura, J.; Natori, A. Ballistic thermal conductance of a graphene sheet. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 1–4. [Google Scholar] [CrossRef]
- Ghosh, S.; Bao, W.; Nika, D.L.; Subrina, S.; Pokatilov, E.P.; Lau, C.N.; Balandin, A.A. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 2010, 9, 555–558. [Google Scholar] [CrossRef]
- Schabel, M.C.; Martins, J.L. Energetics of interplanar binding in graphite. Phys. Rev. B 1992, 46, 7185–7188. [Google Scholar] [CrossRef]
- Jang, W.; Chen, Z.; Bao, W.; Lau, C.N.; Dames, C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 2010, 10, 3909–3913. [Google Scholar] [CrossRef]
- Qiu, B.; Ruan, X. Reduction of spectral phonon relaxation times from suspended to supported graphene. Appl. Phys. Lett. 2012, 100, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Aksamija, Z.; Knezevic, I. Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering. Appl. Phys. Lett. 2011, 98, 2009–2012. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Sevinçli, H.; Cuniberti, G.; Roche, S. Phonon transport in large scale carbon-based disordered materials: Implementation of an efficient order-N and real-space Kubo methodology. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 82, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.Q.; Hu, M.; Wang, Q. Ultrahigh thermal conductivity of carbon allotropes with correlations with the scaled Pugh ratio. J. Mater. Chem. A 2019, 7, 6259–6266. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, A.J.; Tang, Y. Tunable thermal conductivity in carbon allotrope sheets: Role of acetylenic linkages. J. Appl. Phys. 2015, 118. [Google Scholar] [CrossRef]
- Mashali, F.; Languri, E.M.; Davidson, J.; Kerns, D.; Johnson, W.; Nawaz, K.; Cunningham, G. Thermo-physical properties of diamond nanofluids: A review. Int. J. Heat Mass Transf. 2019, 129, 1123–1135. [Google Scholar] [CrossRef]
- Karousis, N.; Suarez-Martinez, I.; Ewels, C.P.; Tagmatarchis, N. Structure, properties, functionalization, and applications of carbon nanohorns. Chem. Rev. 2016, 116, 4850–4883. [Google Scholar] [CrossRef]
- Halelfadl, S.; Maré, T.; Estellé, P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp. Therm. Fluid Sci. 2014, 53, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Ding, G.; Peng, H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. Int. J. Therm. Sci. 2009, 48, 1108–1115. [Google Scholar] [CrossRef]
- Teng, T.P.; Cheng, C.M.; Pai, F.Y. Preparation and characterization of carbon nanofluid by a plasma arc nanoparticles synthesis system. Nanoscale Res. Lett. 2011, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hordy, N.; Rabilloud, D.; Meunier, J.L.; Coulombe, S. A stable carbon nanotube nanofluid for latent heat-driven volumetric absorption solar heating applications. J. Nanomater. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Ivall, J.; Langlois-rahme, G.; Coulombe, S.; Servio, P. Quantitative stability analyses of multiwall carbon nanotube nano fl uids following water/ice phase change cycling. Nanotechnology 2017, 28, 055702. [Google Scholar] [CrossRef]
- Li, X.; Zou, C.; Chen, W.; Lei, X. Experimental investigation of β-cyclodextrin modified carbon nanotubes nanofluids for solar energy systems: Stability, optical properties and thermal conductivity. Sol. Energy Mater. Sol. Cells 2016, 157, 572–579. [Google Scholar] [CrossRef]
- Poinern, G.E.J.; Brundavanam, S.; Shah, M.; Laava, I.; Fawcett, D. Photothermal response of CVD synthesized carbon (nano)spheres/aqueous nanofluids for potential application in direct solar absorption collectors: A preliminary investigation. Nanotechnol. Sci. Appl. 2012, 5, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesgari, S.; Coulombe, S.; Hordy, N.; Taylor, R.A. Thermal stability of carbon nanotube-based nanofluids for solar thermal collectors. Mater. Res. Innov. 2015, 19, S5-650–S5-653. [Google Scholar] [CrossRef]
- Shende, R.C.; Ramaprabhu, S. Thermo-optical properties of partially unzipped multiwalled carbon nanotubes dispersed nanofluids for direct absorption solar thermal energy systems. Sol. Energy Mater. Sol. Cells 2016, 157, 117–125. [Google Scholar] [CrossRef]
- Chen, L.; Xu, C.; Liu, J.; Fang, X.; Zhang, Z. Optical absorption property and photo-thermal conversion performance of graphene oxide/water nanofluids with excellent dispersion stability. Sol. Energy 2017, 148, 17–24. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.; Fang, X.; Zhang, Z. Reduced graphene oxide dispersed nanofluids with improved photo-thermal conversion performance for direct absorption solar collectors. Sol. Energy Mater. Sol. Cells 2017, 163, 125–133. [Google Scholar] [CrossRef]
- Wang, N.; Xu, G.; Li, S.; Zhang, X. Thermal properties and solar collection characteristics of oil-based nanofluids with low graphene concentration. Energy Procedia 2017, 105, 194–199. [Google Scholar] [CrossRef]
- Ahmadi, A.; Ganji, D.D.; Jafarkazemi, F. Analysis of utilizing Graphene nanoplatelets to enhance thermal performance of flat plate solar collectors. Energy Convers. Manag. 2016, 126, 1–11. [Google Scholar] [CrossRef]
- Vakili, M.; Hosseinalipour, S.M.; Delfani, S.; Khosrojerdi, S. Photothermal properties of graphene nanoplatelets nanofluid for low-temperature direct absorption solar collectors. Sol. Energy Mater. Sol. Cells 2016, 152, 187–191. [Google Scholar] [CrossRef]
- Choi, T.J.; Jang, S.P.; Kedzierski, M.A. Effect of surfactants on the stability and solar thermal absorption characteristics of water-based nanofluids with multi-walled carbon nanotubes. Int. J. Heat Mass Transf. 2018, 122, 483–490. [Google Scholar] [CrossRef]
- Gómez-Villarejo, R.; Aguilar, T.; Hamze, S.; Estellé, P.; Navas, J. Experimental analysis of water-based nanofluids using boron nitride nanotubes with improved thermal properties. J. Mol. Liq. 2019, 277, 93–103. [Google Scholar] [CrossRef]
- Kim, S.; Tserengombo, B.; Choi, S.H.; Noh, J.; Huh, S.; Choi, B.; Chung, H.; Kim, J.; Jeong, H. Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial. Int. Commun. Heat Mass Transf. 2018, 91, 95–102. [Google Scholar] [CrossRef]
- Hormozi, F.; ZareNezhad, B.; Allahyar, H.R. An experimental investigation on the effects of surfactants on the thermal performance of hybrid nanofluids in helical coil heat exchangers. Int. Commun. Heat Mass Transf. 2016, 78, 271–276. [Google Scholar] [CrossRef]
- Almanassra, I.W.; Manasrah, A.D.; Al-Mubaiyedh, U.A.; Al-Ansari, T.; Malaibari, Z.O.; Atieh, M.A. An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study. J. Mol. Liq. 2019, 304, 111025. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q.; Tie, P. The effect of surfactants on heat transfer feature of nanofluids. Exp. Therm. Fluid Sci. 2013, 46, 259–262. [Google Scholar] [CrossRef]
- Mercatelli, L.; Sani, E.; Zaccanti, G.; Martelli, F.; Di Ninni, P.; Barison, S.; Pagura, C.; Agresti, F.; Jafrancesco, D.; Di Ninni, P.; et al. Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers: Nanoscale research letters. Nanoscale Res. Lett. 2011, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: New York, NY, USA; Toronto, ON, Canada; Singapore, 1983; ISBN 0-471 -05 772-X. [Google Scholar]
- Draine, B.T.; Flatau, P.J. Discrete-dipole approximation for periodic targets: Theory and tests. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2008, 25, 2693–2703. [Google Scholar] [CrossRef] [Green Version]
- Loke, V.L.Y.; Pinar Mengüç, M.; Nieminen, T.A. Discrete-dipole approximation with surface interaction: Computational toolbox for MATLAB. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1711–1725. [Google Scholar] [CrossRef]
- Yurkin, M.A.; Hoekstra, A.G. The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 2234–2247. [Google Scholar] [CrossRef]
- Hesse, E.; Taylor, L.; Collier, C.T.; Penttilä, A.; Nousiainen, T.; Ulanowski, Z. Discussion of a physical optics method and its application to absorbing smooth and slightly rough hexagonal prisms. J. Quant. Spectrosc. Radiat. Transf. 2018, 218, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Jang, S.P. Extinction coefficient of aqueous nanofluids containing multi-walled carbon nanotubes. Int. J. Heat Mass Transf. 2013, 67, 930–935. [Google Scholar] [CrossRef]
- Hordy, N.; Rabilloud, D.; Meunier, J.L.; Coulombe, S. High temperature and long-term stability of carbon nanotube nanofluids for direct absorption solar thermal collectors. Sol. Energy 2014, 105, 82–90. [Google Scholar] [CrossRef]
- Gan, Y.; Qiao, L. Optical properties and radiation-enhanced evaporation of nanofluid fuels containing carbon-based nanostructures. Energy Fuels 2012, 26, 4224–4230. [Google Scholar] [CrossRef]
- Ladjevardi, S.M.; Asnaghi, A.; Izadkhast, P.S.; Kashani, A.H. Applicability of graphite nanofluids in direct solar energy absorption. Sol. Energy 2013, 94, 327–334. [Google Scholar] [CrossRef]
- Jeon, J.; Park, S.; Lee, B.J. Optical property of blended plasmonic nanofluid based on gold nanorods. Opt. Express 2014, 22, 1413–1422. [Google Scholar] [CrossRef] [Green Version]
- Otanicar, T.; Hoyt, J.; Fahar, M.; Jiang, X.; Taylor, R.A. Experimental and numerical study on the optical properties and agglomeration of nanoparticle suspensions. J. Nanopart. Res. 2013, 15, 2039. [Google Scholar] [CrossRef]
- Delfani, S.; Karami, M.; Akhavan-Behabadi, M.A. Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid. Renew. Energy 2016, 87, 754–764. [Google Scholar] [CrossRef]
- Qu, J.; Tian, M.; Han, X.; Zhang, R.; Wang, Q. Photo-thermal conversion characteristics of MWCNT-H2O nanofluids for direct solar thermal energy absorption applications. Appl. Therm. Eng. 2017, 124, 486–493. [Google Scholar] [CrossRef]
- Karami, M.; Raisee, M.; Delfani, S.; Akhavan Bahabadi, M.A.; Rashidi, A.M. Sunlight absorbing potential of carbon nanoball water and ethylene glycol-based nanofluids. Opt. Spectrosc. 2013, 115, 400–405. [Google Scholar] [CrossRef]
- Gorji, T.B.; Ranjbar, A.A.; Mirzababaei, S.N. Optical properties of carboxyl functionalized carbon nanotube aqueous nanofluids as direct solar thermal energy absorbers. Sol. Energy 2015, 119, 332–342. [Google Scholar] [CrossRef]
- Sani, E.; Papi, N.; Mercatelli, L.; Żyła, G. Graphite/diamond ethylene glycol-nanofluids for solar energy applications. Renew. Energy 2018, 126, 692–698. [Google Scholar] [CrossRef]
- Campos, C.; Vasco, D.; Angulo, C.; Burdiles, P.A.; Cardemil, J.; Palza, H. About the relevance of particle shape and graphene oxide on the behavior of direct absorption solar collectors using metal based nanofluids under different radiation intensities. Energy Convers. Manag. 2019, 181, 247–257. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H.; Wang, X.; Wang, X. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2011, 375, 1323–1328. [Google Scholar] [CrossRef]
- Shende, R.; Sundara, R. Nitrogen doped hybrid carbon based composite dispersed nanofluids as working fluid for low-temperature direct absorption solar collectors. Sol. Energy Mater. Sol. Cells 2015, 140, 9–16. [Google Scholar] [CrossRef]
- Baby, T.T.; Ramaprabhu, S. Investigation of thermal and electrical conductivity of graphene based nanofluids. J. Appl. Phys. 2010, 108. [Google Scholar] [CrossRef]
- Alicia, C.P.Y.; Rashmi, W.; Khalid, M.; Rasheed, A.K.; Gupta, T. Synthesis and thermo-physical characterization of graphene based transformer oil. J. Eng. Sci. Technol. 2016, 11, 140–152. [Google Scholar]
- Kim, G.-N.; Kim, J.-H.; Kim, B.-S.; Jeong, H.-M.; Huh, S.-C. Study on the thermal conductivity characteristics of graphene prepared by the planetary ball mill. Metals 2016, 6, 234. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, H.A. Experimental measurements of viscosity and thermal conductivity of single layer graphene based di-water nanofluid. Eng. J. 2017, 23, 142–161. [Google Scholar]
- Ghozatloo, A.; Niassar, M.S.; Rashidi, A. Effect of functionalization process on thermal conductivity of graphene nanofluids. Int. J. Nanosci. Nanotechnol. 2017, 13, 11–18. [Google Scholar]
- Gandhi, K.S.K.; Velayutham, M.; Das, S.K.; Thirumalachari, S. Measurement of thermal and electrical conductivities of graphene nanofluids. In Proceedings of the 3rd Micro Nano Flows Conference, Thessaloniki, Greece, 22–24 August 2011; pp. 22–24. [Google Scholar]
- Ahammed, N.; Asirvatham, L.G.; Titus, J.; Bose, J.R.; Wongwises, S. Measurement of thermal conductivity of graphene-water nanofluid at below and above ambient temperatures. Int. Commun. Heat Mass Transf. 2016, 70, 66–74. [Google Scholar] [CrossRef]
- Vallejo, J.P.; Cabaleiro, D.; Lugo, L. Potential heat transfer enhancement of functionalized graphene nanoplatelet dispersions in a propylene glycol-water mixture. Thermophysical profile. J. Chem. Thermodyn. 2018, 123, 174–184. [Google Scholar] [CrossRef]
- Trinh, P.V.; Anh, N.N.; Hong, N.T.; Hong, P.N.; Minh, P.N.; Thang, B.H. Experimental study on the thermal conductivity of ethylene glycol-based nanofluid containing Gr-CNT hybrid material. J. Mol. Liq. 2018, 269, 344–353. [Google Scholar] [CrossRef]
- Kole, M.; Dey, T.K. Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J. Appl. Phys. 2013, 113. [Google Scholar] [CrossRef]
- Vakilinejad, A.; Aroon, M.A.; Al-Abri, M.; Bahmanyar, H.; Myint, M.T.Z.; Vakili-Nezhaad, G.R. Experimental and theoretical investigation of thermal conductivity of some water-based nanofluids. Chem. Eng. Commun. 2018, 205, 610–623. [Google Scholar] [CrossRef]
- Sun, Z.; Pöller, S.; Huang, X.; Guschin, D.; Taetz, C.; Ebbinghaus, P.; Masa, J.; Erbe, A.; Kilzer, A.; Schuhmann, W.; et al. High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity. Carbon N. Y. 2013, 64, 288–294. [Google Scholar] [CrossRef]
- Lee, G.J.; Rhee, C.K. Enhanced thermal conductivity of nanofluids containing graphene nanoplatelets prepared by ultrasound irradiation. J. Mater. Sci. 2014, 49, 1506–1511. [Google Scholar] [CrossRef]
- Ma, W.; Yang, F.; Shi, J.; Wang, F.; Zhang, Z.; Wang, S. Silicone based nanofluids containing functionalized graphene nanosheets. Colloids Surf. A Physicochem. Eng. Asp. 2013, 431, 120–126. [Google Scholar] [CrossRef]
- Amiri, A.; Ahmadi, G.; Shanbedi, M.; Etemadi, M.; Mohd Zubir, M.N.; Chew, B.T.; Kazi, S.N. Heat transfer enhancement of water-based highly crumpled few-layer graphene nanofluids. RSC Adv. 2016, 6, 105508–105527. [Google Scholar] [CrossRef]
- Amiri, A.; Shanbedi, M.; Dashti, H. Thermophysical and rheological properties of water-based graphene quantum dots nanofluids. J. Taiwan Inst. Chem. Eng. 2017, 76, 132–140. [Google Scholar] [CrossRef]
- Baby, T.T.; Sundara, R. Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J. Phys. Chem. C 2011, 115, 8527–8533. [Google Scholar] [CrossRef]
- Baby, T.T.; Ramaprabhu, S. Synthesis and nanofluid application of silver nanoparticles decorated graphene. J. Mater. Chem. 2011, 21, 9702–9709. [Google Scholar] [CrossRef]
- Hajjar, Z.; morad Rashidi, A.; Ghozatloo, A. Enhanced thermal conductivities of graphene oxide nanofluids. Int. Commun. Heat Mass Transf. 2014, 57, 128–131. [Google Scholar] [CrossRef]
- Ghozatloo, A.; Shariaty-Niasar, M.; Rashidi, A.M. Preparation of nanofluids from functionalized Graphene by new alkaline method and study on the thermal conductivity and stability. Int. Commun. Heat Mass Transf. 2013, 42, 89–94. [Google Scholar] [CrossRef]
- Amiri, A.; Shanbedi, M.; Rafieerad, A.R.; Rashidi, M.M.; Zaharinie, T.; Zubir, M.N.M.; Kazi, S.N.; Chew, B.T. Functionalization and exfoliation of graphite into mono layer graphene for improved heat dissipation. J. Taiwan Inst. Chem. Eng. 2017, 71, 480–493. [Google Scholar] [CrossRef]
- Estellé, P.; Halelfadl, S.; Maré, T. Thermal conductivity of CNT water based nanofluids: Experimental trends and models overview. J. Therm. Eng. 2015, 1, 381–390. [Google Scholar] [CrossRef]
- Talaei, Z.; Mahjoub, A.R.; Morad Rashidi, A.; Amrollahi, A.; Emami Meibodi, M. The effect of functionalized group concentration on the stability and thermal conductivity of carbon nanotube fluid as heat transfer media. Int. Commun. Heat Mass Transf. 2011, 38, 513–517. [Google Scholar] [CrossRef]
- Nanda, J.; Maranville, C.; Bollin, S.C.; Sawall, D.; Ohtani, H.; Remillard, J.T.; Ginder, J.M. Thermal conductivity of single-wall carbon nanotube dispersions: Role of interfacial effects. J. Phys. Chem. C 2008, 112, 654–658. [Google Scholar] [CrossRef]
- Aravind, S.S.J.; Baskar, P.; Baby, T.T.; Sabareesh, R.K.; Das, S.; Ramaprabhu, S. Investigation of structural stability, dispersion, viscosity, and conductive heat transfer properties of functionalized carbon nanotube based nanofluids. J. Phys. Chem. C 2011, 115, 16737–16744. [Google Scholar] [CrossRef]
- Chen, L.; Xie, H. Surfactant-free nanofluids containing double- and single-walled carbon nanotubes functionalized by a wet-mechanochemical reaction. Thermochim. Acta 2010, 497, 67–71. [Google Scholar] [CrossRef]
- Nasiri, A.; Shariaty-Niasar, M.; Rashidi, A.M.; Khodafarin, R. Effect of CNT structures on thermal conductivity and stability of nanofluid. Int. J. Heat Mass Transf. 2012, 55, 1529–1535. [Google Scholar] [CrossRef]
- Van Trinh, P.; Anh, N.N.; Thang, B.H.; Quang, L.D.; Hong, N.T.; Hong, N.M.; Khoi, P.H.; Minh, P.N.; Hong, P.N. Enhanced thermal conductivity of nanofluid-based ethylene glycol containing Cu nanoparticles decorated on a Gr-MWCNT hybrid material. RSC Adv. 2017, 7, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Fadhillahanafi, N.M.; Leong, K.Y.; Risby, M.S. Stability and thermal conductivity characteristics of carbon nanotube based nanofluids. Int. J. Automot. Mech. Eng. 2013, 8, 1376–1384. [Google Scholar] [CrossRef]
- Sabiha, M.A.; Mostafizur, R.M.; Saidur, R.; Mekhilef, S. Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids. Int. J. Heat Mass Transf. 2016, 93, 862–871. [Google Scholar] [CrossRef]
- Singh, N.; Chand, G.; Kanagaraj, S. Investigation of thermal conductivity and viscosity of carbon nanotubes-ethylene glycol nanofluids. Heat Transf. Eng. 2012, 33, 821–827. [Google Scholar] [CrossRef]
- Liu, M.S.; Ching-Cheng Lin, M.; Huang, I.T.; Wang, C.C. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int. Commun. Heat Mass Transf. 2005, 32, 1202–1210. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Behbahani, P.M.; Arani, A.A.A.; Sarlak, M.R. Thermal conductivity enhancement of SiO2–MWCNT (85:15%)–EG hybrid nanofluids: ANN designing, experimental investigation, cost performance and sensitivity analysis. J. Therm. Anal. Calorim. 2017, 128, 249–258. [Google Scholar] [CrossRef]
- Harish, S.; Ishikawa, K.; Einarsson, E.; Aikawa, S.; Inoue, T.; Zhao, P.; Watanabe, M.; Chiashi, S.; Shiomi, J.; Maruyama, S. Temperature dependent thermal conductivity increase of aqueous nanofluid with single walled carbon nanotube inclusion. Mater. Express 2012, 2, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Garg, P.; Alvarado, J.L.; Marsh, C.; Carlson, T.A.; Kessler, D.A.; Annamalai, K. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int. J. Heat Mass Transf. 2009, 52, 5090–5101. [Google Scholar] [CrossRef]
- Kumaresan, V.; Velraj, R. Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids. Thermochim. Acta 2012, 545, 180–186. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, J.K.; Lee, C.H.; Jung, Y.M.; Cheong, S.I.; Lee, C.G.; Ku, B.C.; Jang, S.P. Stability and thermal conductivity characteristics of nanofluids. Thermochim. Acta 2007, 455, 70–74. [Google Scholar] [CrossRef]
- Murshed, S.M.S.; Estellé, P. A state of the art review on viscosity of nano fluids. Renew. Sustain. Energy Rev. 2017, 76, 1134–1152. [Google Scholar] [CrossRef]
- Bashirnezhad, K.; Bazri, S.; Safaei, M.R.; Goodarzi, M.; Dahari, M.; Mahian, O.; Dalkiliça, A.S.; Wongwises, S. Viscosity of nanofluids: A review of recent experimental studies. Int. Commun. Heat Mass Transf. 2016, 73, 114–123. [Google Scholar] [CrossRef]
- Sharma, A.K.; Tiwari, A.K.; Dixit, A.R. Rheological behaviour of nanofluids: A review. Renew. Sustain. Energy Rev. 2016, 53, 779–791. [Google Scholar] [CrossRef]
- Vallejo, J.P.; Gómez-barreiro, S.; Cabaleiro, D.; Gracia-fernández, C. Flow behaviour of suspensions of functionalized graphene nanoplatelets in propylene glycol-water mixtures. Int. Commun. Heat Mass Transf. 2018, 91, 150–157. [Google Scholar] [CrossRef]
- Halelfadl, S.; Estellé, P.; Aladag, B.; Doner, N.; Maré, T. Viscosity of carbon nanotubes water-based nano fluids: Influence of concentration and temperature. Int. J. Therm. Sci. 2013, 71, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Phuoc, T.X.; Massoudi, M.; Chen, R. Viscosity and thermal conductivity of nano fluids containing multi-walled carbon nanotubes stabilized by chitosan. Int. J. Therm. Sci. 2011, 50, 12–18. [Google Scholar] [CrossRef]
- Sadri, R.; Ahmadi, G.; Togun, H.; Dahari, M.; Kazi, S.N.; Sadeghinezhad, E. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res. Lett. 2014, 9, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minakov, A.V.; Rudyak, V.Y.; Pryazhnikov, M.I. Rheological behavior of water and ethylene glycol based nanofluids containing oxide nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2018, 554, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Żyła, G.; Vallejo, J.P.; Fal, J.; Lugo, L. Nanodiamonds—Ethylene Glycol nanofluids: Experimental investigation of fundamental physical properties. Int. J. Heat Mass Transf. 2018, 121, 1201–1213. [Google Scholar] [CrossRef]
- Oswald, P. Rheophysics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Żyła, G.; Fal, J.; Estellé, P. The influence of ash content on thermophysical properties of ethylene glycol based graphite/diamonds mixture nanofluids. Diam. Relat. Mater. 2017, 74, 81–89. [Google Scholar] [CrossRef]
- Selvam, C.; Harish, S.; Lal, D.M. Effective thermal conductivity and rheological characteristics of ethylene glycol based nanofluids with single-walled carbon nanohorn inclusions. Fullerenes Nanotub. Carbon Nanostruct. 2017, 25, 86–93. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Y.; Zhou, X.; Shi, W.; Yu, G. Materials for solar-powered water evaporation. Nat. Rev. Mater. 2020, 5, 388–401. [Google Scholar] [CrossRef]
- Jin, J.; Lin, G.; Zeiny, A.; Bai, L.; Wen, D. Nanoparticle-based solar vapor generation: An experimental and numerical study. Energy 2019, 178, 447–459. [Google Scholar] [CrossRef]
- Dao, V.D.; Vu, N.H.; Yun, S. Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy 2020, 68, 104324. [Google Scholar] [CrossRef]
- Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2019, 3, 1031–1041. [Google Scholar] [CrossRef]
- Yao, G.; Xu, J.; Liu, G. Solar steam generation enabled by bubbly flow nanofluids. Sol. Energy Mater. Sol. Cells 2020, 206, 110292. [Google Scholar] [CrossRef]
- Wang, P. Emerging investigator series: The rise of nanoenabled photothermal materials for water evaporation and clean water production by sunlight. Environ. Sci. Nano 2018, 5, 1078. [Google Scholar] [CrossRef] [Green Version]
- Sandá, A.; Moya, S.L.; Valenzuela, L. Modelling and simulation tools for direct steam generation in parabolictrough solar collectors: A review. Renew. Sustain. Energy. Rev. 2019, 113, 109226. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Liu, X.; Shi, L.; Zhu, J. Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Sol. Energy 2017, 157, 35–46. [Google Scholar] [CrossRef]
- Fang, Z.; Zhen, Y.R.; Neumann, O.; Polman, A.; García de Abajo, F.J.; Nordlander, P.; Halas, N.J. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett. 2013, 13, 1736–1742. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Lin, G.; Bai, L.; Zeiny, A.; Wen, D. Steam generation in a nanoparticle-based solar receiver. Nano Energy 2016, 28, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Ghafurian, M.M.; Niazmand, H.; Ebrahiminia-Bajestan, E. Improving steam generation and distilled water production by volumetric solar heating. Appl. Therm. Eng. 2019, 158, 113808. [Google Scholar] [CrossRef]
- Shi, L.; He, Y.; Huang, Y.; Jiang, B. Recyclable Fe3O4@CNT nanoparticles for high-efficiency solar vapor generation. Energy Convers. Manag. 2017, 149, 401–408. [Google Scholar] [CrossRef]
- Ni, G.; Miljkovic, N.; Ghasemi, H.; Huang, X.; Boriskina, S.V.; Lin, C.T.; Wang, J.; Xu, Y.; Rahman, M.M.; Zhang, T.J.; et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 2015, 17, 209–301. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, X.; Huang, J.; Cheng, G.; He, Y. Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid. Appl. Energy 2018, 220, 302–312. [Google Scholar] [CrossRef]
- Fu, Y.; Mei, T.; Wang, G.; Guo, A.; Dai, G.; Wang, S.; Wang, J.; Li, J.; Wang, X. Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids. Appl. Therm. Eng. 2017, 114, 961–968. [Google Scholar] [CrossRef]
- Ulset, E.T.; Kosinski, P.; Balakin, B.V. Solar steam in an aqueous carbon black nanofluid. Appl. Therm. Eng. 2018, 137, 62–65. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Cheng, G.; Shi, L.; Liu, X.; Zhu, J. Direct vapor generation through localized solar heating via carbon nanotube nanofluid. Energy Convers. Manag. 2016, 130, 176–183. [Google Scholar] [CrossRef]
- Ghafurian, M.M.; Niazmand, H.; Ebrahimnia-Bajestan, E.; Elhami Nik, H. Localized solar heating via graphene oxide nanofluid for direct steam generation. J. Therm. Anal. Calorim. 2018, 135, 1443–1449. [Google Scholar] [CrossRef]
- Hong, Z.; Pei, J.; Wang, Y.; Cao, B.; Mao, M.; Liu, H.; Jiang, H.; An, Q.; Liu, X.; Hu, X. Characteristics of the direct absorption solar collectors based on reduced graphene oxide nanofluids in solar steam evaporation. Energy Convers. Manag. 2019, 199, 112019. [Google Scholar] [CrossRef]
- Estellé, P.; Cabaleiro, D.; Żyła, G.; Lugo, L.; Murshed, S.M.S. Current trends in surface tension and wetting behavior of nanofluids. Renew. Sustain. Energy Rev. 2018, 94, 931–944. [Google Scholar] [CrossRef]
- Muñoz-Sánchez, B.; Nieto-Maestre, J.; Iparraguirre-Torres, I.; García-Romero, A.; Sala-Lizarraga, J.M. Molten salt-based nanofluids as efficient heat transfer and storage materials at high temperatures. An overview of the literature. Renew. Sustain. Energy Rev. 2018, 82, 3924–3945. [Google Scholar] [CrossRef]
- Shahrul, I.M.; Mahbubul, I.M.; Khaleduzzaman, S.S.; Saidur, R.; Sabri, M.F.M. A comparative review on the specific heat of nanofluids for energy perspective. Renew. Sustain. Energy Rev. 2014, 38, 88–98. [Google Scholar] [CrossRef]
- Riazi, H.; Murphy, T.; Webber, G.B.; Atkin, R.; Tehrani, S.S.M.; Taylor, R.A. Specific heat control of nanofluids: A critical review. Int. J. Therm. Sci. 2016, 107, 25–38. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Kleinstreuer, C.; Al-nimr, M.A.; Pop, I.; Sahin, A.Z. A review of entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 2013, 65, 514–532. [Google Scholar] [CrossRef]
- Taylor, R.A.; Phelan, P.E. Pool boiling of nanofluids: Comprehensive review of existing data and limited new data. Int. J. Heat Mass Transf. 2009, 52, 5339–5347. [Google Scholar] [CrossRef]
- Minea, A.A. A review on electrical conductivity of nanoparticle-enhanced fluids. Nanomaterials 2019, 9, 1592. [Google Scholar] [CrossRef] [Green Version]
- Trinh, P.V.; Anh, N.N.; Tam, N.T.; Hong, N.T.; Hong, P.N.; Minh, P.N.; Thang, B.H. Influence of defects induced by chemical treatment on the electrical and thermal conductivity of nanofluids containing carboxyl-functionalized multi-walled carbon nanotubes. RSC Adv. 2017, 79, 49937–49946. [Google Scholar] [CrossRef] [Green Version]
- Fal, J.; Mahian, O. Gaweł zyła nanofluids in the service of high voltage transformers: Breakdown properties of transformer oils with nanoparticles, a review. Energies 2018, 11, 2942. [Google Scholar] [CrossRef] [Green Version]
- Khullar, V.; Tyagi, H.; Hordy, N.; Otanicar, T.P.; Hewakuruppu, Y.; Modi, P.; Taylor, R.A. Harvesting solar thermal energy through nanofluid-based volumetric absorption systems. Int. J. Heat Mass Transf. 2014, 77, 377–384. [Google Scholar] [CrossRef]
- Karami, M.; Akhavan Bahabadi, M.A.; Delfani, S.; Ghozatloo, A. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol. Energy Mater. Sol. Cells 2014, 121, 114–118. [Google Scholar] [CrossRef]
- Lee, S.H.; Jang, S.P. Efficiency of a volumetric receiver using aqueous suspensions of multi-walled carbon nanotubes for absorbing solar thermal energy. Int. J. Heat Mass Transf. 2015, 80, 58–71. [Google Scholar] [CrossRef]
- Kasaeian, A.; Daneshazarian, R.; Rezaei, R.; Pourfayaz, F.; Kasaeian, G. Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector. J. Clean. Prod. 2017, 158, 276–284. [Google Scholar] [CrossRef]
- Tam, N.T.; Trinh, P.V.; Anh, P.N.; Hong, N.T.; Hong, P.N.; Minh, P.N.; Thang, B.H. Thermal conductivity and photothermal conversion performance of ethylene glycol-based nanofluids containing multiwalled carbon nanotubes. J. Nanomater. 2018, 2018, 2750168. [Google Scholar] [CrossRef]
- Liu, J.; Ye, Z.; Zhang, L.; Fang, X.; Zhang, Z. A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector. Sol. Energy Mater. Sol. Cells 2015, 136, 177–186. [Google Scholar] [CrossRef]
- Khosrojerdi, S.; Lavasani, A.M.; Vakili, M. Experimental study of photothermal specifications and stability of graphene oxide nanoplatelets nanofluid as working fluid for low-temperature Direct Absorption Solar Collectors (DASCs). Sol. Energy Mater. Sol. Cells 2017, 164, 32–39. [Google Scholar] [CrossRef]
- Rose, B.A.J.; Singh, H.; Verma, N.; Tassou, S.; Suresh, S.; Anantharaman, N.; Mariotti, D.; Maguire, P. Investigations into nanofluids as direct solar radiation collectors. Sol. Energy 2017, 147, 426–431. [Google Scholar] [CrossRef]
- Vallejo, J.P.; Mercatelli, L.; Martina, M.R.; Di Rosa, D.; Dell’Oro, A.; Lugo, L.; Sani, E. Comparative study of different functionalized graphene-nanoplatelet aqueous nanofluids for solar energy applications. Renew. Energy 2019, 141, 791–801. [Google Scholar] [CrossRef]
- Fan, D.; Li, Q.; Chen, W.; Zeng, J. Graphene nanofluids containing core-shell nanoparticles with plasmon resonance effect enhanced solar energy absorption. Sol. Energy 2017, 158, 1–8. [Google Scholar] [CrossRef]
- Mehrali, M.; Ghatkesar, M.K.; Pecnik, R. Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids. Appl. Energy 2018, 224, 103–115. [Google Scholar] [CrossRef]
- Vallejo, J.P.; Sani, E.; Żyła, G.; Lugo, L. Tailored silver/graphene nanoplatelet hybrid nanofluids for solar applications. J. Mol. Liq. 2019, 296, 112007. [Google Scholar] [CrossRef]
- Sani, E.; Vallejo, J.P.; Mercatelli, L.; Martina, M.R.; Rosa, D.D.; Dell’Oro, A.; Lugo, L. A comprehensive physical profile for aqueous dispersions of carbon derivatives as solar working fluids. Appl. Sci. 2020, 10, 528. [Google Scholar] [CrossRef] [Green Version]
- Moradi, A.; Sani, E.; Simonetti, M.; Francini, F.; Chiavazzo, E.; Asinari, P. Carbon-nanohorn based nanofluids for a direct absorption solar collector for civil application. J. Nanosci. Nanotechnol. 2015, 15, 3488–3495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeiny, A.; Jin, H.; Bai, L.; Lin, G.; Wen, D. A comparative study of direct absorption nanofluids for solar thermal applications. Sol. Energy 2018, 161, 74–82. [Google Scholar] [CrossRef]
- Gimeno-Furio, A.; Hernandez, L.; Navarrete, N.; Mondragon, R. Characterisation study of a thermal oil-based carbon black solar nanofluid. Renew. Energy 2019, 140, 493–500. [Google Scholar] [CrossRef]
- Gimeno-Furio, A.; Navarrete, N.; Martinez-Cuenca, R.; Julia, J.E.; Hernandez, L. Influence of high temperature exposure on the thermal and optical properties of thermal oil-based solar nanofluids. J. Nanofluids 2018, 7, 1045–1052. [Google Scholar] [CrossRef]
- Gimeno-Furió, A.; Juliá, E.; Barison, S.; Agresti, F.; Friebe, C.; Buschmann, M.H. Nanofluids as direct solar energy absorbers. J. Nanofluids 2019, 8, 17–29. [Google Scholar] [CrossRef]
- Yarmand, H.; Gharehkhani, S.; Shirazi, S.F.S.; Amiri, A.; Montazer, E.; Arzani, H.K.; Sadri, R.; Dahari, M.; Kazi, S.N. Nanofluid based on activated hybrid of biomass carbon/graphene oxide: Synthesis, thermo-physical and electrical properties. Int. Commun. Heat Mass Transf. 2016, 72, 10–15. [Google Scholar] [CrossRef]
- Sajid, M.U.; Ali, H.M. Thermal conductivity of hybrid nanofluids: A critical review. Int. J. Heat Mass Transf. 2018, 126, 211–234. [Google Scholar] [CrossRef]
- Han, Z.H.; Yang, B.; Kim, S.H.; Zachariah, M.R. Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnology 2007, 18, 105701. [Google Scholar] [CrossRef]
- Devarajan, M.; Krishnamurthy, N.P.; Balasubramanian, M.; Ramani, B.; Wongwises, S.; El-Naby, K.A.; Sathyamurthy, R. Thermophysical properties of CNT and CNT/Al2O3 hybrid nanofluid. Micro Nano Lett. 2018, 13, 617–621. [Google Scholar] [CrossRef]
- Baby, T.T.; Ramaprabhu, S. Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid. Nanoscale 2011, 3, 2208–2214. [Google Scholar] [CrossRef] [PubMed]
- Sundar, L.S.; Sharma, K.V.; Singh, M.K.; Sousa, A.C.M. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—A review. Renew. Sustain. Energy Rev. 2017, 68, 185–198. [Google Scholar] [CrossRef]
Ref. | Type of Work | Particle Type, Diameter-Length | Base Fluid | Model | Remark |
---|---|---|---|---|---|
[95] | Modeling + experimental | MWCNTs 30 nm–4 µm | Water | Lambert–Beer | Calculated penetration depth on the absorbed sunlight fraction. |
[96] | Modeling + experimental | CNTs, 2 nm–10 µm; CNP, 6 nm | Ethanol | Rayleigh approximation | Predict extinction coefficients. A qualitative agreement in visible, disagreement in the UV range. |
[97] | Modelling | Graphite, 50 nm | Water | Rayleigh approximation | Calculated the extinction coefficients, studied the effect of volume fractions and diameter variations. |
[7] | Modeling + experimental | Graphite, Cu, Al, TiO2, 30 nm | Water/VP-1 oil | Maxwell–Garnett and Rayleigh approximation | The approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids |
[94] | Modeling + experimental | MWCNT, 53 nm–0.5 µm | Water | Maxwell–Garnett and Rayleigh approximation | Maxwell–Garnett model, which can consider the shape effect; Rayleigh scattering approximation, which can consider size effect. |
[31] | Modelling | GNPs | Water | Rayleigh approximation and Lambert–Beer | Investigated the effect of heat losses, solar concentration, nanoparticles loading and channel height on the efficiency of a volumetric flow receiver. |
[100] | Modeling + experimental | MWCNT, 10 nm–10 µm | Water | Rayleigh approximation | Investigated the thermal performance of a low-temperature flat plate DASC |
Ref. | Particle Type | Base Fluid | Particle Concentration | Remark |
---|---|---|---|---|
[101] | MWCNT | Water | 0.0015–0.01 wt% | 0.01 wt% MWCNT-H2O nanofluid, the transmittance was nearly zero. |
[94] | MWCNT | Water | 0.0005 vol% | Solar energy can be completely absorbed in the penetration depth of 10 cm. |
[82] | MWCNT | Water | 0.0005–0.002 vol% | The extinction coefficient strongly depends on the surfactant. |
[103] | SWCNT | Water | 5–100 mg/L | Functionalized SWCNT dispersions show less temperature sensitivity by increasing temperature. Maximum absorption occurs at 60 mg/L concentration. |
[77] | GO | Water | 0.0001–0.1 wt% | Reduced transmittance in the wavelength range from 220 nm to 2000 nm. The optical absorption property of the nanofluids increases with the mass fraction of GO. |
[105] | GO and GO/silver hybrid | Water | 100 ppm | GO/silver hybrid nanofluids showed the best behaviors under low and high solar radiation. |
[73] | MWCNT | EG | 0.002 vol% | The average transmittance is about 45% lower than that of pure EG. |
[76] | PUMWNT | EG | 0.005–0.03 vol% | PUMWNTs nanofluids have lower transmittance than pure EG from 200 to 1400 nm. |
[104] | Graphite/nanodiamond | EG | 0.0025–0.01 wt% | Demonstrated the generation of vapor bubbles around nanoparticles at light intensities. |
[102] | CNB | EG/Water | 0.03 wt% | The extinction coefficient of pure water and ethylene glycol is increased by about 3.9 cm−1 and 3.4 cm−1. |
Particle Type | Base Fluid | Particle Concentration | Temperatures | Enhancement | Ref. |
---|---|---|---|---|---|
Functionalized graphene | Water | 0.1–1 wt% | 5–35 °C | 11.9% to 22.2% | [111] |
Functionalized graphene | Water | 0.05–1 wt% | 25–65 °C | Up to 100% | [118] |
Graphite oxide | Water | 0.05–0.25 wt% | 10–40 °C | 14.75–47.57% | [126] |
Functionalized graphene | Water | 0.05, 0.15, 0.25 wt% | 20–60 °C | 24.4–33.9% | [112] |
SnO2/reduced graphene | Water | 0.01–0.05 wt% | 10–50 °C | 3.8–17% | [127] |
Highly crumpled few layer graphene | Water | 0.001–0.01 wt% | 20–50 °C | 10–43% | [122] |
Graphene quantum dots | Water | 0.001–0.002 wt% | 20–50 °C | 5–18% | [123] |
Copper oxide-decorated graphene | Water | 0.005–0.05 wt% | 25–50 °C | 23–90% | [124] |
Silver-decorated graphene | Water | 0.005–0.05 wt% | 25–70 °C | 7–86% | [125] |
Mono-layer graphene | Water | 0.001–0.01 wt% | 20–50 °C | 8–26% | [128] |
Functionalized graphene | Water | 0.05, 0.1, 0.15 vol% | 10–50 °C | 37.2% | [114] |
Functionalized graphene | Water | 0.005–0.056 vol% | 20–50 °C | 14–64% | [108] |
Nitrogen doped graphene | Water | 0.005–0.02 vol% | 25–50 °C | Up to 17.7% | [107] |
Functionalized graphene | EG | 1–5 vol% | 10–60 °C | 10.5–61% | [106] |
Graphene nanoplatelets | EG | 0.5–4 vol% | 10–90 °C | Up to 32% | [120] |
Functionalized graphene | EG | 0.041–0.395 vol% | 10–70 °C | 15–100% | [117] |
Functionalized Gr nanoplatelet | PG:Water 30:70 wt% | 0.25–1 wt% | 20–50 °C | 4.7–16% | [115] |
Few-layer graphene | Polymer | 0.55–1 vol% | 10–60 °C | 18–25% | [119] |
Functionalized graphene | Silicon oil | 0.01–0.07 wt% | 20–60 °C | Up to 18.9% | [121] |
Particle Type | Base Fluid | Particle Concentration | Temperatures | Enhancement | Ref. |
---|---|---|---|---|---|
MWCNT | Water | 1.0 wt% | 30 °C | 20% | [142] |
MWCNTs | Water | 0.01–0.5 wt% | 25 °C | Up to 22.2% | [136] |
SWCNT | Water | 0.05–0.25 vol% | 30–60 °C | 2.84–36.39% | [137] |
MWCNTs | Water | 0.03 vol% | 30–70 °C | 33% | [132] |
SWCNT | EG | 1.1 wt% | 22 °C | 35% | [131] |
MWCNTs | EG | 0.12–0.4 wt% | 25–60 °C | Up to 72% | [138] |
MWCNTs | EG | 1–2 vol% | Room temperature | 12.4–30% | [139] |
SWCNT | EG | 0.3 vol% | 60 °C | 16% | [141] |
SiO2-MWCNTs | EG | 0.05–1.95 vol% | 30–50 °C | Up to 22% | [140] |
MWCNTs | EG | 0.03 vol% | 30–70 °C | 40% | [132] |
Gr-MWCNT/Cu | EG | 0.005–0.035 vol% | 30–60 °C | 10–41% | [135] |
MWCNTs | Water–EG | 0.45 vol% | 40 °C | 19.75% | [143] |
SWCNT | Poly-alpha-olefins | 1.1 wt% | 22 °C | 12% | [131] |
MWCNTs | Oil | 0.5 vol% | Room temperature | 8.7% | [144] |
Particle Type | Base Fluid | Particle Concentration | Temperature | Behavior * | Ref. |
---|---|---|---|---|---|
Functionalized graphene nanoplatelet | PG:W 30:70 wt% | 0.25–1 wt% | 20–50 °C | N | [115] |
Functionalized GNPs | PG:W 10:90 wt% | 0.25, 0.50 wt% | 25–50 °C | N | [148] |
CNT | water | 0.01–0.75 wt% | 0–40 °C | N (low concentrations)/n-N (high concentrations) | [149] |
MWCNT | water stabilized by cationic chitosan | Up to 3 wt% | N (low concentrations)/n-N (high concentrations) | [150] | |
MWCNT | water stabilized by Gum Arabic | 1 wt% | 15 °C, 30 °C | n-N | [142] |
MWCNT | water stabilized by Gum Arabic | 0.5 wt% | 15 °C, 30 °C, 45 °C | n-N | [151] |
ND | water | 0.25–2 vol% | 25 °C | n-N | [152] |
ND | EG | Up to 10 wt% | 25 °C | n-N | [153] |
ND/graphite | EG | 1–5 wt% | 25 °C | n-N | [155] |
Carbon nanohorn | EG | 0.1–1.5 vol% | 25 °C | N (low concentrations)/n-N (high concentrations) | [156] |
Particle Type | Particle Concentration | Container | Radiation Source | Efficiency | Ref. |
---|---|---|---|---|---|
AuNP decorated GO | 500 mg/L | Petri dish | Natural sunlight passing through Fresnel lens | η = 59.2% | [171] |
Carbon black | 3 wt% | Glass tube | Natural sunlight with parabolic solar collector | η = 73% | [172] |
Graphitized carbon black (GCB), carbon black (CB), graphene | 0.5 wt% | Acrylic cylinder | Solar simulator (10 suns) | η = 67 ± 4% for GCB η = 69 ± 4% for CB η = 68 ± 4% for graphene | [169] |
SWCNTs | 2.38 × 10−4–19.04 × 10−4 vol% | Acrylic tube | Solar simulator (1–10 suns) | η = 45% | [173] |
Fe3O4@CNT | 1.0 × 10−2–6.25 × 10−2 g/L | Acrylic beaker | Solar simulator (1–10 suns) | η = 60.32% | [168] |
Graphene oxide | 0.001–0.004 wt% | Glass beaker | Solar simulator (1600 W xenon lamp; 1.5–3.5 suns | η = 22% and 36.5% at 3.5 and 1.5 suns | [174] |
MWCNT-OH | 0.002% wt% | Glass beaker | Solar simulator (1.2–3.2 suns) | η = 39% | [167] |
rGO, rGO + Ag | 1 mg/mL | Acrylic tubes | Solar simulator (1–4 suns) | η = 69% for RGO η = 91.6% for RGO + Ag | [175] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trong Tam, N.; Viet Phuong, N.; Hong Khoi, P.; Ngoc Minh, P.; Afrand, M.; Van Trinh, P.; Hung Thang, B.; Żyła, G.; Estellé, P. Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar Absorption. Nanomaterials 2020, 10, 1199. https://doi.org/10.3390/nano10061199
Trong Tam N, Viet Phuong N, Hong Khoi P, Ngoc Minh P, Afrand M, Van Trinh P, Hung Thang B, Żyła G, Estellé P. Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar Absorption. Nanomaterials. 2020; 10(6):1199. https://doi.org/10.3390/nano10061199
Chicago/Turabian StyleTrong Tam, Nguyen, Nguyen Viet Phuong, Phan Hong Khoi, Phan Ngoc Minh, Masoud Afrand, Pham Van Trinh, Bui Hung Thang, Gaweł Żyła, and Patrice Estellé. 2020. "Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar Absorption" Nanomaterials 10, no. 6: 1199. https://doi.org/10.3390/nano10061199
APA StyleTrong Tam, N., Viet Phuong, N., Hong Khoi, P., Ngoc Minh, P., Afrand, M., Van Trinh, P., Hung Thang, B., Żyła, G., & Estellé, P. (2020). Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar Absorption. Nanomaterials, 10(6), 1199. https://doi.org/10.3390/nano10061199