Quadrature Squeezing and Geometric-Phase Oscillations in Nano-Optics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Description of the Squeezed State
2.2. Geometric Phase and Its Oscillation
2.3. Geometric-Phase Oscillation with One-Photon Processes
3. Conclusions
4. Methods
4.1. Wave function and Expectation Values
4.2. Geometric Phase Obtained from p-Representation
4.3. Method for Deriving Squeezed State for the Hamiltonian
Author Contributions
Funding
Conflicts of Interest
References
- Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A 1984, 392, 45–57. [Google Scholar]
- Abdumalikov, A.A., Jr.; Fink, J.M.; Juliusson, K.; Pechal, M.; Berger, S.; Wallraff, A.; Filipp, S. Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 2013, 496, 482–485. [Google Scholar] [CrossRef]
- Tam, A.M.W.; Fan, F.; Chen, H.S.; Tao, D.; Chigrinov, V.G.; Kwok, H.S.; Lin, Y.S. Continuous nanoscale patterned photoalignment for thin film Pancharatnam-Berry phase diffractive lens. SID Int. Symp. Digest Tech. Papers 2015, 46, 8. [Google Scholar] [CrossRef]
- Choi, K.H.; Yim, J.; Yoo, S.; Min, S.-W. Self-interference digital holography with a geometric-phase hologram lens. Opt. Lett. 2017, 42, 3940–3943. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Banerjee, C.; Chandel, S.; Bag, A.; Majumder, S.K.; Ghosh, N. Tunable spin dependent beam shift by simultaneously tailoring geometric and dynamical phases of light in inhomogeneous anisotropic medium. Sci. Rep. 2016, 6, 39582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.-H.; Tan, G.; Zhan, T.; Weng, Y.; Liu, G.; Gou, F.; Peng, F.; Tabiryan, N.V.; Gauza, S.; Wu, S.-T. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities. Opt. Data Process. Storage 2017, 3, 79–88. [Google Scholar] [CrossRef]
- Park, K.-D.; May, M.A.; Leng, H.; Wang, J.; Kropp, J.A.; Gougousi, T.; Pelton, M.; Raschke, M.B. Tip-enhanced strong coupling spectroscopy and control of a single quantum emitter. Sci. Adv. 2019, 5, eaav5931. [Google Scholar] [CrossRef] [Green Version]
- Stuerzebecher, L.; Fuchs, F.; Zeitner, U.D.; Tuennermann, A. High-resolution proximity lithography for nano-optical components. Sens. Actuators A Phys. 2017, 257, 92–97. [Google Scholar] [CrossRef]
- Keller, O. Principles of nano-optics. Phys. Today 2007, 60, 62. [Google Scholar] [CrossRef]
- Vourdas, A.; Weiner, R.M. Photon-counting distribution in squeezed states. Phys. Rev. A 1987, 36, 5866–5869. [Google Scholar] [CrossRef]
- Ali, J.; Pornsuwancharoen, N.; Youplao, P.; Aziz, M.S.; Amiri, I.S.; Chaiwong, K.; Chiangga, S.; Singh, G.; Yupapin, P. Coherent light squeezing states within a modified microring system. Results Phys. 2018, 9, 211–214. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Li, X.; Jing, J.; Xie, C.; Peng, K. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier. Phys. Rev. A 2000, 62, 023813. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, M. Generation and applications of amplitude squeezed states of light from semiconductor diode lasers. Opt. Express 1998, 2, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Walls, D.F. Squeezed states of light. Nature 1983, 306, 141–146. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge U. Press: New York, NY, USA, 2006. [Google Scholar]
- Törmä, P.; Barnes, W.L. Strong coupling between surface plasmon polaritons and emitters: A review. Rep. Prog. Phys. 2015, 78, 013901. [Google Scholar] [CrossRef]
- Dutt, A.; Luke, K.; Manipatruni, S.; Gaeta, A.L.; Nussenzveig, P.; Lipson, M. On-chip optical squeezing. Phys. Rev. Appl. 2015, 3, 044005. [Google Scholar] [CrossRef] [Green Version]
- Quddusi, H.M.; Liu, J.; Singh, S.; Heroux, K.J.; del Barco, E.; Hill, S.; Hendrickson, D.N. Asymmetric Berry-phase interference patterns in a single-molecule magnet. Phys. Rev. Lett. 2011, 106, 227201. [Google Scholar] [CrossRef]
- Sjöqvist, E.; Pati, A.K.; Ekert, A.; Anandan, J.S.; Ericsson, M.; Oi, D.K.L.; Vedral, V. Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 2000, 85, 2845–2849. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Viswanathan, N.K. The Pancharatnam-Berry phase in polarization singular beams. J. Opt. 2013, 15, 044026. [Google Scholar] [CrossRef]
- Roy, M.; Svahn, P.; Cherel, L.; Sheppard, C.J.R. Geometric phase-shifting for low-coherence interference microscopy. Opt. Lasers Eng. 2002, 37, 631–641. [Google Scholar] [CrossRef]
- Yuen, H.P. Two-photon coherent states of the radiation field. Phys. Rev. A 1976, 13, 2226–2243. [Google Scholar] [CrossRef] [Green Version]
- Ohtsu, M. (Ed.) Progress in Nano-Electro Optics III: Industrial Applications and Dynamics of the Nano-Optical System; Springer: Berlin, Germany, 2005. [Google Scholar]
- Frimmer, M.; Novotny, L. Light-matter interactions: A coupled oscillator description. In Nano-Optics: Principles Enabling Basic Research and Applications; Di Bartolo, B., Collins, J., Silvestri, L., Eds.; NATO Science for Peace and Security Series B: Physics and Biophysics; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Silveri, M.P.; Tuorila, J.A.; Thuneberg, E.V.; Paraoanu, G.S. Quantum systems under frequency modulation. Rep. Prog. Phys. 2017, 80, 056002. [Google Scholar] [CrossRef] [PubMed]
- Sarandy, M.S.; Duzzioni, E.I.; Moussa, M.H.Y. Dynamical invariants and nonadiabatic geometric phases in open quantum systems. Phys. Rev. A 2007, 76, 052112. [Google Scholar] [CrossRef] [Green Version]
- Mostafazadeh, A. Quantum adiabatic approximation, quantum action, and Berry’s phase. Phys. Lett. A 1997, 232, 395–398. [Google Scholar] [CrossRef] [Green Version]
- Schleich, W.P. Quantum Optics in Phase Space; Wiley-Blackwell: Berlin, Germany, 2001. [Google Scholar]
- Knight, P.L.; Allen, L. Concepts of Quantum Optics; Pergamon Press: Oxford, UK, 1983. [Google Scholar]
- Biswas, S.N.; Soni, S.K. Berry’s phase for coherent states and canonical transformation. Phys. Rev. A 1991, 43, 5717–5719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-D.; Ma, L. Berry’s phase for coherent states. Nuovo Cimento B 1990, 105, 1343–1358. [Google Scholar]
- Chaturvedi, S.; Sriram, M.S.; Srinivasan, V. Berry’s phase for coherent states. J. Phys. A Math. Gen. 1987, 20, L1071–L1076. [Google Scholar] [CrossRef]
- Kuratsuji, H. Geometric phase accompanying SU(2) coherent states for quantum polarized light. Phys. Rev. A 2013, 88, 033801. [Google Scholar] [CrossRef]
- Hannonen, A.; Saastamoinen, K.; Leppanen, L.-P.; Koivurova, M.; Shevchenko, A.; Friberg, A.T.; Setala, T. Geometric phase in beating of light waves. New J. Phys. 2019, 21, 083030. [Google Scholar] [CrossRef]
- Tiwari, S.C. Geometric phase in optics and angular momentum of light. J. Mod. Opt. 2004, 51, 2297–2304. [Google Scholar] [CrossRef]
- Lages, J.; Giust, R.; Vigoureux, J.-M. Geometric phase and Pancharatnam phase induced by light wave polarization. Physica E 2014, 59, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hu, B.; Li, B. Nonadiabatic geometric phase and Hannay angle: A squeezed state approach. Phys. Rev. Lett. 1998, 81, 1749–1753. [Google Scholar] [CrossRef] [Green Version]
- Rohrlich, D. A phase effect in the harmonic oscillator. Phys. Lett. A 1988, 128, 307–308. [Google Scholar] [CrossRef]
- Leuenberger, M.N.; Mucciolo, E.R. Berry-phase oscillations of the Kondo effect in single-molecule magnets. Phys. Rev. Lett. 2006, 97, 126601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodge, W.B.; Cassera, N.P.; Rave, M.J. Berry phase oscillations in a simple model. Eur. J. Phys. 2018, 40, 015401. [Google Scholar] [CrossRef]
- Huang, S.-M.; Wang, P.-C.; Lin, C.; You, S.-Y.; Lin, W.-C.; Lin, L.-J.; Yan, Y.-J.; Yu, S.-H.; Chou, M.C. The Aharonov-Bohm oscillation in the BiSbTe3 topological insulator macroflake. Appl. Phys. Lett. 2018, 112, 203103. [Google Scholar] [CrossRef]
- Gladilin, V.N.; Tempere, J.; Devreese, J.T.; Moshchalkov, V.V. Aharonov-Bohm oscillations in the vortex dynamics in superconducting hollow cylinders. Phys. Rev. B 2012, 86, 104508. [Google Scholar] [CrossRef] [Green Version]
- Mikitik, G.P.; Sharlai, Y.V. The phase of the de Haas-van Alphen oscillations, the Berry phase, and band-contact lines in metals. Low Temp. Phys. 2007, 33, 439–442. [Google Scholar] [CrossRef] [Green Version]
- Gusynin, V.P.; Loktev, V.M.; Luk’yanchuk, I.A.; Sharapov, S.G.; Varlamov, A.A. Quantum oscillations as the tool for study of new functional materials. Low Temp. Phys. 2014, 40, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Laing, A.; Lawson, T.; López, E.M.; O’Brien, J.L. Observation of quantum interference as a function of Berry’s phase in a complex Hadamard optical network. Phys. Rev. Lett. 2012, 108, 260505. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.A.; Stone, A.D. Universal conductance fluctuations in metals. Phys. Rev. Lett. 1985, 55, 1622–1625. [Google Scholar] [CrossRef] [PubMed]
- He, H.-T.; Wang, G.; Zhang, T.; Sou, I.K.; Wong, G.K.L.; Wang, J.N.; Lu, H.Z.; Shen, S.Q.; Zhang, F.C. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett. 2011, 106, 166805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleszynski-Jayich, A.C.; Glazman, L.; Harris, J.G.E. Persistent currents in normal metal rings. Science 2009, 326, 272–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, J.A. Franck-Condon effect and squeezed-state physics as double-source interference phenomena. Lett. Math. Phys. 1985, 10, 201–206. [Google Scholar] [CrossRef]
- Schleich, W.; Wheeler, J.A. Oscillations in photon distribution of squeezed states and interference in phase space. Nature 1987, 326, 574–577. [Google Scholar] [CrossRef]
- Dutta, B.; Mukunda, N.; Simon, R.; Subramaniam, A. Squeezed states, photon-number distributions, and U(1) invariance. J. Opt. Soc. Am. B 1993, 10, 253–264. [Google Scholar] [CrossRef]
- Choi, J.R. Coherent and squeezed states for light in homogeneous conducting linear media by an invariant operator method. Int. J. Theor. Phys. 2004, 43, 2113–2136. [Google Scholar] [CrossRef]
- Hong-Yi, F.; VanderLinde, J. Squeezed-state wave functions and their relation to classical phase-space maps. Phys. Rev. A 1989, 40, 4785–4788. [Google Scholar] [CrossRef]
- Louisell, W.H. Quantum Statistical Properties of Radiation; John Wiley & Sons: New York, NY, USA, 1973. [Google Scholar]
- Vogel, W.; Welsch, D.-G. Lectures on Quantum Optics; Akademie: Berlin, Germany, 1994; pp. 74–78. [Google Scholar]
- Marion, J.B. Classical Dynamics of Particles and Systems, 2nd ed.; Academic Press: New York, NY, USA, 1970; p. 118. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.R. Quadrature Squeezing and Geometric-Phase Oscillations in Nano-Optics. Nanomaterials 2020, 10, 1391. https://doi.org/10.3390/nano10071391
Choi JR. Quadrature Squeezing and Geometric-Phase Oscillations in Nano-Optics. Nanomaterials. 2020; 10(7):1391. https://doi.org/10.3390/nano10071391
Chicago/Turabian StyleChoi, Jeong Ryeol. 2020. "Quadrature Squeezing and Geometric-Phase Oscillations in Nano-Optics" Nanomaterials 10, no. 7: 1391. https://doi.org/10.3390/nano10071391
APA StyleChoi, J. R. (2020). Quadrature Squeezing and Geometric-Phase Oscillations in Nano-Optics. Nanomaterials, 10(7), 1391. https://doi.org/10.3390/nano10071391