High Variability in Silver Particle Characteristics, Silver Concentrations, and Production Batches of Commercially Available Products Indicates the Need for a More Rigorous Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Products
2.2. UV-VIS Spectroscopy and Visual Analysis
2.3. Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES)
2.4. Scanning Transmission Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (STEM-EDX)
2.5. Dynamic Light Scattering (DLS)
3. Results
3.1. UV-VIS Spectroscopy and Visual Analysis
3.2. ICP-OES
3.3. STEM-EDX
3.4. DLS
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alexander, J.W. History of the medical use of silver. Surg. Infect. 2009, 10, 289–292. [Google Scholar] [CrossRef] [Green Version]
- Pulit-Prociak, J.; Stokłosa, K.; Banach, M. Nanosilver products and toxicity. Environ. Chem. Lett. 2015, 13, 59–68. [Google Scholar] [CrossRef]
- Calderón-Jiménez, B.; Johnson, M.E.; Montoro Bustos, A.R.; Murphy, K.E.; Winchester, M.R.; Vega Baudrit, J.R. Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Front. Chem. 2017, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijnhoven, S.W.; Peijnenburg, W.J.; Herberts, C.A.; Hagens, W.I.; Oomen, A.G.; Heugens, E.H.; Roszek, B.; Bisschops, J.; Gosens, I.; Van De Meent, D. Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 2009, 3, 109–138. [Google Scholar] [CrossRef]
- Zivic, F.; Grujovic, N.; Mitrovic, S.; Ahad, I.U.; Brabazon, D. Characteristics and applications of silver nanoparticles. In Commercialization of Nanotechnologies–A Case Study Approach; Springer: New York, NY, USA, 2018; pp. 227–273. [Google Scholar]
- Council, D.C. The Nanodatabase. Available online: http://nanodb.dk/ (accessed on 17 December 2019).
- Nowack, B.; Krug, H.F.; Height, M. 120 Years of Nanosilver History: Implications for Policy Makers; ACS Publications: Whashington, DC, USA, 2011. [Google Scholar]
- Melaiye, A.; Youngs, W.J. Silver and Its Application as an Antimicrobial Agent; Taylor & Francis: Abingdon, VA, USA, 2005. [Google Scholar]
- Knetsch, M.L.; Koole, L.H. New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers 2011, 3, 340–366. [Google Scholar] [CrossRef]
- Jefferson, W. Colloidal Silver Today: The All Natural, Wide-Spectrum Germ Killer; Healthy Living Publications: Summertown, TN, USA, 2003. [Google Scholar]
- Mewis, J.; Wagner, N.J. Colloidal Suspension Rheology; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Patel, S.G.; Patel, M.D.; Patel, A.J.; Chougule, M.B.; Choudhury, H. Solid lipid nanoparticles for targeted brain drug delivery. In Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors; Elsevier: Amsterdam, The Netherlands, 2018; pp. 191–244. [Google Scholar]
- Standardization, ISO/TS 80004-1:2015 (Nanotechnologies-Vocabulary-Part 1: Core terms). Available online: https://www.iso.org/standard/68058.html (accessed on 17 December 2019).
- Commission, E. Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off. J. Eur. Communities Legis 2011, 275, 38. [Google Scholar]
- Levard, C.; Hotze, E.M.; Lowry, G.V.; Brown, G.E., Jr. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900–6914. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sonshine, D.A.; Shervani, S.; Hurt, R.H. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 2010, 4, 6903–6913. [Google Scholar] [CrossRef] [Green Version]
- De Leersnyder, I.; De Gelder, L.; Van Driessche, I.; Vermeir, P. Revealing the importance of aging, environment, size and stabilization mechanisms on the stability of metal nanoparticles: A case study for silver nanoparticles in a minimally defined and complex undefined bacterial growth medium. Nanomaterials 2019, 9, 1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, O.; Hu, Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 2008, 42, 4583–4588. [Google Scholar] [CrossRef]
- Sotiriou, G.A.; Pratsinis, S.E. Antibacterial activity of nanosilver ions and particles. Environ. Sci. Technol. 2010, 44, 5649–5654. [Google Scholar] [CrossRef]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramenko, N.B.; Demidova, T.B.; Abkhalimov, E.V.; Ershov, B.G.; Krysanov, E.Y.; Kustov, L.M. Ecotoxicity of different-shaped silver nanoparticles: Case of zebrafish embryos. J. Hazard. Mater. 2018, 347, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, M.; AlSalhi, M.S.; Siddiqui, M. Silver nanoparticle applications and human health. Clin. Chim. Acta 2010, 411, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Rajwade, J.M.; Paknikar, K.M. Nanotoxicology and in vitro studies: The need of the hour. Toxicol. Appl. Pharmacol. 2012, 258, 151–165. [Google Scholar] [CrossRef]
- Trop, M.; Novak, M.; Rodl, S.; Hellbom, B.; Kroell, W.; Goessler, W. Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J. Trauma Acute Care Surg. 2006, 60, 648–652. [Google Scholar] [CrossRef]
- Soto, K.; Garza, K.; Murr, L. Cytotoxic effects of aggregated nanomaterials. Acta Biomater. 2007, 3, 351–358. [Google Scholar] [CrossRef]
- Takenaka, S.; Karg, E.; Roth, C.; Schulz, H.; Ziesenis, A.; Heinzmann, U.; Schramel, P.; Heyder, J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ. Health Perspect. 2001, 109, 547–551. [Google Scholar]
- Hussain, S.; Hess, K.; Gearhart, J.; Geiss, K.; Schlager, J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology 2005, 19, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Jain, J.; Rajwade, J.; Paknikar, K. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol. Appl. Pharmacol. 2009, 236, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Benn, T.M.; Westerhoff, P. Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008, 42, 4133–4139. [Google Scholar] [CrossRef] [PubMed]
- Beddow, J.; Stolpe, B.; Cole, P.; Lead, J.R.; Sapp, M.; Lyons, B.P.; Colbeck, I.; Whitby, C. Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. Environ. Microbiol. Rep. 2014, 6, 448–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, T.; Kanao-Koshikawa, M.; Takamatsu, T. Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities. Water Air Soil Pollut. 2005, 164, 103–118. [Google Scholar] [CrossRef]
- Marambio-Jones, C.; Hoek, E.M. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- SCENIHR (Scientific Committee on Emerging and NewlyIdentified Health Risks), E.C. Opinion on Nanosilver: Safety, Health and Environmental Effects Androle in Anti-Microbialresistance. Available online: https://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_039.pdf (accessed on 5 January 2020).
- Lai, R.W.; Yeung, K.W.; Yung, M.M.; Djurišić, A.B.; Giesy, J.P.; Leung, K.M. Regulation of engineered nanomaterials: Current challenges, insights and future directions. Environ. Sci. Pollut. Res. 2018, 25, 3060–3077. [Google Scholar] [CrossRef]
- European Food Safety Authority E.F.S.A. Inventory of Nanotechnology Applications in the Agricultural, Feed and Food Sector. (External Scientific Report). Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2014.EN-621 (accessed on 5 January 2020).
- Scientific Committee on Consumer Safety, European Commission. Opinion on Colloidal Silver (nano). Available online: https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_219.pdf (accessed on 5 January 2020).
- Rogers, K.R.; Navratilova, J.; Stefaniak, A.; Bowers, L.; Knepp, A.K.; Al-Abed, S.R.; Potter, P.; Gitipour, A.; Radwan, I.; Nelson, C. Characterization of engineered nanoparticles in commercially available spray disinfectant products advertised to contain colloidal silver. Sci. Total Environ. 2018, 619, 1375–1384. [Google Scholar] [CrossRef]
- Tulve, N.S.; Stefaniak, A.B.; Vance, M.E.; Rogers, K.; Mwilu, S.; LeBouf, R.F.; Schwegler-Berry, D.; Willis, R.; Thomas, T.A.; Marr, L.C. Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children’s potential exposures. Int. J. Hyg. Environ. Health 2015, 218, 345–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasukan, N.; Srisung, S.; Kulthong, K.; Boonrungsiman, S.; Maniratanachote, R. Determination of silver in personal care nanoproducts and effects on dermal exposure. J. Nanoparticle Res. 2015, 17, 425. [Google Scholar] [CrossRef]
- Verleysen, E.; Van Doren, E.; Waegeneers, N.; De Temmerman, P.-J.; Abi Daoud Francisco, M.; Mast, J. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry. J. Agric. Food Chem. 2015, 63, 3570–3578. [Google Scholar] [CrossRef] [PubMed]
- Abkhalimov, E.; Ershov, V.; Ershov, B. “Pure” silver hydrosol: Nanoparticles and stabilizing carbonate ions. J. Nanoparticle Res. 2019, 21, 93. [Google Scholar] [CrossRef]
- Additives, E.P.o.F.; Food, N.S.a.t.; Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Dusemund, B.; Filipič, M.; Frutos, M.J.; Galtier, P.; et al. Safety and bioavailability of silver hydrosol as a source of silver added for nutritional purposes to food supplements. EFSA J. 2018, 16, e05237. [Google Scholar]
- Desai, R.; Mankad, V.; Gupta, S.K.; Jha, P.K. Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanosci. Nanotechnol. Lett. 2012, 4, 30–34. [Google Scholar] [CrossRef]
- Sun, Y.; Xia, Y. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 2003, 128, 686–691. [Google Scholar] [CrossRef]
- Paramelle, D.; Sadovoy, A.; Gorelik, S.; Free, P.; Hobley, J.; Fernig, D.G. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 2014, 139, 4855–4861. [Google Scholar] [CrossRef]
- Bastús, N.G.; Piella, J.; Puntes, V. Quantifying the sensitivity of multipolar (dipolar, quadrupolar, and octapolar) surface plasmon resonances in silver nanoparticles: The effect of size, composition, and surface coating. Langmuir 2015, 32, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; McMahon, J.M.; Schatz, G.C.; Gray, S.K.; Sun, Y. Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. USA 2010, 107, 14530–14534. [Google Scholar] [CrossRef] [Green Version]
- Evanoff, D.D.; Chumanov, G. Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J. Phys. Chem. B 2004, 108, 13957–13962. [Google Scholar] [CrossRef]
- Babu, S.; Claville, M.O.; Ghebreyessus, K. Rapid synthesis of highly stable silver nanoparticles and its application for colourimetric sensing of cysteine. J. Exp. Nanosci. 2015, 10, 1242–1255. [Google Scholar] [CrossRef] [Green Version]
- Chhatre, A.; Solasa, P.; Sakle, S.; Thaokar, R.; Mehra, A. Color and surface plasmon effects in nanoparticle systems: Case of silver nanoparticles prepared by microemulsion route. Colloids Surf. A Physicochem. Eng. Asp. 2012, 404, 83–92. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential–what they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Singh, P.; Bodycomb, J.; Travers, B.; Tatarkiewicz, K.; Travers, S.; Matyas, G.R.; Beck, Z. Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology. Int. J. Pharm. 2019, 566, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Rijckaert, H.; De Roo, J.; Van Zele, M.; Banerjee, S.; Huhtinen, H.; Paturi, P.; Bennewitz, J.; Billinge, S.J.; Bäcker, M.; De Buysser, K. Pair distribution function analysis of ZrO2 nanocrystals and insights in the formation of ZrO2-YBa2Cu3O7 nanocomposites. Materials 2018, 11, 1066. [Google Scholar] [CrossRef] [Green Version]
- Carneiro-da-Cunha, M.G.; Cerqueira, M.A.; Souza, B.W.; Teixeira, J.A.; Vicente, A.A. Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydr. Polym. 2011, 85, 522–528. [Google Scholar] [CrossRef] [Green Version]
- Min, G.K.; Bevan, M.A.; Prieve, D.C.; Patterson, G.D. Light scattering characterization of polystyrene latex with and without adsorbed polymer. Colloids Surf. A Physicochem. Eng. Asp. 2002, 202, 9–21. [Google Scholar] [CrossRef]
- Delay, M.; Dolt, T.; Woellhaf, A.; Sembritzki, R.; Frimmel, F.H. Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength. J. Chromatogr. A 2011, 1218, 4206–4212. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzán, L.M. Silica coating of silver nanoparticles using a modified Stöber method. J. Colloid Interface Sci. 2005, 283, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Hardikar, V.V.; Matijević, E. Coating of nanosize silver particles with silica. J. Colloid Interface Sci. 2000, 221, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Rodriguez-Hornedo, N.; Ciotti, S.; Ackermann, C. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm. Res. 2004, 21, 1192–1199. [Google Scholar] [CrossRef] [Green Version]
- Sikder, M.; Lead, J.R.; Chandler, G.T.; Baalousha, M. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV–Vis. Sci. Total Environ. 2018, 618, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Andrade, J.M.; Avalos-Borja, M.; Vilchis-Nestor, A.R.; Sanchez-Vargas, L.O.; Castro-Longoria, E. Dual function of EDTA with silver nanoparticles for root canal treatment—A novel modification. PLoS ONE 2018, 13, e0190866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.C.; Luconi, M.O.; Masi, A.N.; Fernández, L.P. Derivatized silver nanoparticles as sensor for ultra-trace nitrate determination based on light scattering phenomenon. Talanta 2009, 77, 1238–1243. [Google Scholar] [CrossRef] [PubMed]
Product | Brand | Product Type | Description Silver Form | Claimed Ag Concentration (mg L−1) | Maximum Recommended Daily Dose (mL) |
---|---|---|---|---|---|
1 | A | Skin gel | Silver hydrosol, metallic silver | Unknown | Unknown |
2 | A | Nasal spray | Silver hydrosol, silver ions, silver nanoclusters (0.8 nm) | 10 | 7 |
3 | B | Nasal spray | Colloidal silver, ultra-small particles pure silver | 15 | 0.5 |
4 | B | Skin spray | Colloidal silver, ultra-small particles pure silver | 15 | 0.5 |
5 | C | Oral dietary supplement (dropper) | Colloidal silver, silver particles (highest percentage of 2 nm) | 250 | 5 |
6 | C | Oral dietary supplement (spray) | Colloidal silver, silver particles (highest percentage of 2 nm) | 150 | 1.5 |
7 | D | Nasal spray | Nano silver ion | 250 | 0.3 |
8 | E | Oral dietary supplement (spray) | Colloidal silver, silver with minute particle size | 30 | 1.2 or 3.6 |
9 | F | Oral dietary supplement (liquid) | Colloidal silver | 200 | 30 |
10 | G | Oral dietary supplement (liquid) | Colloidal silver | Unknown | Unknown |
11 | H | Oral dietary supplement (liquid) | Silver sol technology (metallic nano-silver particle with thin multivalent Ag4O4 coating) | 10 | 15 |
12 | H | Skin gel | Silver sol technology, nano-silver | 20 | Unknown |
13 | E | Shoe deo | Silver nanoparticles | Unknown | Unknown |
14 | F | Oral dietary supplement (spray) | Silver sol technology | 10 | 15 |
Product | Batch | Lot/Batch Number | Expiration Date | Country of Origin | Ingredients (Beside Silver) |
---|---|---|---|---|---|
1 | 1 | GJ018T | 07/2021 | USA | Carbomer (carbopol), sodium hydroxide |
2 | 1 | GK104S | 09/2021 | USA | Pharmaceutical-grade purified water |
3 | 1 | NZS124102018 | 10/2021 | The Netherlands | Ultra-small particles pure zinc, purified water |
4 | 1 | NS103102018 | 10/2021 | The Netherlands | Purified water |
5 | 1 | 7103 | 05/2022 | USA | Pharmaceutical-grade deionized water |
2 | 7605 | 10/2022 | |||
3 | 7622 | 10/2022 | |||
6 | 1 | 7113 | 05/2022 | USA | Organic echinacea, oregano leaf tincture, aloe vera leaf juice, deionized water, licorice extract |
2 | 7323 | 07/2022 | |||
3 | 7634 | 10/2022 | |||
7 | 1 | 20180502 | 01/05/2020 | China | Chrysanthemi indici flos, Angelicae dahuricae radix, centipedae herba, xanthii fructus, prunellae spica, propolis, borneolum syntheticum, polyhexamethylene biguanide |
8 | 1 | FG-90226, REV G172 | 08/2020 | USA | Potassium alginate, distilled water, ethylenediaminetraacetic acid (EDTA) |
2 | FG-97614, REV D184-A | 09/2020 | Distilled water | ||
3 | FG-87919, REV G171 | 06/2020 | Potassium alginate, distilled water, EDTA | ||
9 | 1 | 10719A | 04/2022 | USA | Water |
2 | 30119A | 10/2022 | |||
3 | Unknown | Unknown | |||
10 | 1 | P02745 | 06/2022 | The Netherlands | Purified water |
11 | 1 | 18052 | 02/2021 | USA | Deionized water |
12 | 1 | 18263 | 09/2021 | USA | Deionized water, tetraethylammonium, carbomer |
13 | 1 | NDS DW.04.03.2021 | 04/03/2021 | Poland | Silica nanoparticles, aliphatic hydrocarbons, benzyl salicylate, citronellol, hexyl cinnamal, butylphenyl methylpropional |
14 | 1 | 19036 | 02/2022 | USA | Deionized water |
Product | Amount in 50.00 mL |
---|---|
1 | 1.50 g |
2 | 3.00 mL |
3 | 5.00 mL |
4 | 2.50 mL |
5 | 0.25 mL |
6 | 0.40 mL |
7 | 5.00 mL |
8 | 1.50 mL |
9 | 0.25 mL |
10 | 20.00 mL |
11 | 5.00 mL |
12 | 0.75 g |
13 | 1.50 g |
14 | 0.75 mL |
Product | Batch | Ag+ Conc. ± SD(N = 3) | Claimed Ag Conc. (mg L–1) | Is Difference Significant (p-value < 0.05)? |
---|---|---|---|---|
1 | 1 | 26.22 ± 0.20 mg kg −1 | Unknown | - |
2 | 1 | 12.22 ± 0.01 mg L−1 | 10 | Yes |
3 | 1 | 2.13 ± 0.03 mg L−1 | 15 | Yes |
4 | 1 | 6.11 ± 0.84 mg L−1 | 15 | Yes |
5 | 1 | 282.00 ± 0.00 mg L−1 | 250 | Yes |
2 | 285.33 ± 3.06 mg L−1 | Yes | ||
3 | 294.67 ± 7.02 mg L−1 | Yes | ||
6 | 1 | 176.25 ± 2.50 mg L−1 | 150 | Yes |
2 | 171.67 ± 0.72 mg L−1 | Yes | ||
3 | 177.92 ± 3.15 mg L−1 | Yes | ||
7 | 1 | 0.01 ± 0.01 mg L−1 | 250 | Yes |
8 | 1 | 33.78 ± 0.19 mg L−1 | 30 | Yes |
2 | 29.52 ± 1.72 mg L−1 | No | ||
3 | 33.89 ± 0.19 mg L−1 | Yes | ||
9 | 1 | 276.67 ± 1.15 mg L−1 | 200 | Yes |
2 | 179.27 ± 2.32 mg L−1 | Yes | ||
3 | 187.93 ± 1.17 mg L−1 | Yes | ||
10 | 1 | 0.00 ± 0.00 mg L−1 | Unknown | - |
11 | 1 | 10.54 ± 1.33 mg L−1 | 10 | No |
12 | 1 | 22.27 ± 0.46 mg kg−1 | 20 | Yes |
13 | 1 | 2.83 ± 0.30 mg kg−1 | Unknown | - |
14 | 1 | 11.40 ± 0.12 mg L−1 | 10 | Yes |
Product | Batch | PDI | Z-Average (nm) |
---|---|---|---|
5 | 1 | 0.204 | 43.38 |
2 | 0.217 | 50.97 | |
3 | 0.222 | 48.73 | |
6 | 1 | 0.455 | 114.3 |
2 | 0.788 | 126.8 | |
3 | 0.426 | 99.83 | |
8 | 1 | 0.556 | 100.9 |
2 | 0.853 | 1879 | |
3 | 0.568 | 34.46 | |
9 | 1 | 0.238 | 31.86 |
2 | 0.207 | 34.83 | |
3 | 0.216 | 34.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Leersnyder, I.; Rijckaert, H.; De Gelder, L.; Van Driessche, I.; Vermeir, P. High Variability in Silver Particle Characteristics, Silver Concentrations, and Production Batches of Commercially Available Products Indicates the Need for a More Rigorous Approach. Nanomaterials 2020, 10, 1394. https://doi.org/10.3390/nano10071394
De Leersnyder I, Rijckaert H, De Gelder L, Van Driessche I, Vermeir P. High Variability in Silver Particle Characteristics, Silver Concentrations, and Production Batches of Commercially Available Products Indicates the Need for a More Rigorous Approach. Nanomaterials. 2020; 10(7):1394. https://doi.org/10.3390/nano10071394
Chicago/Turabian StyleDe Leersnyder, Ilse, Hannes Rijckaert, Leen De Gelder, Isabel Van Driessche, and Pieter Vermeir. 2020. "High Variability in Silver Particle Characteristics, Silver Concentrations, and Production Batches of Commercially Available Products Indicates the Need for a More Rigorous Approach" Nanomaterials 10, no. 7: 1394. https://doi.org/10.3390/nano10071394
APA StyleDe Leersnyder, I., Rijckaert, H., De Gelder, L., Van Driessche, I., & Vermeir, P. (2020). High Variability in Silver Particle Characteristics, Silver Concentrations, and Production Batches of Commercially Available Products Indicates the Need for a More Rigorous Approach. Nanomaterials, 10(7), 1394. https://doi.org/10.3390/nano10071394