Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application
Abstract
:1. Introduction
2. Resistive Switching (RS) Mechanisms of RRAM Devices
2.1. Thermal-Chemical Mechanism (TCM)
2.2. Valance Change Mechanism (VCM)
2.3. Electrochemical Metallization (ECM)
2.4. Modeling Analysis for Switching Mechanisms
3. Thin Film Materials of RRAM Devices
3.1. Thin Film Materials of RS Medium
3.2. Thin Film Materials of Electrode
4. Bionic Synaptic Application
4.1. Short-Term Plasticity for RRAM Devices
4.2. Long-Term Plasticity for RRAM Devices
4.3. Spike-Time-Dependent Plasticity for RRAM Devices
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lv, Z.; Zhou, Y.; Han, S.-T.; Roy, V.A.L. From biomaterial-based data storage to bio-inspired artificial synapse. Mater. Today 2018, 21, 537–552. [Google Scholar] [CrossRef]
- Hong, X.; Loy, D.J.; Dananjaya, P.A.; Tan, F.; Ng, C.; Lew, W. Oxide-based RRAM materials for neuromorphic computing. J. Mater. Sci. 2018, 53, 8720–8746. [Google Scholar] [CrossRef]
- Zakaria, O.; Madi, M.; Kasugai, S. Introduction of a novel guided bone regeneration memory shape based device. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Mullani, N.; Ali, I.; Dongale, T.D.; Kim, G.H.; Choi, B.J.; Basit, M.A.; Park, T.J. Improved resistive switching behavior of multiwalled carbon nanotube/TiO2 nanorods composite film by increased oxygen vacancy reservoir. Mater. Sci. Semicond. Process. 2020, 108, 104907–104916. [Google Scholar] [CrossRef]
- Du, X.; Tadrous, J.; Sabharwal, A. Sequential Beamforming for Multiuser MIMO With Full-Duplex Training. IEEE Trans. Wirel. Commun. 2016, 15, 8551–8564. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174–101184. [Google Scholar] [CrossRef]
- Simmons, J.G.; Verderber, R.R. New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1997, 301, 77–102. [Google Scholar]
- Kang, X.; Guo, J.; Gao, Y.; Ren, S.; Chen, W.; Zhao, X. NiO-based resistive memory devices with highly improved uniformity boosted by ionic liquid pre-treatment. Appl. Surf. Sci. 2019, 480, 57–62. [Google Scholar] [CrossRef]
- Shen, Z.; Qi, Y.; Mitrovic, I.Z.; Zhao, C.; Hall, S.; Yang, L.; Luo, T.; Huang, Y.; Zhao, C. Effect of Annealing Temperature for Ni/AlOx/Pt RRAM Devices Fabricated with Solution-Based Dielectric. Micromachines 2019, 10, 446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Liu, H.; Wang, X.; Zhao, L. Impacts of Cu-Doping on the Performance of La-Based RRAM Devices. Nanoscale Res. Lett. 2019, 14, 22401–22409. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Li, X.; Wang, J.; Wu, L.; Chen, P. Light-controlled resistive switching characteristics in ZnO/BiFeO3/ZnO thin film. Solid State Electron. 2018, 145, 46–48. [Google Scholar] [CrossRef]
- Wang, G.; Hu, L.; Xia, Y.; Li, Q.; Xu, Q. Resistive switching in FeNi/Al2O3/NiO/Pt structure with various Al2O3 layer thicknesses. J. Magn. Magn. Mater. 2020, 493, 165728–165734. [Google Scholar] [CrossRef]
- Patel, K.; Cottom, J.; Bosman, M.; Kenyon, A.J.; Shluger, A.L. An oxygen vacancy mediated Ag reduction and nucleation mechanism in SiO2 RRAM devices. Microelectron. Reliab. 2019, 98, 144–152. [Google Scholar] [CrossRef]
- Li, L.; Chang, K.C.; Ye, C.; Lin, X.; Zhang, R.; Xu, Z.; Zhou, Y.; Xiong, W.; Kuo, T.P. An indirect way to achieve comprehensive performance improvement of resistive memory: When hafnium meets ITO in an electrode. Nanoscale 2020, 12, 3267–3272. [Google Scholar] [CrossRef] [PubMed]
- Teherani, F.H.; Look, D.C.; Rogers, D.J.; Prezioso, M.; Merrikh-Bayat, F.; Chakrabarti, B.; Strukov, D. RRAM-based hardware implementations of artificial neural networks: Progress update and challenges ahead. Presented at the Oxide-Based Materials and Devices VII, San Francisco, CA, USA, 14–17 February 2016. [Google Scholar]
- Cataldo, A.; Biagetti, G.; Mencarelli, D.; Micciulla, F.; Crippa, P.; Turchetti, C.; Pierantoni, L.; Bellucci, S. Modeling and Electrochemical Characterization of Electrodes Based on Epoxy Composite with Functionalized Nanocarbon Fillers at High Concentration. Nanomaterials 2020, 10, 850. [Google Scholar] [CrossRef]
- Moon, K.; Lim, S.; Park, J.; Sung, C.; Oh, S.; Woo, J.; Lee, J.; Hwang, H. RRAM-based synapse devices for neuromorphic systems. Faraday Discuss. 2019, 213, 421–451. [Google Scholar] [CrossRef]
- Yun, H.J.; Choi, B.J. Effects of moisture and electrode material on AlN-based resistive random access memory. Ceram. Int. 2019, 45, 16311–16316. [Google Scholar] [CrossRef]
- Qi, Y.; Shen, Z.; Zhao, C.; Zhao, C.Z. Effect of electrode area on resistive switching behavior in translucent solution-processed AlOx based memory device. J. Alloy. Compd. 2020, 822, 153603–153621. [Google Scholar] [CrossRef]
- Mahata, C.; Lee, C.; An, Y.; Kim, M.-H.; Bang, S.; Kim, C.S.; Ryu, J.-H.; Kim, S.; Kim, H.; Park, B.-G. Resistive switching and synaptic behaviors of an HfO2/Al2O3 stack on ITO for neuromorphic systems. J. Alloy. Compd. 2020, 826, 154434–154460. [Google Scholar] [CrossRef]
- Cheng, C.H.; Chin, A.; Hsu, H.H. Forming-Free SiGeOx/TiOy Resistive Random Access Memories Featuring Large Current Distribution Windows. J. Nanosci. Nanotechnol. 2019, 19, 7916–7919. [Google Scholar] [CrossRef]
- Ha, S.; Lee, H.; Lee, W.-Y.; Jang, B.; Kwon, H.-J.; Kim, K.; Jang, J. Effect of Annealing Environment on the Performance of Sol–Gel-Processed ZrO2 RRAM. Electronics 2019, 8, 947. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Siddik, M.; Shin, J.; Biju, K.P.; Jung, S.; Hwang, H. Low temperature solution-processed graphene oxide/Pr0.7Ca0.3MnO3 based resistive-memory device. Appl. Phys. Lett. 2011, 99, 042101–042104. [Google Scholar] [CrossRef]
- Hu, Q.; Lee, T.S.; Lee, N.J.; Kang, T.S.; Park, M.R.; Yoon, T.-S.; Lee, H.H.; Kang, C.J. Resistive Switching Characteristics in MnO Nanoparticle Assembly and Ag2Se Thin Film Devices. J. Nanosci. Nanotechnol. 2017, 17, 7189–7193. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Chen, Y.C.; Rettner, C.T.; Raoux, S.; Cheng, H.Y.; Chen, S.H.; Lung, S.L.; Lam, C.; Liu, R. Fast Speed Bipolar Operation of Ge-Sb-Te Based Phase Change Bridge Devices. IEEE Electron. Device Lett. 2008, 8, 462–463. [Google Scholar]
- Wu, L.; Guo, J.; Zhong, W.; Zhang, W.; Kang, X.; Chen, W.; Du, Y. Flexible, multilevel, and low-operating-voltage resistive memory based on MoS2–rGO hybrid. Appl. Surf. Sci. 2019, 463, 947–952. [Google Scholar] [CrossRef]
- Shen, Z.J.; Zhao, C.; Zhao, C.Z.; Mitrovic, I.Z.; Yang, L.; Xu, W.Y.; Lim, E.G.; Luo, T.; Huang, Y.B. Al/GO/Si/Al RRAM with Solution-processed GO dielectric at Low Fabrication Temperature. In Proceedings of the 2019 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), Grenoble, France, 1–3 April 2019. [Google Scholar]
- Tsai, T.-M.; Lin, C.-C.; Chen, W.-C.; Wu, C.-H.; Yang, C.-C.; Tan, Y.-F.; Wu, P.-Y.; Huang, H.-C.; Zhang, Y.-C.; Sun, L.-C.; et al. Utilizing compliance current level for controllability of resistive switching in nickel oxide thin films for resistive random-access memory. J. Alloy. Compd. 2020, 826, 154126–154151. [Google Scholar] [CrossRef]
- Chen, Y. ReRAM: History, Status, and Future. IEEE Trans. Electron. Devices 2020, 67, 1420–1433. [Google Scholar] [CrossRef]
- Das, U.; Bhattacharjee, S.; Mahato, B.; Prajapat, M.; Sarkar, P.; Roy, A. Uniform, large-scale growth of WS2 nanodomains via CVD technique for stable non-volatile RRAM application. Mater. Sci. Semicond. Process. 2020, 107, 104837–104842. [Google Scholar] [CrossRef]
- Sun, C.; Lu, S.M.; Jin, F.; Mo, W.Q.; Song, J.L.; Dong, K.F. Multi-factors induced evolution of resistive switching properties for TiN/Gd2O3/Au RRAM devices. J. Alloy. Compd. 2020, 816, 152564–152581. [Google Scholar] [CrossRef]
- Roy, S.; Niu, G.; Wang, Q.; Wang, Y.; Zhang, Y.; Wu, H.; Zhai, S.; Shi, P.; Song, S.; Song, Z.; et al. Toward a Reliable Synaptic Simulation Using Al-Doped HfO2 RRAM. ACS Appl. Mater. Interfaces 2020, 12, 10648–10656. [Google Scholar] [CrossRef]
- Cui, X.; Li, X.; Zhang, M.; Cui, X. Design of the RRAM-Based Polymorphic Look-Up Table Scheme. IEEE J. Electron. Devices Soc. 2019, 7, 949–953. [Google Scholar] [CrossRef]
- Chuang, K.-C.; Chu, C.-Y.; Zhang, H.-X.; Luo, J.-D.; Li, W.-S.; Li, Y.-S.; Cheng, H.-C. Impact of the Stacking Order of HfOx and AlOx Dielectric Films on RRAM Switching Mechanisms to Behave Digital Resistive Switching and Synaptic Characteristics. IEEE J. Electron. Devices Soc. 2019, 7, 589–595. [Google Scholar] [CrossRef]
- Mao, J.-Y.; Zhou, L.; Ren, Y.; Yang, J.-Q.; Chang, C.-L.; Lin, H.-C.; Chou, H.-H.; Zhang, S.-R.; Zhou, Y.; Han, S.-T. A bio-inspired electronic synapse using solution processable organic small molecule. J. Mater. Chem. C 2019, 7, 1491–1501. [Google Scholar] [CrossRef]
- Lee, D.K.; Kim, M.-H.; Kim, T.-H.; Bang, S.; Choi, Y.-J.; Kim, S.; Cho, S.; Park, B.-G. Synaptic behaviors of HfO2 ReRAM by pulse frequency modulation. Solid State Electron. 2019, 154, 31–35. [Google Scholar] [CrossRef]
- Yang, S.; Hao, X.; Deng, B.; Wei, X.; Li, H.; Wang, J. A survey of brain-inspired artificial intelligence and its engineering. Life Res. 2018, 1, 23–29. [Google Scholar]
- Wang, H.; Yan, X. Overview of Resistive Random Access Memory (RRAM): Materials, Filament Mechanisms, Performance Optimization, and Prospects. Phys. Status Solidi RRL Rapid Res. Lett. 2019, 13, 1900073–1900084. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, L.; Zhang, H.; Liu, J.; Tan, D.; Chen, L.; Ma, Z.; Li, W. Effect of Joule Heating on Resistive Switching Characteristic in AlOx Cells Made by Thermal Oxidation Formation. Nanoscale Res. Lett. 2020, 19, 3229-1–3229-19. [Google Scholar] [CrossRef] [PubMed]
- Tsuruoka, T.; Hasegawa, T.; Terabe, K.; Aono, M. Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch. Nanotechnology 2012, 23, 435705–435711. [Google Scholar] [CrossRef]
- Sun, P.; Li, L.; Lu, N.; Li, Y.; Wang, M.; Xie, H.; Liu, S.; Liu, M. Physical model of dynamic Joule heating effect for reset process in conductive-bridge random access memory. J. Comput. Electron. 2014, 13, 432–438. [Google Scholar] [CrossRef]
- Zhang, T.; Ou, X.; Zhang, W.; Yin, J.; Xia, Y.; Liu, Z. High-k-rare-earth-oxide Eu2O3 films for transparent resistive random access memory (RRAM) devices. J. Phys. D Appl. Phys. 2014, 47, 065302–065308. [Google Scholar] [CrossRef]
- Chen, K.J.; Liu, J.; Wang, Y.; Yang, H.; Ma, Z.; Huang, X. VCM Conductive defect states based filament in MOM structure RRAM. IEEE Electron. Device Lett. 2018, 9, 1–4. [Google Scholar] [CrossRef]
- Kwon, D.H.; Kim, K.M.; Jang, J.H.; Jeon, J.M.; Lee, M.H.; Kim, G.H.; Li, X.S.; Park, G.S.; Lee, B.; Han, S.; et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol 2010, 5, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Liu, G.; Zhong, Z.; Dai, Y.; Shang, J.; Liu, Y.; Yang, H.; Yi, X.; Tan, H.; Pan, L.; et al. A 1D Vanadium Dioxide Nanochannel Constructed via Electric-Field-Induced Ion Transport and its Superior Metal-Insulator Transition. Adv. Mater. 2017, 29, 1702162(1)–1702162(9). [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Sohn, J.; Jiang, Z.; Chen, H.Y.; Philip Wong, H.S. Metal oxide-resistive memory using graphene-edge electrodes. Nat. Commun. 2015, 6, 8407–8413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munjal, S.; Khare, N. Valence Change Bipolar Resistive Switching Accompanied With Magnetization Switching in CoFe2O4 Thin Film. Sci. Rep. 2017, 7, 12427–12436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, C.; Wu, J.; He, G.; Zhang, J.; Deng, T.; He, P.; Wang, H. Physical Mechanism and Performance Factors of Metal Oxide Based Resistive Switching Memory: A Review. J. Mater. Sci. Technol. 2016, 32, 1–11. [Google Scholar] [CrossRef]
- Yu, D.; Liu, L.F.; Chen, B.; Zhang, F.F.; Gao, B.; Fu, Y.H.; Liu, X.Y.; Kang, J.F.; Zhang, X. Multilevel resistive switching characteristics in Ag/SiO2/Pt RRAM devices. IEEE Electron. Device Lett. 2011, 11, 1–4. [Google Scholar]
- Tsuruoka, T.; Terabe, K.; Hasegawa, T.; Aono, M. Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology 2010, 21, 425205–425213. [Google Scholar] [CrossRef]
- Guo, T.; Sun, B.; Zhou, Y.; Zhao, H.; Lei, M.; Zhao, Y. Overwhelming coexistence of negative differential resistance effect and RRAM. Phys. Chem Chem Phys. 2018, 20, 20635–20640. [Google Scholar] [CrossRef]
- Long, S.B.; Liu, Q.; Lv, H.B.; Li, Y.T.; Wang, Y.; Zhang, S.; Lian, W.-T.; Liu, M. Resistive switching mechanism of Cu doped ZrO2-based RRAM. IEEE Electron. Device Lett. 2010, 5, 1–4. [Google Scholar]
- Long, S.; Liu, Q.; Lv, H.; Li, Y.; Wang, Y.; Zhang, S.; Lian, W.; Zhang, K.; Wang, M.; Xie, H.; et al. Resistive switching mechanism of Ag/ZrO2:Cu/Pt memory cell. Appl. Phys. A 2011, 102, 915–919. [Google Scholar] [CrossRef]
- Yuan, F.; Shen, S.; Zhang, Z.; Pan, L.; Xu, J. Interface-induced two-step RESET for filament-based multi-level resistive memory. Superlattices Microstruct. 2016, 91, 90–97. [Google Scholar] [CrossRef]
- Gao, S.; Zeng, F.; Chen, C.; Tang, G.; Lin, Y.; Zheng, Z.; Song, C.; Pan, F. Conductance quantization in a Ag filament-based polymer resistive memory. Nanotechnology 2013, 24, 335201–335208. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Milo, V.; Wang, Z.; Xu, H.; Ielmini, D.; Zhao, X.; Liu, Y. Analytical Modeling of Organic-Inorganic CH3NH3PbI3 Perovskite Resistive Switching and its Application for Neuromorphic Recognition. Adv. Theory Simul. 2018, 1, 1700035–1700042. [Google Scholar] [CrossRef]
- Larentis, S.; Cagli, C.; Nardi, F.; Ielmini, D. Filament diffusion model for simulating reset and retention processes in RRAM. Microelectron. Eng. 2011, 88, 1119–1123. [Google Scholar] [CrossRef]
- Ambrogio, S.; Balatti, S.; Gilmer, D.C.; Ielmini, D. Analytical Modeling of Oxide-Based Bipolar Resistive Memories and Complementary Resistive Switches. IEEE Trans. Electron. Devices 2014, 61, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- Ielmini, D. Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth. IEEE Trans. Electron. Devices 2011, 58, 4309–4317. [Google Scholar] [CrossRef]
- Zhou, K.-J.; Chang, T.-C.; Lin, C.-Y.; Chen, C.-K.; Tseng, Y.-T.; Zheng, H.-X.; Chen, H.-C.; Sun, L.-C.; Lien, C.-Y.; Tan, Y.-F.; et al. Abnormal High Resistive State Current Mechanism Transformation in Ti/HfO2/TiN Resistive Random Access Memory. IEEE Electron. Device Lett. 2020, 41, 224–227. [Google Scholar] [CrossRef]
- Sheridan, P.; Kim, K.H.; Gaba, S.; Chang, T.; Chen, L.; Lu, W. Device and SPICE modeling of RRAM devices. Nanoscale 2011, 3, 3833–3840. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, C.; Qi, Y.; Mitrovic, I.Z.; Yang, L.; Wen, J.; Huang, Y.; Li, P.; Zhao, C. Memristive Non-Volatile Memory Based on Graphene Materials. Micromachines 2020, 11, 341. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Song, W.; Feng, Y.P.; Gao, D.; Zhu, Y.; Ding, J. Electrode-controlled confinement of conductive filaments in a nanocolumn embedded symmetric–asymmetric RRAM structure. J. Mater. Chem. C 2020, 8, 1577–1582. [Google Scholar] [CrossRef]
- Mao, S.; Zhou, G.; Sun, B.; Elshekh, H.; Zhang, X.; Xia, Y.; Yang, F.; Zhao, Y. Mechanism analysis of switching direction transformation in an Er2O3 based RRAM device. Curr. Appl. Phys. 2019, 19, 1421–1426. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, B.; Ma, X.; Hao, Y.; Chen, X. Physically Transient Resistive Switching Memory Based on Silk Protein. Small 2016, 12, 2715–2719. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, B.; Wang, H.; Ma, X.; Hao, Y.; Chen, X. Ultra-Lightweight Resistive Switching Memory Devices Based on Silk Fibroin. Small 2016, 12, 3360–3365. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Yu, H.C.; Huang, C.Y.; Chung, W.L.; Wu, S.L.; Su, Y.K. Nonvolatile Bio-Memristor Fabricated with Egg Albumen Film. Sci. Rep. 2014, 5, 1002201–1002212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méhes, G.; Vagin, M.; Mulla, M.Y.; Granberg, H.; Che, C.; Beni, V.; Crispin, X.; Berggren, M.; Stavrinidou, E.; Simon, D.T. Simon, Solar Heat-Enhanced Energy Conversion in Devices Based on Photosynthetic Membranes and PEDOT PSS-Nanocellulose Electrodes. Adcanced Sustain. Syst. 2019, 19, 1900100. [Google Scholar]
- Poskela, A.; Miettunen, K.; Borghei, M.; Vapaavuori, J.; Greca, L.G.; Lehtonen, J.; Solin, K.; Ago, M.; Lund, P.D.; Rojas, O.J. Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cells. ACS Sustain. Chem. Eng. 2019, 7, 10257–10265. [Google Scholar]
- Jin, H.; Li, J.; Iocozzia, J.; Zeng, X.; Wei, P.C.; Yang, C.; Li, N.; Liu, Z.; He, J.H.; Zhu, T.; et al. Hybrid Organic-Inorganic Thermoelectric Materials and Devices. Angew. Chem. Int. Ed. Engl. 2019, 58, 15206–15226. [Google Scholar] [CrossRef]
- Yarimaga, O.; Lee, S.; Ham, D.-Y.; Choi, J.-M.; Kwon, S.G.; Im, M.; Kim, S.; Kim, J.-M.; Choi, Y.-K. Thermofluorescent Conjugated Polymer Sensors for Nano- and Microscale Temperature Monitoring. Macromol. Chem. Phys. 2011, 212, 1211–1220. [Google Scholar]
- Ling, Q.D.; Lim, S.L.; Song, Y.; Zhu, C.X.; Chan DS, H.; Kang, E.T.; Neoh, K.G. Nonvolatile Polymer Memory Device Based on Bistable Electrical Switching in a Thin Film of Poly(N-vinylcarbazole) with Covalently Bonded C60. Langmuir 2007, 23, 312–319. [Google Scholar] [CrossRef]
- Zhu, Y.; Cheng, P.; Shi, J.; Wang, H.; Liu, Y.; Xiong, R.; Ma, H.; Ma, H. Bromine Vacancy Redistribution and Metallic-Ion-Migration-Induced Air-Stable Resistive Switching Behavior in All-Inorganic Perovskite CsPbBr3 Film-Based Memory Device. Adv. Electron. Mater. 2019, 6, 1900754–1900761. [Google Scholar] [CrossRef]
- Khurana, G.; Misra, P.; Katiyar, R.S. Forming free resistive switching in graphene oxide thin film for thermally stable nonvolatile memory applications. J. Appl. Phys. 2013, 114, 124508–124514. [Google Scholar] [CrossRef]
- Gan, K.-J.; Chang, W.-C.; Liu, P.-T.; Sze, S.M. Investigation of resistive switching in copper/InGaZnO/Al2O3-based memristor. Appl. Phys. Lett. 2019, 115, 143501–143506. [Google Scholar] [CrossRef]
- Lee, B.R.; Park, J.H.; Kim, T.G. Micro-light-emitting diode with n-GaN/NiO/Au-based resistive-switching electrode for compact driving circuitry. J. Alloy. Compd. 2020, 823, 153762–153767. [Google Scholar] [CrossRef]
- Sung, C.; Lim, S.; Hwang, H. Experimental Determination of the Tunable Threshold Voltage Characteristics in a AgxTe1-x/Al2O3/TiO2-based Hybrid Memory Device. IEEE Electron Device Lett. 2020, 41, 713–716. [Google Scholar]
- Kim, J.; Cho, S.; Kim, T.; Pak, J.J. Mimicking Synaptic Behaviors with Cross-Point Structured TiOx/TiOy-Based Filamentary RRAM for Neuromorphic Applications. J. Electr. Eng. Technol. 2019, 14, 869–875. [Google Scholar] [CrossRef]
- Wang, Q.; Niu, G.; Roy, S.; Wang, Y.; Zhang, Y.; Wu, H.; Zhai, S.; Bai, W.; Shi, P.; Song, S.; et al. Interface-engineered reliable HfO2-based RRAM for synaptic simulation. J. Mater. Chem. C 2019, 7, 12682–12687. [Google Scholar] [CrossRef]
- Cai, L.; Chen, W.; Zhao, Y.; Liu, X.; Kang, J.; Zhang, X.; Huang, P. Insight into Effects of Oxygen Reservoir Layer and Operation Schemes on Data Retention of HfO2-Based RRAM. IEEE Trans. Electron. Devices 2019, 66, 3822–3827. [Google Scholar] [CrossRef]
- Gupta, C.P.; Jain, P.K.; Chand, U.; Sharma, S.K.; Birla, S.; Sancheti, S. Effect of Top Electrode Materials on Switching Characteristics and Endurance Properties of Zinc Oxide Based RRAM Device. J. Nano Electron. Phys. 2020, 12, 01007-1–01007-6. [Google Scholar] [CrossRef]
- Kumar, D.; Chand, U.; Wen Siang, L.; Tseng, T.-Y. High-Performance TiN/Al2O3/ZnO/Al2O3/TiN Flexible RRAM Device With High Bending Condition. IEEE Trans. Electron. Devices 2020, 67, 493–498. [Google Scholar] [CrossRef]
- Wu, P.-Y.; Zheng, H.-X.; Shih, C.-C.; Chang, T.-C.; Chen, W.-J.; Yang, C.-C.; Chen, W.-C.; Tai, M.-C.; Tan, Y.-F.; Huang, H.-C.; et al. Improvement of Resistive Switching Characteristics in Zinc Oxide-Based Resistive Random Access Memory by Ammoniation Annealing. IEEE Electron. Device Lett. 2020, 41, 357–360. [Google Scholar] [CrossRef]
- Hussain, F.; Imran, M.; Khalil, R.M.A.; Sattar, M.A.; Niaz, N.A.; Rana, A.M.; Ismail, M.; Khera, E.A.; Rasheed, U.; Mumtaz, F.; et al. A first-principles study of Cu and Al doping in ZrO2 for RRAM device applications. Vacuum 2019, 168, 108842–108847. [Google Scholar] [CrossRef]
- Wei, X.; Huang, H.; Ye, C.; Wei, W.; Zhou, H.; Chen, Y.; Zhang, R.; Zhang, L.; Xia, Q. Exploring the role of nitrogen incorporation in ZrO2 resistive switching film for enhancing the device performance. J. Alloy. Compd. 2019, 775, 1301–1306. [Google Scholar] [CrossRef]
- Liu, K.-C.; Tzeng, W.-H.; Chang, K.-M.; Huang, J.-J.; Lee, Y.-J.; Yeh, P.-H.; Chen, P.-S.; Lee, H.-Y.; Chen, F.; Tsai, M.-J. Investigation of the effect of different oxygen partial pressure to LaAlO3 thin film properties and resistive switching characteristics. Thin Solid Film. 2011, 520, 1246–1250. [Google Scholar] [CrossRef]
- Kim, C.H.; Ahn, Y.; Son, J.Y. SrTiO3-Based Resistive Switching Memory Device with Graphene Nanoribbon Electrodes. Rapid Commun. 2016, 99, 9–11. [Google Scholar] [CrossRef]
- Chen, S.-W.; Wu, J.-M. Unipolar resistive switching behavior of BiFeO3 thin films prepared by chemical solution deposition. Thin Solid Films 2010, 519, 499–504. [Google Scholar] [CrossRef]
- Chen, H.Y.; Tian, H.; Gao, B.; Yu, S.; Liang, J.; Kang, J.; Zhang, Y.; Ren, T.-L.; Wong, H.S.P. Electrode oxide interface engineering by inserting single-layer graphene Application for HfOx-based resistive random access memory. IEEE Electron. Device Lett. 2012, 11, 489–492. [Google Scholar]
- Chen, Z.; Zhang, Y.; Yu, Y.; Che, Y.; Jin, L.; Li, Y.; Li, Q.; Li, T.; Dai, H.; Yao, J. Write once read many times resistance switching memory based on all-inorganic perovskite CsPbBr3 quantum dot. Opt. Mater. 2019, 90, 123–126. [Google Scholar] [CrossRef]
- Hickmott, T.W. Low-Frequency Negative Resistance in Thin Anodic Oxide Films. J. Appl. Phys. 1962, 33, 2669–2682. [Google Scholar] [CrossRef]
- Samanta, S.; Han, K.; Das, S.; Gong, X. Improvement in Threshold Switching Performance Using Al2O3 Interfacial Layer in Ag/Al2O3/SiOx/W Cross-Point Platform. IEEE Electron. Device Lett. 2020, 41, 924–927. [Google Scholar] [CrossRef]
- Banerjee, W.; Rahaman, S.Z.; Maikap, S. Excellent Uniformity and Multilevel Operation in Formation-Free Low Power Resistive Switching Memory Using IrOx/AlOx/W Cross-Point. Jpn. J. Appl. Phys. 2012, 51, 04dd10–04dd16. [Google Scholar] [CrossRef]
- Knorr, N.; Bamedi, A.; Karipidou, Z.; Wirtz, R.; Sarpasan, M.; Rosselli, S.; Nelles, G. Evidence of electrochemical resistive switching in the hydrated alumina layers of Cu/CuTCNQ/(native AlOx)/Al junctions. J. Appl. Phys. 2013, 114, 124510–124518. [Google Scholar] [CrossRef]
- Sleiman, A.; Sayers, P.W.; Mabrook, M.F. Mechanism of resistive switching in Cu/AlOx/W nonvolatile memory structures. J. Appl. Phys. 2013, 113, 164506–164511. [Google Scholar] [CrossRef]
- Anwar, F.; Nogan, J.; Zarkesh-Ha, P.; Osinski, M. Multilevel resistance in Ti/Pt/AlOx/HfOy/Ti/Pt/Ag resistive switching devices. In Proceedings of the 2015 IEEE Nanotechnology Materials and Devices Conference (NMDC), Anchorage, AK, USA, 13–16 September 2015. [Google Scholar]
- Varun, I.; Bharti, D.; Raghuwanshi, V.; Tiwari, S.P. Multi-temperature deposition scheme for improved resistive switching behavior of Ti/AlOx/Ti MIM structure. Solid State Ion. 2017, 309, 86–91. [Google Scholar] [CrossRef]
- Kurnia, F.; Liu, C.; Raveendra, N.; Jung, C.U.; Vasudevan, R.K.; Valanoor, N. Self-Assembled NiO Nanocrystal Arrays as Memristive Elements. Adv. Electron. Mater. 2020, 6, 1901153–1901160. [Google Scholar] [CrossRef]
- Yoshida, C.; Kinoshita, K.; Yamasaki, T.; Sugiyama, Y. Direct observation of oxygen movement during resistance switching in NiO/Pt film. Appl. Phys. Lett. 2008, 93, 042106–042109. [Google Scholar] [CrossRef]
- Russo, U.; Ielmini, D.; Cagli, C.; Lacaita, A.L. Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices. IEEE Trans. Electron. Devices 2009, 56, 186–192. [Google Scholar] [CrossRef]
- Cagli, C.; Nardi, F.; Ielmini, D. Modeling of Set/Reset Operations in NiO-Based Resistive-Switching Memory Devices. IEEE Trans. Electron. Devices 2009, 56, 1712–1720. [Google Scholar] [CrossRef]
- Ielmini, D.; Nardi, F.; Cagli, C.; Lacaita, A.L. Size-Dependent Retention Time in NiO-Based Resistive-Switching Memories. IEEE Electron. Device Lett. 2010, 31, 353–355. [Google Scholar] [CrossRef]
- Sullaphen, J.; Bogle, K.; Cheng, X.; Gregg, J.M.; Valanoor, N. Interface mediated resistive switching in epitaxial NiO nanostructures. Appl. Phys. Lett. 2012, 100, 203115–203120. [Google Scholar] [CrossRef]
- Sakellaropoulos, D.; Bousoulas, P.; Nikas, G.; Arvanitis, C.; Bagakis, E.; Tsoukalas, D. Enhancing the synaptic properties of low-power and forming-free HfOx/TaOy/HfOx resistive switching devices. Microelectron. Eng. 2020, 229, 111358–111364. [Google Scholar] [CrossRef]
- Nauenheim, C.; Kuegeler, C.; Ruediger, A.; Waser, R. Investigation of the electroforming process in resistively switching TiO2 nanocrosspoint junctions. Appl. Phys. Lett. 2010, 96, 122902–122905. [Google Scholar] [CrossRef] [Green Version]
- Hermes, C.; Bruchhaus, R.; Waser, R. Forming-Free TiO2-Based Resistive Switching Devices on CMOS-Compatible W-Plugs. IEEE Electron. Device Lett. 2011, 32, 1588–1590. [Google Scholar] [CrossRef]
- Salaoru, I.; Prodromakis, T.; Khiat, A.; Toumazou, C. Resistive switching of oxygen enhanced TiO2 thin-film devices. Appl. Phys. Lett. 2013, 102, 013506–013510. [Google Scholar] [CrossRef]
- Otsuka, S.; Hamada, Y.; Shimizu, T.; Shingubara, S. Ferromagnetic nano-conductive filament formed in Ni/TiO2/Pt resistive-switching memory. Appl. Phys. A 2014, 118, 613–619. [Google Scholar] [CrossRef]
- Vishwanath, S.K.; Kim, J. Resistive switching characteristics of all-solution-based Ag/TiO2/Mo-doped In2O3devices for non-volatile memory applications. J. Mater. Chem. C 2016, 4, 10967–10972. [Google Scholar] [CrossRef]
- Sharath, S.U.; Bertaud, T.; Kurian, J.; Hildebrandt, E.; Walczyk, C.; Calka, P.; Zaumseil, P.; Sowinska, M.; Walczyk, D.; Gloskovskii, A.; et al. Towards forming-free resistive switching in oxygen engineered HfO2−x. Appl. Phys. Lett. 2014, 104, 063502–063507. [Google Scholar] [CrossRef]
- Clima, S.; Chen, Y.Y.; Degraeve, R.; Mees, M.; Sankaran, K.; Govoreanu, B.; Jurczak, M.; De Gendt, S.; Pourtois, G. First-principles simulation of oxygen diffusion in HfOx: Role in the resistive switching mechanism. Appl. Phys. Lett. 2012, 100, 133102–133106. [Google Scholar] [CrossRef]
- Lanza, M.; Zhang, K.; Porti, M.; Nafría, M.; Shen, Z.Y.; Liu, L.F.; Kang, J.F.; Gilmer, D.; Bersuker, G. Grain boundaries as preferential sites for resistive switching in the HfO2 resistive random access memory structures. Appl. Phys. Lett. 2012, 100, 123508. [Google Scholar] [CrossRef]
- De Stefano, F.; Houssa, M.; Kittl, J.A.; Jurczak, M.; Afanas’ev, V.V.; Stesmans, A. Semiconducting-like filament formation in TiN/HfO2/TiN resistive switching random access memories. Appl. Phys. Lett. 2012, 100, 142102–142105. [Google Scholar] [CrossRef]
- Ambrogio, S.; Balatti, S.; Cubeta, A.; Calderoni, A.; Ramaswamy, N.; Ielmini, D. Statistical Fluctuations in HfOx Resistive-Switching Memory: Part I - Set/Reset Variability. IEEE Trans. Electron. Devices 2014, 61, 2912–2919. [Google Scholar] [CrossRef] [Green Version]
- Abbas, Y.; Han, I.S.; Sokolov, A.S.; Jeon, Y.-R.; Choi, C. Rapid thermal annealing on the atomic layer-deposited zirconia thin film to enhance resistive switching characteristics. J. Mater. Sci. Mater. Electron. 2019, 31, 903–909. [Google Scholar] [CrossRef]
- Verbakel, F.; Meskers, S.C.; de Leeuw, D.M.; Janssen, R.A. Resistive Switching in Organic Memories with a Spin-Coated Metal Oxide Nanoparticle Layer. J. Phys. Chem. C Lett. 2008, 112, 5254–5257. [Google Scholar] [CrossRef]
- Awais, M.N.; Muhammad, N.M.; Navaneethan, D.; Kim, H.C.; Jo, J.; Choi, K.H. Fabrication of ZrO2 layer through electrohydrodynamic atomization for the printed resistive switch (memristor). Microelectron. Eng. 2013, 103, 167–172. [Google Scholar] [CrossRef]
- Kärkkänen, I.; Shkabko, A.; Heikkilä, M.; Niinistö, J.; Ritala, M.; Leskelä, M.; Hoffmann-Eifert, S.; Waser, R. Study of atomic layer deposited ZrO2and ZrO2/TiO2 films for resistive switching application. Phys. Status Solidi (a) 2014, 211, 301–309. [Google Scholar] [CrossRef]
- Ismail, M.; Huang, C.Y.; Panda, D.; Hung, C.J.; Tsai, T.L.; Jieng, J.H.; Lin, C.-A.; Chand, U.; Rana, A.M.; Ahmed, E.; et al. Muhammad Younus Nadeem and Tseung-Yuen Tseng, Forming-free bipolar resistive switching in nonstoichiometric ceria films. Nanoscale Res. Lett. 2014, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parreira, P.; Paterson, G.W.; McVitie, S.; MacLaren, D.A. Stability, bistability and instability of amorphous ZrO2 resistive memory devices. J. Phys. D Appl. Phys. 2016, 49, 095111–095117. [Google Scholar] [CrossRef]
- Bailey, T.J.; Jha, R. Understanding Synaptic Mechanisms in SrTiO3 RRAM Devices. IEEE Trans. Electron. Devices 2018, 65, 3514–3520. [Google Scholar] [CrossRef]
- Tsubouchi, K.; Ohkubo, I.; Kumigashira, H.; Oshima, M.; Matsumoto, Y.; Itaka, K.; Ohnishi, T.; Lippmaa, M.; Koinuma, H. High-Throughput Characterization of Metal Electrode Performance for Electric-Field-Induced Resistance Switching in Metal Pr0.7Ca0.3MnO3 Metal Structure. Adv. Mater. 2007, 19, 1711–1713. [Google Scholar] [CrossRef]
- Hirose, Y.; Hirose, H. Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys. 1976, 47, 2767–2772. [Google Scholar] [CrossRef]
- Imanishi, Y.; Kida, S.; Nakaoka, T. Direct observation of Ag filament growth and unconventional SET-RESET operation in GeTe amorphous films. AIP Adv. 2016, 6, 075003-1–075003-9. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Wu, H.; Wang, K.; Wu, R.; Song, L.; Li, T.; Wang, J.; Yu, Z.; Qian, H. Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes. Sci Rep. 2015, 5, 13785–13793. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Park, J.; Jang, W.; Kim, H.; Ahn, S.; Jeon, K.-J.; Seo, H.; Jeon, H. Detection of oxygen ion drift in Pt/Al2O3/TiO2/Pt RRAM using interface-free single-layer graphene electrodes. Carbon 2014, 75, 209–216. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, B.; Wang, H.; Zhou, G.; Kan, X.; Zhang, Y.; Zhao, Y. Metal ion formed conductive filaments by redox process induced nonvolatile resistive switching memories in MoS2 film. Appl. Surf. Sci. 2017, 426, 812–816. [Google Scholar] [CrossRef]
- Kadhim, M.S.; Yang, F.; Sun, B.; Hou, W.; Peng, H.; Hou, Y.; Jia, Y.; Yuan, L.; Yu, Y.; Zhao, Y. Existence of Resistive Switching Memory and Negative Differential Resistance State in Self-Colored MoS2/ZnO Heterojunction Devices. ACS Appl. Electron. Mater. 2019, 1, 318–324. [Google Scholar] [CrossRef]
- Chen, C.; Gao, S.; Zeng, F.; Tang, G.S.; Li, S.Z.; Song, C.; Fu, H.D.; Pan, F. Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices. J. Appl. Phys. 2013, 114, 014502–014509. [Google Scholar] [CrossRef]
- Jana, D.; Dutta, M.; Samanta, S.; Maikap, S. Subhranu Samanta and Siddheswar Maikap, RRAM characteristics using a new Cr GdOx TiN structure. Nanoscale Res. Lett. 2014, 9, 680-1–680-9. [Google Scholar] [CrossRef] [Green Version]
- Hongbin, Z.; Hailing, T.; Feng, W.; Jun, D. Highly Transparent Dysprosium Oxide-Based RRAM with Multilayer Graphene Electrode for Low-Power Nonvolatile Memory Application. IEEE Trans. Electron. Devices 2014, 61, 1388–1393. [Google Scholar] [CrossRef]
- Chen, S.-C.; Chang, T.-C.; Chen, S.-Y.; Chen, C.-W.; Chen, S.-C.; Sze, S.M.; Tsai, M.-J.; Kao, M.-J.; Yeh, F.-S. Bipolar resistive switching of chromium oxide for resistive random access memory. Solid State Electron. 2011, 62, 40–43. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, R.; Pan, Y.; Zhang, L.; Cai, Y.; Yang, G.; Wang, Y. A New Dynamic Selector Based on the Bipolar RRAM for the Crossbar Array Application. IEEE Trans. Electron. Devices 2012, 59, 2277–2280. [Google Scholar] [CrossRef]
- Park, K.; Lee, J.S. Controlled synthesis of Ni/CuOx/Ni nanowires by electrochemical deposition with self-compliance bipolar resistive switching. Sci. Rep. 2016, 6, 23069–23074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, S.; Lim, J.; Lee, S.; Alimkhanuly, B.; Kadyrov, A.; Jeon, D.; Lee, S. Graphene-Edge Electrode on a Cu-Based Chalcogenide Selector for 3D Vertical Memristor Cells. ACS Appl Mater. Interfaces 2019, 11, 43466–43472. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.; Jo, S.H.; Lu, W. Short-Term Memory to Long-Term memory transition in a nanoscale memristor. ACS Nano 2011, 5, 7669–7676. [Google Scholar] [CrossRef] [PubMed]
- Ambrogio, S.; Balatti, S.; Milo, V.; Carboni, R.; Wang, Z.-Q.; Calderoni, A.; Ramaswamy, N.; Ielmini, D. Neuromorphic Learning and Recognition With One-Transistor-One-Resistor Synapses and Bistable Metal Oxide RRAM. IEEE Trans.Electron. Devices 2016, 63, 1508–1515. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, D.W.; Zhou, P. Two-dimensional materials for synaptic electronics and neuromorphic systems. Sci. Bull. 2019, 64, 1056–1066. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Liang, X.; Yuan, B.; Chen, V.; Li, H.; Hui, F.; Yu, Z.; Yuan, F.; Pop, E.; Wong, H.S.P.; et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 2018, 1, 458–465. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, T.; Ren, Y.; Lin, Y.; Xu, H.; Zhao, X.; Liu, Y.; Ielmini, D. Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices. Nat. Commun. 2020, 11, 1509–1510. [Google Scholar] [CrossRef] [Green Version]
- Ielmini, D. Brain-inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks. Microelectron. Eng. 2018, 190, 44–53. [Google Scholar] [CrossRef]
- Kim, B.; Choi, H.-S.; Kim, Y. A Study of Conductance Update Method for Ni/SiNx/Si Analog Synaptic Device. Solid State Electron. 2020, 171, 107772–107799. [Google Scholar] [CrossRef]
- Serb, A.; Corna, A.; George, R.; Khiat, A.; Rocchi, F.; Reato, M.; Maschietto, M.; Mayr, C.; Indiveri, G.; Vassanelli, S.; et al. Memristive synapses connect brain and silicon spiking neurons. Sci. Rep. 2020, 10, 2590–2597. [Google Scholar] [CrossRef]
- Liu, B.; Tai, H.H.; Liang, H.; Zheng, E.-Y.; Sahoo, M.; Hsu, C.-H.; Chen, T.C.; Huang, C.-A.; Wang, J.-C.; Hou, T.-H.; et al. Dimensional Anisotropic Graphene with High Mobility and High On-Off Ratio in three-terminal RRAM device. Mater. Chem. Front. 2020, 10, 1–17. [Google Scholar]
- Park, Y.; Lee, J.S. Artificial Synapses with Short- and Long-Term Memory for Spiking Neural Networks Based on Renewable Materials. ACS Nano 2017, 11, 8962–8969. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Bae, J.-H.; Lim, S.; Lee, S.-T.; Seo, Y.-T.; Kwon, D.; Park, B.-G.; Lee, J.-H. Efficient precise weight tuning protocol considering variation of the synaptic devices and target accuracy. Neurocomputing 2020, 378, 189–196. [Google Scholar] [CrossRef]
- Halter, M.; Begon-Lours, L.; Bragaglia, V.; Sousa, M.; Offrein, B.J.; Abel, S.; Luisier, M.; Fompeyrine, J. Back-End, CMOS-Compatible Ferroelectric Field-Effect Transistor for Synaptic Weights. ACS Appl. Mater. Interfaces 2020, 12, 17725–17732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Miller, K.D.; Abbott, L.F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 2000, 3, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.L.; Patil, A.A.; Patil, S.V.; Khairnar, N.A.; Tarwal, N.L.; Vanalakar, S.A.; Bulakhe, R.N.; In, I.; Patil, P.S.; Dongale, T.D. Bipolar resistive switching, synaptic plasticity and non-volatile memory effects in the solution-processed zinc oxide thin film. Mater. Sci. Semicond. Process. 2020, 106, 104769–104776. [Google Scholar] [CrossRef]
- Jeon, D.S.; Park, J.H.; Kang, D.Y.; Dongale, T.D.; Kim, T.G. Forming-ready resistance random access memory using randomly pre-grown conducting filaments via pre-forming. Mater. Sci. Semicond. Process. 2020, 110, 104951–104956. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Zhao, X.; Wu, F.; Wu, Q.; Wang, W.; Cao, R.; Fang, Y.; Lv, H.; Long, S.; et al. Emulating Short-Term and Long-Term Plasticity of Bio-Synapse Based on Cu/a-Si/Pt Memristor. IEEE Electron. Device Lett. 2017, 38, 1208–1211. [Google Scholar] [CrossRef]
- Lobov, S.A.; Mikhaylov, A.N.; Shamshin, M.; Makarov, V.A.; Kazantsev, V.B. Spatial Properties of STDP in a Self-Learning Spiking Neural Network Enable Controlling a Mobile Robot. Front. Neurosci. 2020, 14, 88–97. [Google Scholar] [CrossRef]
- Kim, J.; Kim, C.-H.; Yun Woo, S.; Kang, W.-M.; Seo, Y.-T.; Lee, S.; Oh, S.; Bae, J.-H.; Park, B.-G.; Lee, J.-H. Initial synaptic weight distribution for fast learning speed and high recognition rate in STDP-based spiking neural network. Solid State Electron. 2020, 165, 107742–107747. [Google Scholar] [CrossRef]
- Kim, K.Y.; Rios, L.C.; Le, H.; Perez, A.J.; Phan, S.; Bushong, E.A.; Deerinck, T.J.; Liu, Y.H.; Ellisman, M.A.; Lev-Ram, V.; et al. Synaptic Specializations of Melanopsin-Retinal Ganglion Cells in Multiple Brain Regions Revealed by Genetic Label for Light and Electron Microscopy. Cell Rep. 2019, 29, 628–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilyas, N.; Li, D.; Li, C.; Jiang, X.; Jiang, Y.; Li, W. Analog Switching and Artificial Synaptic Behavior of Ag/SiOx:Ag/TiOx/p++-Si Memristor Device. Nanoscale Res. Lett 2020, 15, 30–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pignatelli, M.; Tejeda, H.A.; Barker, D.J.; Bontempi, L.; Wu, J.; Lopez, A.; Palma Ribeiro, S.; Lucantonio, F.; Parise, E.M.; Torres-Berrio, A.; et al. Cooperative synaptic and intrinsic plasticity in a disynaptic limbic circuit drive stress-induced anhedonia and passive coping in mice. Mol. Psychiatry 2020, 2, 6868–6887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NagaJyothi, G.; Sridevi, S. High speed low area OBC DA based decimation filter for hearing aids application. Int. J. Speech Technol. 2019, 23, 111–121. [Google Scholar] [CrossRef]
- Berdan, R.; Vasilaki, E.; Khiat, A.; Indiveri, G.; Serb, A.; Prodromakis, T. Emulating short-term synaptic dynamics with memristive devices. Sci. Rep. 2016, 6, 18639–18647. [Google Scholar]
- Sun, L.; Hwang, G.; Choi, W.; Han, G.; Zhang, Y.; Jiang, J.; Zheng, S.; Watanabe, K.; Taniguchi, T.; Zhao, M.; et al. Ultralow switching voltage slope based on two-dimensional materials for integrated memory and neuromorphic applications. Nano Energy 2020, 69, 104472–104477. [Google Scholar] [CrossRef]
- Chen, P.A.; Ge, R.J.; Lee, J.W.; Hsu, C.H.; Hsu, W.C.; Akinwande, D.; Chiang, M.H. An RRAM with a 2D Material Embedded Double Switching Layer for Neuromorphic Computing. In Proceedings of the 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC), Portland, OR, USA, 14–17 October 2018. [Google Scholar]
- Shi, Y.; Pan, C.; Chen, V.; Raghavan, N.; Pey, K.L.; Puglisi, F.M.; Pop, E.; Wong, H.-P.; Lanza, M. Coexistence of volatile and non volatile resistive switching in 2D h- BN based electronic synapses. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017. [Google Scholar]
- Sokolov, A.S.; Jeon, Y.-R.; Ku, B.; Choi, C. Ar ion plasma surface modification on the heterostructured TaOx/InGaZnO thin films for flexible memristor synapse. J. Alloy. Compd. 2020, 822, 153625–153635. [Google Scholar] [CrossRef]
- Wang, T.Y.; He, Z.Y.; Chen, L.; Zhu, H.; Sun, Q.Q.; Ding, S.J.; Zhou, P.; Zhang, D.W. An Organic Flexible Artificial Bio-Synapses with Long-Term Plasticity for Neuromorphic Computing. Micromachines 2018, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J.K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595. [Google Scholar] [CrossRef]
- Ku, B.; Abbas, Y.; Kim, S.; Sokolov, A.S.; Jeon, Y.-R.; Choi, C. Improved resistive switching and synaptic characteristics using Ar plasma irradiation on the Ti/HfO2 interface. J. Alloy. Compd. 2019, 797, 277–283. [Google Scholar] [CrossRef]
- Wan, T.; Qu, B.; Du, H.; Lin, X.; Lin, Q.; Wang, D.W.; Cazorla, C.; Li, S.; Liu, S.; Chu, D. Digital to analog resistive switching transition induced by graphene buffer layer in strontium titanate based devices. J. Colloid Interface Sci. 2018, 512, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Baek, I.G.; Lee, M.S.; Seo, S.; Lee, M.J.; Seo, D.H.; Suh, D.S.; Park, J.C.; Park, S.O.; Kim, H.S.; Yoo, I.K.; et al. Moon, Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses, presented at the IEDM Technical Digest. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 13–15 December 2004. [Google Scholar]
- Zha, Y.; Wei, Z.; Li, J. Recent progress in RRAM technology: From compact models to applications. In Proceedings of the 2017 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 12–13 March 2017. [Google Scholar]
- Karam, R.; Liu, R.; Chen, P.-Y.; Yu, S.; Bhunia, S. Security Primitive Design with Nanoscale Devices: A Case Study with Resistive RAM. In Proceedings of the 2016 International Great Lakes Symposium on VLSI (GLSVLSI), Boston, MA, USA, 18–20 May 2016. [Google Scholar]
- Wang, W.; Li, Y.; Wang, M.; Wang, L.; Liu, Q.; Banerjee, W.; Li, L.; Liu, M. A hardware neural network for handwritten digits recognition using binary RRAM as synaptic weight element. In Proceedings of the the 2016 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, USA, 12–13 June 2016. [Google Scholar]
- Yu, S.; Sun, X.; Peng, X.; Huang, S. Compute-in-Memory with Emerging NonvolatileMemories: Challenges and Prospects. In Proceedings of the 2020 IEEE Custom Integrated Circuits Conference (CICC), Boston, MA, USA, USA, 22–25 March 2020. [Google Scholar]
Structure | Switching Mode | Thickness (nm) | VForming (V) | VSET (V) | VRESET (V) | ON/OFF Ratio | Endurance (cycle) | Retention (s) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ni/AlOx/Pt | bipolar | ~40 | Free | ~1.0 | ~−1.0 | ~103 | >150 | >104 | [9] |
TaN/HfO2/ Al2O3/ITO | bipolar | ~6 | ~4.5 | ~1.5 | ~−1.0 | ~102 | >100 | >2 × 103 | [20] |
Ti/IL-NiO/Pt | bipolar | ~50 | Free | ~0.5 | ~−1.5 | ~103 | >1300 | >104 | [8] |
FeNi/Al2O3/NiO/Pt | bipolar | ~180 | ~4.07 | ~6.0 | ~−5.0 | ~103 | >100 | >104 | [12] |
Au/TiOx/ TiOy/Au | bipolar | ~50 | ~5.62 | ~1.0 | ~−2.0 | ~102 | N. A. | N. A. | [78] |
Ni/SiGeOx/ TiOy/TiN | bipolar | ~25 | Free | ~3.0 | ~−2.5 | ~103 | >104 | >105 | [21] |
Ti/HfO2/TiN | bipolar | ~15 | ~6.5 | ~1.0 | ~−0.8 | ~10 | N. A. | N. A. | [60] |
Pt/Hf/HfO2/TiN | bipolar | ~20 | Free | ~0.8 | ~−1.5 | ~102 | N. A. | >106 | [80] |
Pt/Ta/HfO2/TiN | bipolar | ~20 | Free | ~0.8 | ~−1.8 | ~102 | N. A. | >104 | [80] |
Pt/Al:HfO2/TiN | bipolar | ~9 | ~2.3 | ~2.0 | ~−2.0 | ~104 | >100 | >104 | [32] |
TiN/ZnO/ TiN | bipolar | ~9 | ~4.2 | ~1.0 | ~−1.0 | ~10 | 240 | N. A. | [82] |
TiN/Al2O3/ ZnO/Al2O3/TiN | bipolar | ~15 | ~5.0 | ~1.0 | ~−1.0 | ~102 | >104 | >104 | [82] |
ITO/ZrO2/Ag | bipolar | ~50 | N. A. | ~5.0 | ~−15.0 | ~105 | >100 | >104 | [22] |
Pt/N:ZrO2/ TiN | bipolar | ~25 | ~3.6 | ~0.5 | ~−1.0 | ~102 | N. A. | N. A. | [85] |
Ag/SiO2/Pt | bipolar | ~80 | N. A. | ~0.5 | ~−2.0 | ~106 | >40 | >2 × 103 | [49] |
ITO/LaAlO3/ITO | bipolar | ~30 | ~3.2 | ~3.0 | ~−3.0 | ~102 | >100 | N. A. | [86] |
Cu/Cu:LaAlO3/Pt | bipolar | ~10 | ~7.0 | ~2.0 | ~−2.0 | ~103 | >110 | >104 | [10] |
GNR/SrTiO3/GNR | bipolar | ~50 | N. A. | ~2.0 | ~−3.0 | ~10 | >200 | >104 | [87] |
Pt/GO/PCMO/Pt | bipolar | ~25 | Free | ~1.0 | ~−1.0 | ~102 | >150 | >104 | [23] |
Pt/BiFeO3/Pt | unipolar | ~200 | N. A. | ~5.0 | ~−15.0 | N. A. | N. A. | N. A. | [88] |
Ag/ZnO/BiFeO3/ZnO/Ag | bipolar | ~270 | Free | ~2.0 | ~−2.0 | ~10 | N. A. | N. A. | [11] |
Ag/Ag2Se/ MnO/Au | bipolar | ~40 | Free | ~0.8 | ~−0.6 | ~102 | >800 | >104 | [24] |
TiN/SLG/HfO2/Pt | bipolar | ~35 | ~5.0 | ~2.0 | ~−3.0 | ~102 | >120 | >106 | [89] |
Ti/MoS2-rGO/ITO | bipolar | ~60 | Free | ~0.5 | ~−0.4 | ~10 | >200 | >104 | [26] |
Au/CsPbBr3/ITO | bipolar | N, A. | Free | ~1.0 | ~−1.0 | ~104 | N. A. | >1200 | [90] |
Electrode Materials | Thickness (nm) | Electrode Mode | Switching Mode | VSET (V) | VRESET (V) | ON/OFF Ratio | Ref. |
---|---|---|---|---|---|---|---|
Hf | ~40 | TE | Bipolar | ~4 | ~-4 | ~103 | [129] |
Al | ~40 | TE | Bipolar | ~2 | ~-2 | >102 | [27] |
Ti | ~100 | TE | Bipolar | ~0.5 | ~-1.5 | ~103 | [8] |
Zr | ~40 | TE | Bipolar | ~2 | ~-4 | ~103 | [129] |
Cr | ~70 | TE | Bipolar | ~1.5 | ~-1.5 | ~104 | [130] |
Ni | ~40 | TE | Bipolar | ~1.0 | ~-1.0 | ~103 | [9] |
Cu | ~150 | TE | Bipolar | ~2.0 | ~-2.0 | ~103 | [10] |
Ag | ~140 | TE/BE | Bipolar | ~2.0 | ~-2.0 | ~10 | [11] |
Pt | ~200 | BE | Bipolar | ~6.0 | ~-5.0 | ~103 | [12] |
Au | ~50 | TE/BE | Bipolar | ~1.0 | ~-2.0 | ~102 | [78] |
Graphene | N. A | TE | Unipolar | ~1.0 | ~-1.0 | ~104 | [131] |
ITO | ~50 | BE | Bipolar | ~1.5 | ~-1.0 | ~102 | [20] |
TiN | ~20 | TE | Bipolar | ~0.5 | ~-1.0 | ~102 | [85] |
TaN | ~60 | TE | Bipolar | ~1.5 | ~-1.0 | ~102 | [20] |
p-type Si | ~100 | BE | Bipolar | ~2 | ~-2 | >102 | [27] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.Z.; Yang, L.; Zhao, C. Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application. Nanomaterials 2020, 10, 1437. https://doi.org/10.3390/nano10081437
Shen Z, Zhao C, Qi Y, Xu W, Liu Y, Mitrovic IZ, Yang L, Zhao C. Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application. Nanomaterials. 2020; 10(8):1437. https://doi.org/10.3390/nano10081437
Chicago/Turabian StyleShen, Zongjie, Chun Zhao, Yanfei Qi, Wangying Xu, Yina Liu, Ivona Z. Mitrovic, Li Yang, and Cezhou Zhao. 2020. "Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application" Nanomaterials 10, no. 8: 1437. https://doi.org/10.3390/nano10081437
APA StyleShen, Z., Zhao, C., Qi, Y., Xu, W., Liu, Y., Mitrovic, I. Z., Yang, L., & Zhao, C. (2020). Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application. Nanomaterials, 10(8), 1437. https://doi.org/10.3390/nano10081437