Tuning the Nature of N-Based Groups From N-Containing Reduced Graphene Oxide: Enhanced Thermal Stability Using Post-Synthesis Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of N-Contanining Reduced Graphene Oxide (RGO) Samples
2.3. High Temperature Treatments of N-Containing RGO
2.4. Characterization
2.5. Nomenclature of the Samples
3. Results and Discussion
3.1. Synthesis of GO and N-Containing RGO (NRGO)
3.2. Role of the Atmosphere Used in the Thermal Treatments of NRGO.
3.3. Role of the Functionalities Present in the Starting Material
3.4. Role of Temperature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rao, C.N.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. Engl. 2009, 48, 7752–7777. [Google Scholar] [CrossRef] [PubMed]
- Wallace, P.R. The Band Theory of Graphite. Phys. Rev. 1947, 71, 622–634. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Vashist, S.K.; Luong, J.H.T. Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites. Carbon 2015, 84, 519–550. [Google Scholar] [CrossRef]
- Lu, G.; Yu, K.; Wen, Z.; Chen, J. Semiconducting graphene: Converting graphene from semimetal to semiconductor. Nanoscale 2013, 5, 1353–1368. [Google Scholar] [CrossRef]
- Wang, H.; Maiyalagan, T.; Wang, X. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catal. 2012, 2, 781–794. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, Z.; Chen, Z. Graphene-related nanomaterials: Tuning properties by functionalization. Nanoscale 2013, 5, 4541–4583. [Google Scholar] [CrossRef]
- Lee, H.J.; Kwon, H.S.; Kwon, S.; Cho, M.; Kim, H.K.; Han, H.T.; Lee, G.S. Tunable Electronic Properties of Nitrogen and Sulfur Doped Graphene: Density Functional Theory Approach. Nanomaterials 2019, 9, 268. [Google Scholar] [CrossRef] [Green Version]
- Llenas, M.; Sandoval, S.; Costa, M.P.; Oró-Solé, J.; Lope-Piedrafita, S.; Ballesteros, B.; Al-Jamal, T.K.; Tobias, G. Microwave-Assisted Synthesis of SPION-Reduced Graphene Oxide Hybrids for Magnetic Resonance Imaging (MRI). Nanomaterials 2019, 9, 1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, T.V.; Kumar, R.S.; Pang, S.J.-H.; Liu, Y.-K.; Chen, W.D.; Lue, J.S. Synergistic Antibacterial Activity of Silver-Loaded Graphene Oxide towards Staphylococcus Aureus and Escherichia Coli. Nanomaterials 2020, 10, 366. [Google Scholar] [CrossRef] [Green Version]
- Cobos, M.; De-La-Pinta, I.; Quindós, G.; Fernández, J.M.; Fernández, D.M. Graphene Oxide–Silver Nanoparticle Nanohybrids: Synthesis, Characterization, and Antimicrobial Properties. Nanomaterials 2020, 10, 376. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Hu, P.; Cai, C.; Liu, Z.; Hu, G.; Kuang, Q.; Mai, L.; Zhou, L. Dual carbon decorated Na3MnTi(PO4)3: A high-energy-density cathode material for sodium-ion batteries. Nano Energy 2020, 70, 104548. [Google Scholar] [CrossRef]
- Li, H.; Qin, J.; Li, M.; Li, C.; Xu, S.; Qian, L.; Yang, B. Gold-nanoparticle-decorated boron-doped graphene/BDD electrode for tumor marker sensor. Sens. Actuators B-Chem. 2020, 302, 127209. [Google Scholar] [CrossRef]
- Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 2009, 9, 1752–1758. [Google Scholar] [CrossRef]
- Panchakarla, L.S.; Subrahmanyam, K.S.; Saha, S.K.; Govindaraj, A.; Krishnamurthy, H.R.; Waghmare, U.V.; Rao, C.N.R. Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Adv. Mater. 2009, 21, 4726–4730. [Google Scholar] [CrossRef]
- Xu, H.; Ma, L.; Jin, Z. Nitrogen-doped graphene: Synthesis, characterizations and energy applications. J. Energy Chem. 2018, 27, 146–160. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shao, Y.; Matson, D.W.; Li, J.; Lin, Y. Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano 2010, 4, 1790–1798. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Robinson, J.T.; Sanchez, H.; Diankov, G.; Dai, H. Simultaneous Nitrogen Doping and Reduction of Graphene Oxide. J. Am. Chem. Soc. 2009, 131, 15939–15944. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, S.; Kumar, N.; Oro-Solé, J.; Sundaresan, A.; Rao, C.N.R.; Fuertes, A.; Tobias, G. Tuning the nature of nitrogen atoms in N-containing reduced graphene oxide. Carbon 2016, 96, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, S.; Fuertes, A.; Tobias, G. Solvent-free functionalisation of graphene oxide with amide and amine groups at room temperature. Chem. Commun. 2019, 55, 12196–12199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, B.; Tian, C.; Wang, L.; Sun, L.; Chen, C.; Nong, X.; Qiao, Y.; Fu, H. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction. Appl. Surf. Sci. 2012, 258, 3438–3443. [Google Scholar] [CrossRef]
- Long, D.; Li, W.; Ling, L.; Miyawaki, J.; Mochida, I.; Yoon, S.H. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 2010, 26, 16096–16102. [Google Scholar] [CrossRef]
- Kepić, D.; Sandoval, S.; Pino, Á.P.d.; György, E.; Cabana, L.; Ballesteros, B.; Tobias, G. Nanosecond Laser-Assisted Nitrogen Doping of Graphene Oxide Dispersions. ChemPhysChem 2017, 18, 935–941. [Google Scholar] [CrossRef]
- Carraro, F.; Cattelan, M.; Favaro, M.; Calvillo, L. Aerosol Synthesis of N and N-S Doped and Crumpled Graphene Nanostructures. Nanomaterials 2018, 8, 406. [Google Scholar] [CrossRef] [Green Version]
- Jeon, I.-Y.; Noh, H.-J.; Baek, J.-B. Nitrogen-Doped Carbon Nanomaterials: Synthesis, Characteristics and Applications. Chem. Asian J. 2019. [Google Scholar] [CrossRef]
- Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156–6214. [Google Scholar] [CrossRef]
- Sandoval, S.; Kumar, N.; Sundaresan, A.; Rao, C.N.R.; Fuertes, A.; Tobias, G. Enhanced Thermal Oxidation Stability of Reduced Graphene Oxide by Nitrogen Doping. Chem. Eur. J. 2014, 20, 11999–12003. [Google Scholar] [CrossRef]
- Xin, Y.; Liu, J.-g.; Jie, X.; Liu, W.; Liu, F.; Yin, Y.; Gu, J.; Zou, Z. Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts. Electrochim. Acta 2012, 60, 354–358. [Google Scholar] [CrossRef]
- Xiong, B.; Zhou, Y.; O’Hayre, R.; Shao, Z. Facile single-step ammonia heat-treatment and quenching process for the synthesis of improved Pt/N-graphene catalysts. Appl. Surf. Sci. 2013, 266, 433–439. [Google Scholar] [CrossRef]
- Yuan, B.; Xing, W.; Hu, Y.; Mu, X.; Wang, J.; Tai, Q.; Li, G.; Liu, L.; Liew, K.M.; Hu, Y. Boron/phosphorus doping for retarding the oxidation of reduced graphene oxide. Carbon 2016, 101, 152–158. [Google Scholar] [CrossRef]
- Pinto, S.C.; Gonçalves, G.; Sandoval, S.; López-Periago, A.M.; Borras, A.; Domingo, C.; Tobias, G.; Duarte, I.; Vicente, R.; Marques, P.A.A.P. Bacterial cellulose/graphene oxide aerogels with enhanced dimensional and thermal stability. Carbohydr. Polym. 2020, 230, 115598. [Google Scholar] [CrossRef]
- Gopalakrishnan, K.; Govindaraj, A.; Rao, C.N.R. Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis. J. Mater. Chem. A 2013, 1, 7563–7565. [Google Scholar] [CrossRef]
- Li, S.-M.; Yang, S.-Y.; Wang, Y.-S.; Lien, C.-H.; Tien, H.-W.; Hsiao, S.-T.; Liao, W.-H.; Tsai, H.-P.; Chang, C.-L.; Ma, C.-C.M.; et al. Controllable synthesis of nitrogen-doped graphene and its effect on the simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Carbon 2013, 59, 418–429. [Google Scholar] [CrossRef]
- Park, M.; Lee, T.; Kim, B.-S. Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction. Nanoscale 2013, 5, 12255–12260. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Waller, G.H.; Liu, Y.; Liu, M.; Wong, C.-p. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 2013, 53, 130–136. [Google Scholar] [CrossRef]
- Han, M.; Ryu, B.D.; Hyung, J.-H.; Han, N.; Park, Y.J.; Ko, K.B.; Kang, K.K.; Cuong, T.V.; Hong, C.-H. Enhanced thermal stability of reduced graphene oxide-Silicon Schottky heterojunction solar cells via nitrogen doping. Mater. Sci. Semicond. Process. 2017, 59, 45–49. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Q.; Tang, N.; Wan, X.; Liu, F.; Lv, L.; Du, Y. Increased magnetization of reduced graphene oxide by nitrogen-doping. Carbon 2013, 60, 549–551. [Google Scholar] [CrossRef]
- Purceno, A.D.; Machado, B.F.; Teixeira, A.P.C.; Medeiros, T.V.; Benyounes, A.; Beausoleil, J.; Menezes, H.C.; Cardeal, Z.L.; Lago, R.M.; Serp, P. Magnetic amphiphilic hybrid carbon nanotubes containing N-doped and undoped sections: Powerful tensioactive nanostructures. Nanoscale 2015, 7, 294–300. [Google Scholar] [CrossRef]
- Mikoushkin, V.M.; Nikonov, S.Y.; Dideykin, A.T.; Vul, A.Y.; Sakseev, D.A.; Baidakova, M.V.; Vilkov, O.Y.; Nelyubov, A.V. Graphene hydrogenation by molecular hydrogen in the process of graphene oxide thermal reduction. Appl. Phys. Lett. 2013, 102, 071910. [Google Scholar] [CrossRef]
- Jiménez Mateos, J.M.; Fierro, J.L.G. X-ray Photoelectron Spectroscopic Study of Petroleum Fuel Cokes. Surf. Interface Anal. 1996, 24, 223–236. [Google Scholar] [CrossRef]
- Atkins, P.; De Paula, J. Physical Chemistry for the Life Sciences, 2nd ed.; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Chambrion, P.; Suzuki, T.; Zhang, Z.-G.; Kyotani, T.; Tomita, A. XPS of Nitrogen-Containing Functional Groups Formed during the C−NO Reaction. Energy Fuels 1997, 11, 681–685. [Google Scholar] [CrossRef]
- Kundu, S.; Nagaiah, T.C.; Xia, W.; Wang, Y.; Dommele, S.V.; Bitter, J.H.; Santa, M.; Grundmeier, G.; Bron, M.; Schuhmann, W.; et al. Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction. J. Phys. Chem. C 2009, 113, 14302–14310. [Google Scholar] [CrossRef]
Treatment (Precursor, Gas, T) | Name of the Sample |
---|---|
GO, NH3, 220 °C | NRGO220 |
NRGO220, Ar, 1050 °C | NRGO220-1050Ar |
Sample | C (wt.%) | N (wt.%) | H (wt.%) |
---|---|---|---|
NRGO220 | 71.5 | 9.7 | 1.3 |
NRGO500 | 81.3 | 9.6 | 0.9 |
NRGO800 | 85.7 | 5.6 | 0.7 |
GO1050N2 | 94.9 | 0.3 | 0.2 |
NRGO500-1050N2 | 90.0 | 4.9 | 0.2 |
NRGO500-1050Ar | 91.0 | 4.9 | 0.3 |
NRGO500-1050Ar/H2 | 91.7 | 3.0 | 0.3 |
NRGO220-1050Ar | 92.4 | 4.0 | 0.2 |
NRGO800-1050Ar | 92.3 | 3.5 | 0.2 |
Specie | Sample | ||||
---|---|---|---|---|---|
NRGO500 | NRGO500-1050Ar | NRGO500-1050N2 | NRGO500-1050Ar/H2 | ||
C content (at.%) | RC=CR | 43.1 | 42.3 | 49.7 | 60.4 |
Functionalized carbon | 42.4 | 44.8 | 42.3 | 35.4 | |
Total | 85.5 | 87.1 | 92 | 95.8 | |
N content (at.%) | Pyridinic N (C5N:) | 3.8 | 1.8 | 1.1 | 0.3 |
Pyrrolic N (C4N:) | 3.4 | 0.9 | 0.7 | 0.2 | |
Graphitic N (C4N+) | 1.3 | 1.0 | 1.3 | 0.6 | |
Pyridinic N+O-(C4N+-O-) | -- | 0.7 | 0.6 | 0.2 | |
Total | 8.5 | 4.4 | 3.7 | 1.3 | |
O content (at.%) | -O2CR | 2.6 | 4.9 | 1.6 | 1.3 |
OCR2 | 2.3 | 2.6 | 2.1 | 1.6 | |
-OCR3 | 1.1 | 1 | 0.6 | -- | |
Total | 6 | 8.5 | 4.3 | 2.9 |
Specie | Sample | |||||||
---|---|---|---|---|---|---|---|---|
NRGO 220 | NRGO 800 | NRGO 220-500Ar | NRGO 220-800Ar | NRGO 220-1050Ar | NRGO 800-1050Ar | NRGO 500-800Ar | ||
C content (at.%) | RC=CR | 40.5 | 48.5 | 46.9 | 51.1 | 50.7 | 43.6 | 43.6 |
Functionalized carbon | 41.0 | 41.1 | 38.4 | 37.3 | 40.5 | 43.4 | 43.4 | |
Total | 81.5 | 89.6 | 85.3 | 88.4 | 91.2 | 87.0 | 87.0 | |
N content (at.%) | Pyridinic N | 2.9 * | 2.2 | 2.9 | 2.1 | 1.2 | 2.4 | 2.4 |
Pyrrolic N | 4.7 * | 1.7 | 2.1 | 1.6 | 0.9 | 1.8 | 1.8 | |
Graphitic N | 1.6 | 1.6 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
Pyridinic N+-O- | -- | -- | 0.6 | 0.7 | 0.9 | 0.6 | 0.6 | |
Total | 9.2 | 5.5 | 6.6 | 5.4 | 4.0 | 5.8 | 5.8 | |
O content (at.%) | -O2CR | 4.3 | 1.5 | 4.0 | 3.2 | 3.1 | 4.1 | 4.1 |
OCR2 | 2.6 | 2.7 | 3.8 | 2.0 | 1.0 | 2.1 | 2.1 | |
-OCR3 | 2.4 | 0.7 | 0.3 | 0.9 | 0.5 | 0.8 | 0.8 | |
PhOCOOPh | -- | -- | -- | 0.1 | 0.2 | 0.2 | 0.2 | |
Total | 9.3 | 4.9 | 8.1 | 6.2 | 4.8 | 7.2 | 7.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval, S.; Tobias, G. Tuning the Nature of N-Based Groups From N-Containing Reduced Graphene Oxide: Enhanced Thermal Stability Using Post-Synthesis Treatments. Nanomaterials 2020, 10, 1451. https://doi.org/10.3390/nano10081451
Sandoval S, Tobias G. Tuning the Nature of N-Based Groups From N-Containing Reduced Graphene Oxide: Enhanced Thermal Stability Using Post-Synthesis Treatments. Nanomaterials. 2020; 10(8):1451. https://doi.org/10.3390/nano10081451
Chicago/Turabian StyleSandoval, Stefania, and Gerard Tobias. 2020. "Tuning the Nature of N-Based Groups From N-Containing Reduced Graphene Oxide: Enhanced Thermal Stability Using Post-Synthesis Treatments" Nanomaterials 10, no. 8: 1451. https://doi.org/10.3390/nano10081451
APA StyleSandoval, S., & Tobias, G. (2020). Tuning the Nature of N-Based Groups From N-Containing Reduced Graphene Oxide: Enhanced Thermal Stability Using Post-Synthesis Treatments. Nanomaterials, 10(8), 1451. https://doi.org/10.3390/nano10081451