Dual Amplified Spontaneous Emission and Lasing from Nanographene Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Sample Preparation
2.3. Optical Characterization
3. Results and Discussion
3.1. Optical and ASE Properties of FZ3 Films
3.2. Transient Absorption of FZ3 Films
3.3. DFB Lasers with FZ3-Doped Active Films and Top-Layer Resonator
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuehne, A.J.C.; Gather, M.C. Organic lasers: Recent developments on materials, device geometries, and fabrication techniques. Chem. Rev. 2016, 116, 12823–12864. [Google Scholar] [CrossRef] [Green Version]
- Grivas, C. Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications. Prog. Quantum Electron. 2016, 45–46, 3–160. [Google Scholar] [CrossRef]
- Forrest, S.R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Hernandez, Y.; Feng, X.; Müllen, K. From nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis. Angew. Chem. Int. Ed. 2012, 51, 7640–7654. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Kawakami, R.K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794–807. [Google Scholar] [CrossRef] [PubMed]
- Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zhang, C.; Xue, F.; Zhou, Y.; Li, W.; Wang, Y.; Tu, W.; Zou, Z.; Wang, X.; Xiao, M. Enhanced hot-carrier luminescence in multilayer reduced graphene oxide nanospheres. Sci. Rep. 2013, 3, 2315. [Google Scholar] [CrossRef]
- Das, P.; Maiti, R.; Barman, P.K.; Ray, S.K.; Shivakiran, B.B.N. Mono- to few-layered graphene oxide embedded randomness assisted microcavity amplified spontaneous emission source. Nanotechnology 2016, 27, 055201. [Google Scholar] [CrossRef]
- Yadav, D.; Tamamushi, G.; Watanabe, T.; Mitsushio, J.; Tobah, Y.; Sugawara, K.; Dubinov, A.A.; Satou, A.; Ryzhii, M.; Ryzhii, V.; et al. Terahertz light-emitting graphene-channel transistor toward single-mode lasing. Nanophotonics 2018, 7, 741–752. [Google Scholar] [CrossRef]
- Bonal, V.; Muñoz-Mármol, R.; Gordillo Gámez, F.; Morales-Vidal, M.; Villalvilla, J.M.; Boj, P.G.; Quintana, J.A.; Gu, Y.; Wu, J.; Casado, J.; et al. Solution-processed nanographene distributed feedback lasers. Nat. Commun. 2019, 10, 3327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritter, K.A.; Lyding, J.W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 2009, 8, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Paternò, G.M.; Nicoli, L.; Chen, Q.; Müllen, K.; Narita, A.; Lanzani, G.; Scotognella, F. Modulation of the nonlinear optical properties of dibenzo[hi,st]ovalene by peripheral substituents. J. Phys. Chem. C 2018, 122, 25007–25013. [Google Scholar] [CrossRef]
- Paternò, G.M.; Chen, Q.; Wang, X.-Y.; Liu, J.; Motti, S.G.; Petrozza, A.; Feng, X.; Lanzani, G.; Müllen, K.; Narita, A.; et al. Synthesis of dibenzo[hi,st]ovalene and its amplified spontaneous emission in a polystyrene matrix. Angew. Chem. Int. Ed. 2017, 56, 6753–6757. [Google Scholar] [CrossRef]
- Paternò, G.M.; Moretti, L.; Barker, A.J.; Chen, Q.; Müllen, K.; Narita, A.; Cerullo, G.; Scotognella, F.; Lanzani, G. Pump–push–probe for ultrafast all-optical switching: The case of a nanographene molecule. Adv. Funct. Mater. 2018, 29, 1805249. [Google Scholar] [CrossRef] [Green Version]
- Kedia, S.; Sinha, S. Random laser emission at dual wavelengths in a donor-acceptor dye mixture solution. Results Phys. 2017, 7, 697–704. [Google Scholar] [CrossRef]
- Brovelli, S.; Virgili, T.; Mroz, M.M.; Sforazzini, G.; Paleari, A.; Anderson, H.L.; Lanzani, G.; Cacialli, F. Ultra-broad optical amplification and two-colour amplified spontaneous emission in binary blends of insulated molecular wires. Adv. Mater. 2010, 22, 3690–3694. [Google Scholar] [CrossRef]
- Chan, K.L.; Li, G.X.; Cheah, K.W. Spatially variant color light source using amplified spontaneous emission from organic thin films. Opt. Mater. Express 2015, 5, 497. [Google Scholar] [CrossRef]
- Diao, Z.; Xuan, L.; Liu, L.; Xia, M.; Hu, L.; Liu, Y.; Ma, J. A dual-wavelength surface-emitting distributed feedback laser from a holographic grating with an organic semiconducting gain and a doped dye. J. Mater. Chem. C 2014, 2, 6177–6182. [Google Scholar] [CrossRef]
- Kuehne, A.J.C.; Kaiser, M.; Mackintosh, A.R.; Wallikewitz, B.H.; Hertel, D.; Pethrick, R.A.; Meerholz, K. Sub-micrometer patterning of amorphous- and β-phase in a crosslinkable poly(9,9-dioctylfluorene): Dual-wavelength lasing from a mixed-morphology device. Adv. Funct. Mater. 2011, 21, 2564–2570. [Google Scholar] [CrossRef]
- Xu, T.; Wei, M.; Zhang, H.; Zheng, Y.; Chen, G.; Wei, B. Concentration-dependent, simultaneous multi-wavelength amplified spontaneous emission in organic thin films using Förster resonance energy transfer. Appl. Phys. Lett. 2015, 107, 123301. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, L.; Zhai, T.; Tong, J.; Niu, L.; Tong, F.; Cao, F.; Liu, H.; Zhang, X. A dual-wavelength polymer random laser with the step-type cavity. Org. Electron. 2018, 57, 323–326. [Google Scholar] [CrossRef]
- Ramalingam, A.; Palanisamy, P.K.; Masilamani, V.; Sivaram, B.M. Dual amplified spontaneous emission from 7-amino-4-methyl coumarin dye. J. Photochem. Photobiol. A Chem. 1989, 49, 89–96. [Google Scholar] [CrossRef]
- Vijila, C.; Ramalingam, A.; Palanisamy, P.K.; Masilamani, V. Role of dipole moment of solvents in formation and stabilization of the TICT states in Coumarin 445 under nitrogen laser excitation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2001, 57, 491–497. [Google Scholar] [CrossRef]
- Ibnaouf, K.H. Amplified spontaneous emission spectra of poly(9,9-dioctylfluorenyl-2,7-diyl) under pulsed laser excitation. Synth. Met. 2015, 209, 534–543. [Google Scholar] [CrossRef]
- Ibnaouf, K.H.; Prasad, S.; Masilamani, V.; AlSalhi, M.S. Evidence for amplified spontaneous emission from double excimer of conjugated polymer (PDHF) in a liquid solution. Polymer 2013, 54, 2401–2405. [Google Scholar] [CrossRef]
- Prasad, S.; Ibnaouf, K.H.; Alsalhi, M.S.; Masilamani, V. Laser from the dimer state of a conjugated polymer (PFO) in solution. Polymer 2014, 55, 727–732. [Google Scholar] [CrossRef]
- Ibnaouf, K.H.; Prasad, S.; Masilamani, V.; Alsalhi, M.S.; Alaamer, A.S. Evidence for the double excimer state of conjugated polymer in a liquid solution. J. Eur. Opt. Soc. 2013, 8, 13001–13005. [Google Scholar] [CrossRef]
- Mujamammi, W.M.; Prasad, S.; AlSalhi, M.S.; Masilamani, V. Time evolution of the excimer state of a conjugated polymer laser. Polymers 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Ibnaouf, K.H. Optical and amplified spontaneous emission from an efficient conducting copolymer (PFO-co-MEH-PPV) in solution. J. Lumin. 2017, 192, 707–712. [Google Scholar] [CrossRef]
- Fakis, M.; Polyzos, I.; Tsigaridas, G.; Giannetas, V.; Persephonis, P.; Spiliopoulos, I.; Mikroyannidis, J. Dual amplified spontaneous emission and laser action from a model oligo(phenylene vinylene): Comparison with the corresponding polymer. Opt. Mater. 2004, 27, 503–507. [Google Scholar] [CrossRef]
- Liu, B.; Lin, J.; Liu, F.; Yu, M.; Zhang, X.; Xia, R.; Yang, T.; Fang, Y.; Xie, L.; Huang, W. A highly crystalline and wide-bandgap polydiarylfluorene with β-phase conformation toward stable electroluminescence and dual amplified spontaneous emission. ACS Appl. Mater. Interfaces 2016, 8, 21648–21655. [Google Scholar] [CrossRef] [PubMed]
- Anni, M. Dual band amplified spontaneous emission in the blue in poly(9,9-dioctylfluorene) thin films with phase separated glassy and β-phases. Opt. Mater. 2019, 96, 109313. [Google Scholar] [CrossRef]
- Ibnaouf, K.H. Dimer and excimer states of a conjugated polymer poly(9,9-di-n-octylfluorenyl-2,7-diyl) in thin films. Opt. Quantum Electron. 2017, 49, 1–10. [Google Scholar] [CrossRef]
- Baronas, P.; Kreiza, G.; Adomenas, P.; Adomeniene, O.; Kazlauskas, K.; Ribierre, J.C.; Adachi, C.; Juršenas, S. Low-threshold light amplification in bifluorene single crystals: Role of the trap states. ACS Appl. Mater. Interfaces 2018, 10, 2768–2775. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, X.; Gopalakrishna, T.Y.; Phan, H.; Wu, J. Graphene-like molecules with four zigzag edges. Angew. Chem. 2018, 130, 6651–6655. [Google Scholar] [CrossRef]
- Bonal, V.; Quintana, J.A.; Muñoz-Mármol, R.; Villalvilla, J.M.; Boj, P.G.; Díaz-García, M.A. Sub-400 nm film thickness determination from transmission spectra in organic distributed feedback lasers fabrication. Thin Solid Films 2019, 692, 137580. [Google Scholar] [CrossRef]
- Muñoz-Mármol, R.; Zink-Lorre, N.; Villalvilla, J.M.; Boj, P.G.; Quintana, J.A.; Vázquez, C.; Anderson, A.; Gordon, M.J.; Sastre-Santos, A.; Fernández-Lázaro, F.; et al. Influence of blending ratio and polymer matrix on the lasing properties of perylenediimide dyes. J. Phys. Chem. C 2018, 122, 24896–24906. [Google Scholar] [CrossRef] [Green Version]
- Calzado, E.M.; Ramírez, M.G.; Boj, P.G.; García, M.A.D. Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides. Appl. Opt. 2012, 51, 3287–3293. [Google Scholar] [CrossRef]
- Calzado, E.M.; Villalvilla, J.M.; Boj, P.G.; Quintana, J.A.; Postigo, P.A.; Díaz-García, M.A. Blue surface-emitting distributed feedback lasers based on TPD-doped films. Appl. Opt. 2010, 49, 463–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonal, V.; Quintana, J.A.; Villalvilla, J.M.; Boj, P.G.; Díaz-García, M.A. Controlling the emission properties of solution-processed organic distributed feedback lasers through resonator design. Sci. Rep. 2019, 9, 11159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanzani, G. The Photophysics behind Photovoltaics and Photonics, 1st ed.; WILEY-VCH Verlag & Co. KKGaA: Weinheim, Germany, 2012; ISBN 9783527410545. [Google Scholar]
- D’Andrea, C.; Pezzoli, D.; Malloggi, C.; Candeo, A.; Capelli, G.; Bassi, A.; Volonterio, A.; Taroni, P.; Candiani, G. The study of polyplex formation and stability by time-resolved fluorescence spectroscopy of SYBR green I-stained DNA. Photochem. Photobiol. Sci. 2014, 13, 1680–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascia, F.; Girolomoni, L.; Alcocer, M.J.P.; Bargigia, I.; Perozeni, F.; Cazzaniga, S.; Cerullo, G.; D’Andrea, C.; Ballottari, M. Functional analysis of photosynthetic pigment binding complexes in the green alga haematococcus pluvialis reveals distribution of astaxanthin in photosystems. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Richard, R.M.; Herbert, J.M. Time-dependent density-functional description of the 1La state in polycyclic aromatic hydrocarbons: Charge-transfer character in disguise? J. Chem. Theory Comput. 2011, 7, 1296–1306. [Google Scholar] [CrossRef]
- Zimmerman, P.M.; Zhang, Z.; Musgrave, C.B. Singlet fission in pentacene through multi-exciton quantum states. Nat. Chem. 2010, 2, 648–652. [Google Scholar] [CrossRef]
- Walker, B.J.; Musser, A.J.; Beljonne, D.; Friend, R.H. Singlet exciton fission in solution. Nat. Chem. 2013, 5, 1019–1024. [Google Scholar] [CrossRef]
- Thorsmølle, V.K.; Averitt, R.D.; Demsar, J.; Smith, D.L.; Tretiak, S.; Martin, R.L.; Chi, X.; Crone, B.K.; Ramirez, A.P.; Taylor, A.J. Morphology effectively controls singlet-triplet exciton relaxation and charge transport in organic semiconductors. Phys. Rev. Lett. 2009, 102, 017401. [Google Scholar] [CrossRef]
- Lukman, S.; Richter, J.M.; Yang, L.; Hu, P.; Wu, J.; Greenham, N.C.; Musser, A.J. Efficient singlet fission and triplet-pair emission in a family of zethrene diradicaloids. J. Am. Chem. Soc. 2017, 139, 18376–18385. [Google Scholar] [CrossRef] [Green Version]
- Quintana, J.A.; Villalvilla, J.M.; Morales-Vidal, M.; Boj, P.G.; Zhu, X.; Ruangsupapichat, N.; Tsuji, H.; Nakamura, E.; Díaz-García, M.A. An efficient and color-tunable solution-processed organic thin-film laser with a polymeric top-layer resonator. Adv. Opt. Mater. 2017, 5, 1700238. [Google Scholar] [CrossRef]
- Grivas, C.; Pollnau, M. Organic solid-state integrated amplifiers and lasers. Laser Photon. Rev. 2012, 6, 419–462. [Google Scholar] [CrossRef]
- Anni, M.; Lattante, S. Organic Lasers: Fundamentals, Developements, and Applications, 1st ed.; Pan Stanford Publishing: Singapore, 2018; ISBN 9789814774468. [Google Scholar]
- Kogelnik, H.; Shank, C.V. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 1972, 43, 2327–2335. [Google Scholar] [CrossRef]
- Kazarinov, R.; Henry, C. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE J. Quantum Electron. 1985, 21, 144–150. [Google Scholar] [CrossRef]
- Hammer, M. 1-D Mode Solver for Dielectric Multilayer Slab Waveguides. Available online: https://www.computational-photonics.eu/oms.html (accessed on 25 May 2020).
- Morales-Vidal, M.; Boj, P.G.; Villalvilla, J.M.; Quintana, J.A.; Yan, Q.; Lin, N.-T.; Zhu, X.; Ruangsupapichat, N.; Casado, J.; Tsuji, H.; et al. Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers. Nat. Commun. 2015, 6, 8458. [Google Scholar] [CrossRef] [Green Version]
NG 1 | λABS2 (nm) | λPL3 (nm) | τPL4 (ns) | λpump5 (nm) | σSE6 (1016 cm2) | λASE7 (nm) | FWHM8 (nm) | Eth-ASE9 (mJ·cm−2) |
---|---|---|---|---|---|---|---|---|
FZ3 | 668/613 | 676/740 | 3.1 ± 0.3 | 613 | 5.7 | 685 | 3 | 60 |
- | - | - | - | - | - | 739 | 6 | 4.4 |
Device 1 | Grating 2 | Λ 3 (nm) | λASE4 (nm) | λDFB5 (nm) | Eth-DFB6 (mJ·cm−2) |
---|---|---|---|---|---|
A | 1D | 446 | 685 | 685.4 (TM0) | 15 |
- | - | - | - | 689.5 (TE0) | 9.5 |
B | 1D | 481 | 739 | 739.5 (TM0) | 14 |
- | - | - | - | 744.5 (TE0) | 1.3 |
C | 2D | 442/482 | 685/739 | 687.5 (TE0)/741.1 (TM0) | 8.7/7.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Mármol, R.; Bonal, V.; Paternò, G.M.; Ross, A.M.; Boj, P.G.; Villalvilla, J.M.; Quintana, J.A.; Scotognella, F.; D’Andrea, C.; Sardar, S.; et al. Dual Amplified Spontaneous Emission and Lasing from Nanographene Films. Nanomaterials 2020, 10, 1525. https://doi.org/10.3390/nano10081525
Muñoz-Mármol R, Bonal V, Paternò GM, Ross AM, Boj PG, Villalvilla JM, Quintana JA, Scotognella F, D’Andrea C, Sardar S, et al. Dual Amplified Spontaneous Emission and Lasing from Nanographene Films. Nanomaterials. 2020; 10(8):1525. https://doi.org/10.3390/nano10081525
Chicago/Turabian StyleMuñoz-Mármol, Rafael, Víctor Bonal, Giuseppe M. Paternò, Aaron M. Ross, Pedro G. Boj, José M. Villalvilla, José A. Quintana, Francesco Scotognella, Cosimo D’Andrea, Samim Sardar, and et al. 2020. "Dual Amplified Spontaneous Emission and Lasing from Nanographene Films" Nanomaterials 10, no. 8: 1525. https://doi.org/10.3390/nano10081525
APA StyleMuñoz-Mármol, R., Bonal, V., Paternò, G. M., Ross, A. M., Boj, P. G., Villalvilla, J. M., Quintana, J. A., Scotognella, F., D’Andrea, C., Sardar, S., Lanzani, G., Gu, Y., Wu, J., & Díaz-García, M. A. (2020). Dual Amplified Spontaneous Emission and Lasing from Nanographene Films. Nanomaterials, 10(8), 1525. https://doi.org/10.3390/nano10081525