An Analytical Multiple-Temperature Model for Flash Laser Irradiation on Single-Layer Graphene
Abstract
:1. Introduction
2. Basic Statement
3. Linking the Zhukovsky’s Formalism and MTM: A Novel Approach
4. Simulations
5. Limitations of Current Model
- The irradiation time/pulse duration should be superior to 1 fs. If simulations are carried out for as pulse durations, the laser wavelength is quite close to the separation distance between nucleus and first electron and the concept of the temperature distribution becomes meaningless.
- The target size is confined to the (20–100) nm range. If the particle size is smaller than 20 nm, the Fourier law collapses and cannot provide reliable results. For more than 100 nm, the restriction to nano-object is infringed.
- In current study, single-layer absorption has been used, thus limiting our study to single layer graphene. For multilayer graphene, the analysis becomes intricate and difficult to calculate since the absorption law and heat-transfer coefficients, in real-time, should be reconsidered for each layer, demanding a quantum-field theory in solid-state treatment. This subject is laborious to handle in simulations.
6. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pierson, H.O. Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications; Noyes Publications: Park Ridge, NJ, USA, 1993. [Google Scholar]
- Pop, E.; Varshney, V.; Roy, A.K. Thermal properties of graphene: Fundamentals and applications. MRS Bull. 2012, 37, 1273–1281. [Google Scholar] [CrossRef] [Green Version]
- Allen, P.B. Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 1987, 59, 1460. [Google Scholar] [CrossRef] [PubMed]
- Duffy, D.M.; Rutherford, A.M. The effect of electron–ion interactions on radiation damage simulations. J. Phys. Condens. Matter 2007, 19, 496201. [Google Scholar] [CrossRef]
- Lin, Z.; Zhigilei, L.V.; Celli, V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 2008, 77, 075133. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, N.; Yang, R. An electrohydrodynamics model for non-equilibrium electron and phonon transport in metal films after ultra-short pulse laser heating. Eur. Phys. J. 2015, 88, 156. [Google Scholar] [CrossRef] [Green Version]
- Vallabhaneni, A.K.; Singh, D.; Bao, H.; Murthy, J.; Ruan, X. Reliability of Raman measurements of thermal conductivity of single-layer graphene due to selective electron-phonon coupling: A first-principles study. Phys. Rev. B 2016, 93, 125432. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; McGaughey, A.J. Thermal transport by phonons and electrons in aluminum, silver, and gold from first principles. Phys. Rev. B 2016, 93, 081206. [Google Scholar] [CrossRef] [Green Version]
- Giustino, F. Electron-phonon interactions from first principles. Reviews of Modern Physics. Rev. Mod. Phys. 2017, 89, 015003. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhu, H.; Liu, T.H.; Song, Q.; He, R.; Mao, J.; Liu, Z.; Ren, W.; Liao, B.; Singh, D.J.; et al. Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers. Nat. Commun. 2018, 9, 1721. [Google Scholar] [CrossRef]
- Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 1998, 57, 14958. [Google Scholar] [CrossRef]
- Dames, C.; Chen, G.J. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Appl. Phys. B 2004, 95, 682. [Google Scholar] [CrossRef]
- Singh, D.; Murthy, J.; Fisher, T. Effect of Phonon Dispersion on Thermal Conduction Across Si/Ge Interfaces. In Proceedings of the ASME 2009 InterPACK Conference, San Francisco, CA, USA, 19–23 July 2009. [Google Scholar]
- Feng, T.; Yao, W.; Wang, Z.; Shi, J.; Li, C.; Cao, B.; Ruan, X. Spectral analysis of nonequilibrium molecular dynamics: Spectral phonon temperature and local nonequilibrium in thin films and across interfaces. Phys. Rev. B 2017, 95, 195202. [Google Scholar] [CrossRef] [Green Version]
- An, M.; Song, Q.; Yu, X.; Meng, H.; Ma, D.; Li, R.; Jin, Z.; Huang, B.; Yang, N. Generalized two-temperature model for coupled phonons in nanosized graphene. Nano Lett. 2017, 17, 5805–5810. [Google Scholar] [CrossRef] [Green Version]
- Waldecker, L.; Bertoni, R.; Ernstorfer, R.; Vorberger, J. Electron-phonon coupling and energy flow in a simple metal beyond the two-temperature approximation. Phys. Rev. X 2016, 6, 021003. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, S.I.; Kapeliovich, B.L.; Perel’man, T.L. Electron emission from metal surfaces exposed to ultrashort laser pulses. Zh. Eksp. Teor. Fiz. 1974, 66, 776–781. [Google Scholar]
- Oane, M.; Taca, M.; Tsao, S.L. Two Temperature Models for Metals: A New “Radical” Approach. Laser Eng. 2012, 24, 105–113. [Google Scholar]
- Nolte, S.; Momma, C.; Jacobs, H.; Tunnermann, A.; Chichkov, B.N.; Wellegehaussen, B.; Welling, H. Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B 1997, 14, 2716–2722. [Google Scholar] [CrossRef]
- Lu, Z.; Vallabhaneni, A.; Cao, B.; Ruan, X. Phonon branch-resolved electron-phonon coupling and the multitemperature model. Phys. Rev. B 2018, 98, 134309. [Google Scholar] [CrossRef] [Green Version]
- Zhukovsky, K. Operational Approach and Solutions of Hyperbolic Heat Conduction Equations. Axioms 2016, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Zhukovsky, K. Operational solution for some types of second order differential equations and for relevant physical problems. J. Math. Anal. Appl. 2017, 446, 628–647. [Google Scholar] [CrossRef]
- Zhukovsky, K. Operational solution of differential equations with derivatives of non-integer order, Black-Scholes type and heat conduction. Mosc. Univ. Phys. Bull. 2016, 71, 237–244. [Google Scholar] [CrossRef]
- Mourou, G. Nobel Lecture: Extreme light physics and application. Rev. Mod. Phys. 2019, 91, 030501. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucă, A.M.; Oane, M.; Mihăilescu, I.N.; Mahmood, M.A.; Sava, B.A.; Ristoscu, C. An Analytical Multiple-Temperature Model for Flash Laser Irradiation on Single-Layer Graphene. Nanomaterials 2020, 10, 1319. https://doi.org/10.3390/nano10071319
Bucă AM, Oane M, Mihăilescu IN, Mahmood MA, Sava BA, Ristoscu C. An Analytical Multiple-Temperature Model for Flash Laser Irradiation on Single-Layer Graphene. Nanomaterials. 2020; 10(7):1319. https://doi.org/10.3390/nano10071319
Chicago/Turabian StyleBucă, Anca M., Mihai Oane, Ion N. Mihăilescu, Muhammad Arif Mahmood, Bogdan A. Sava, and Carmen Ristoscu. 2020. "An Analytical Multiple-Temperature Model for Flash Laser Irradiation on Single-Layer Graphene" Nanomaterials 10, no. 7: 1319. https://doi.org/10.3390/nano10071319
APA StyleBucă, A. M., Oane, M., Mihăilescu, I. N., Mahmood, M. A., Sava, B. A., & Ristoscu, C. (2020). An Analytical Multiple-Temperature Model for Flash Laser Irradiation on Single-Layer Graphene. Nanomaterials, 10(7), 1319. https://doi.org/10.3390/nano10071319