Effect of Temperature and Branched Crosslinkers on Supported Graphene Oxide Pervaporation Membranes for Ethanol Dehydration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GO and Fabrication of Supported GO Membranes
2.3. Cross-Flow Pervaporation Experiments
3. Results and Discussion
3.1. Pure Component Feed
3.2. Ethanol–Water Mixtures
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ho, D.P.; Ngo, H.H.; Guo, W. A Mini Review on Renewable Sources for Biofuel. Bioresour. Technol. 2014, 169, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.-K.; Hwang, K.-R.; Kim, C.; Kim, J.R.; Lee, J.-S. Recent Developments and Key Barriers to Advanced Biofuels: A Short Review. Bioresour. Technol. 2018, 257, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.C.; Mi, L.; Pontrelli, S.; Luo, S. Fuelling the Future: Microbial Engineering for the Production of Sustainable Biofuels. Nat. Rev. Microbiol. 2016, 14, 288–304. [Google Scholar] [CrossRef] [PubMed]
- Fivga, A.; Speranza, L.G.; Branco, C.M.; Ouadi, M.; Hornung, A. A Review on the Current State of the Art for the Production of Advanced Liquid Biofuels. AIMS Energy 2019, 7, 46–76. [Google Scholar] [CrossRef]
- Saha, K.; Uma Maheswari, R.; Sikder, J.; Chakraborty, S.; da Silva, S.S.; dos Santos, J.C. Membranes as a Tool to Support Biorefineries: Applications in Enzymatic Hydrolysis, Fermentation and Dehydration for Bioethanol Production. Renew. Sustain. Energy Rev. 2017, 74, 873–890. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, N.; Prasad, R. Anhydrous Ethanol: A Renewable Source of Energy. Renew. Sustain. Energy Rev. 2010, 14, 1830–1844. [Google Scholar] [CrossRef]
- Zabed, H.; Sahu, J.N.; Suely, A.; Boyce, A.N.; Faruq, G. Bioethanol Production from Renewable Sources: Current Perspectives and Technological Progress. Renew. Sustain. Energy Rev. 2017, 71, 475–501. [Google Scholar] [CrossRef]
- Baeyens, J.; Kang, Q.; Appels, L.; Dewil, R.; Lv, Y.; Tan, T. Challenges and Opportunities in Improving the Production of Bio-Ethanol. Prog. Energy Combust. Sci. 2015, 47, 60–88. [Google Scholar] [CrossRef]
- Vane, L.M. A Review of Pervaporation for Product Recovery from Biomass Fermentation Processes. J. Chem. Technol. Biotechnol. 2005, 80, 603–629. [Google Scholar] [CrossRef]
- O’Brien, D.J.; Craig, J.C. Ethanol Production in a Continuous Fermentation/Membrane Pervaporation System. Appl. Microbiol. Biotechnol. 1996, 44, 699–704. [Google Scholar] [CrossRef]
- Liang, L.; Ruckenstein, E. Pervaporation of Ethanol-Water Mixtures through Polydimethylsiloxane-Polystyrene Interpenetrating Polymer Network Supported Membranes. J. Memb. Sci. 1996, 114, 227–234. [Google Scholar] [CrossRef]
- Ruckenstein, E.; Liang, L. Pervaporation of Ethanol-Water Mixtures through Polyvinyl Alcohol-Polyacrylamide Interpenetrating Polymer Network Membranes Unsupported and Supported on Polyethersulfone Ultrafiltration Membranes: A Comparison. J. Memb. Sci. 1996, 110, 99–107. [Google Scholar] [CrossRef]
- Wenten, I.G.; Dharmawijaya, P.T.; Aryanti, P.T.P.; Mukti, R.R.; Khoiruddin. LTA Zeolite Membranes: Current Progress and Challenges in Pervaporation. RSC Adv. 2017, 7, 29520–29539. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.Q.; Zhang, L.; Shen, J.N.; Song, M.Y.; Chen, H.L. Preparation of Poly(Vinyl Alcohol)-Sodium Alginate Hollow-Fiber Composite Membranes and Pervaporation Dehydration Characterization of Aqueous Alcohol Mixtures. Desalination 2006, 193, 202–210. [Google Scholar] [CrossRef]
- Huang, Z.; Guan, H.; lee Tan, W.; Qiao, X.-Y.; Kulprathipanja, S. Pervaporation Study of Aqueous Ethanol Solution through Zeolite-Incorporated Multilayer Poly (Vinyl Alcohol) Membranes: Effect of Zeolites. J. Memb. Sci. 2006, 276, 260–271. [Google Scholar] [CrossRef]
- Vane, L.M. Review: Membrane Materials for the Removal of Water from Industrial Solvents by Pervaporation and Vapor Permeation. J. Chem. Technol. Biotechnol. 2019, 94, 343–365. [Google Scholar] [CrossRef]
- Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; van der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable Atomic Membranes from Graphene Sheets. Nano Lett. 2008, 8, 2458–2462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, R.R.; Wu, H.A.; Jayaram, P.N.; Grigorieva, I.V.; Geim, A.K. Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes. Science 2012, 335, 442–444. [Google Scholar] [CrossRef] [Green Version]
- Boukhvalov, D.W.; Katsnelson, M.I.; Son, Y.-W. Origin of Anomalous Water Permeation through Graphene Oxide Membrane. Nano Lett. 2013, 13, 3930–3935. [Google Scholar] [CrossRef] [Green Version]
- Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene Oxide and Reduced Graphene Oxide Studied by the XRD, TEM and Electron Spectroscopy Methods. J. Electron. Spectros. Relat. Phenomena 2014, 195, 145–154. [Google Scholar] [CrossRef]
- Some, S.; Kim, Y.; Yoon, Y.; Yoo, H.; Lee, S.; Park, Y.; Lee, H. High-Quality Reduced Graphene Oxide by a Dual-Function Chemical Reduction and Healing Process. Sci. Rep. 2013, 3, 1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimiev, A.M.; Alemany, L.B.; Tour, J.M. Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model. ACS Nano 2013, 7, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Zhou, S.; Hu, Y.; Acik, M.; Chabal, Y.J.; Berger, C.; de Heer, W.; Bongiorno, A.; Riedo, E. Room-Temperature Metastability of Multilayer Graphene Oxide Films. Nat. Mater. 2012, 11, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Choi, M.; Hwang, Y.Y.; Kim, H.; Kim, M.K.; Lee, Y.J. Facilitated Water Transport through Graphene Oxide Membranes Functionalized with Aquaporin-Mimicking Peptides. Adv. Mater. 2018, 30, 1705944. [Google Scholar] [CrossRef]
- Guan, K.; Liang, F.; Zhu, H.; Zhao, J.; Jin, W. Incorporating Graphene Oxide into Alginate Polymer with a Cationic Intermediate to Strengthen Membrane Dehydration Performance. ACS Appl. Mater. Interfaces 2018, 10, 13903–13913. [Google Scholar] [CrossRef]
- Han, Y.; Jiang, Y.; Gao, C. High-Flux Graphene Oxide Nanofiltration Membrane Intercalated by Carbon Nanotubes. ACS Appl. Mater. Interfaces 2015, 7, 8147–8155. [Google Scholar] [CrossRef]
- Wang, W.; Eftekhari, E.; Zhu, G.; Zhang, X.; Yan, Z.; Li, Q. Graphene Oxide Membranes with Tunable Permeability Due to Embedded Carbon Dots. Chem. Commun. 2014, 50, 13089–13092. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Wang, Y. Covalently Crosslinked Graphene Oxide Membranes by Esterification Reactions for Ions Separation. J. Mater. Chem. A 2015, 3, 4405–4412. [Google Scholar] [CrossRef]
- Hung, W.-S.; Tsou, C.-H.; De Guzman, M.; An, Q.-F.; Liu, Y.-L.; Zhang, Y.-M.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y. Cross-Linking with Diamine Monomers to Prepare Composite Graphene Oxide-Framework Membranes with Varying d-Spacing. Chem. Mater. 2014, 26, 2983–2990. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Chung, T.-S. Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration. Environ. Sci. Technol. 2015, 49, 10235–10242. [Google Scholar] [CrossRef]
- Hua, D.; Rai, R.K.; Zhang, Y.; Chung, T.-S. Aldehyde Functionalized Graphene Oxide Frameworks as Robust Membrane Materials for Pervaporative Alcohol Dehydration. Chem. Eng. Sci. 2017, 161, 341–349. [Google Scholar] [CrossRef]
- Boffa, V.; Etmimi, H.; Mallon, P.E.; Tao, H.Z.; Magnacca, G.; Yue, Y.Z. Carbon-Based Building Blocks for Alcohol Dehydration Membranes with Disorder-Enhanced Water Permeability. Carbon 2017, 118, 458–466. [Google Scholar] [CrossRef]
- Hu, M.; Mi, B. Enabling Graphene Oxide Nanosheets as Water Separation Membranes. Environ. Sci. Technol. 2013, 47, 3715–3723. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Mi, B. Layer-by-Layer Assembly of Graphene Oxide Membranes via Electrostatic Interaction. J. Memb. Sci. 2014, 469, 80–87. [Google Scholar] [CrossRef]
- Yuan, T.; Pu, L.; Huang, Q.; Zhang, H.; Li, X.; Yang, H. An Effective Methanol-Blocking Membrane Modified with Graphene Oxide Nanosheets for Passive Direct Methanol Fuel Cells. Electrochim. Acta 2014, 117, 393–397. [Google Scholar] [CrossRef]
- Li, G.; Ma, S.; Yang, H.; Fan, S.; Lang, X.; Wang, Y.; Li, W.; Liu, Y.; Zhou, L. A Graphene Oxide Membrane with Self-Regulated Nanochannels for the Exceptionally Stable Bio-Oil Dehydration. AIChE J. 2020, 66, e16753. [Google Scholar] [CrossRef]
- Zeynali, R.; Ghasemzadeh, K.; Sarand, A.B.; Kheiri, F.; Basile, A. Performance Evaluation of Graphene Oxide (GO) Nanocomposite Membrane for Hydrogen Separation: Effect of Dip Coating Sol Concentration. Sep. Purif. Technol. 2018, 200, 169–176. [Google Scholar] [CrossRef]
- Huang, K.; Liu, G.; Lou, Y.; Dong, Z.; Shen, J.; Jin, W. A Graphene Oxide Membrane with Highly Selective Molecular Separation of Aqueous Organic Solution. Angew. Chemie Int. Ed. 2014, 53, 6929–6932. [Google Scholar] [CrossRef]
- Su, Y.; Kravets, V.G.; Wong, S.L.; Waters, J.; Geim, A.K.; Nair, R.R. Impermeable Barrier Films and Protective Coatings Based on Reduced Graphene Oxide. Nat. Commun. 2014, 5, 4843. [Google Scholar] [CrossRef]
- Ibrahim, A.F.M.; Lin, Y.S. Synthesis of Graphene Oxide Membranes on Polyester Substrate by Spray Coating for Gas Separation. Chem. Eng. Sci. 2018, 190, 312–319. [Google Scholar] [CrossRef]
- Suri, A.; Calzavarini, L.; Strunck, A.B.; Magnacca, G.; Boffa, V. Comparison of Chemical Cross-Linkers with Branched and Linear Molecular Structures for Stabilization of Graphene Oxide Membranes and Their Performance in Ethanol Dehydration. Ind. Eng. Chem. Res. 2019, 58, 18788–18797. [Google Scholar] [CrossRef]
- Tang, Y.; Widjojo, N.; Shi, G.M.; Chung, T.-S.; Weber, M.; Maletzko, C. Development of Flat-Sheet Membranes for C1–C4 Alcohols Dehydration via Pervaporation from Sulfonated Polyphenylsulfone (SPPSU). J. Memb. Sci. 2012, 415–416, 686–695. [Google Scholar] [CrossRef]
- Hömmerich, U.; Rautenbach, R. Design and Optimization of Combined Pervaporation/Distillation Processes for the Production of MTBE. J. Memb. Sci. 1998, 146, 53–64. [Google Scholar] [CrossRef]
- Baker, R.W.; Wijmans, J.G.; Huang, Y. Permeability, Permeance and Selectivity: A Preferred Way of Reporting Pervaporation Performance Data. J. Memb. Sci. 2010, 348, 346–352. [Google Scholar] [CrossRef]
- Hägg, M.-B. Gas permeation: Permeability, permeance, and separation factor. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Van der Bruggen, B. Pervaporation separation factor. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1509–1511. [Google Scholar] [CrossRef]
- Hägg, M.-B. Gas Permeation Unit (GPU). In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; p. 849. [Google Scholar] [CrossRef]
- Cheng, X.; Cai, W.; Chen, X.; Shi, Z.; Li, J. Preparation of Graphene Oxide/Poly (Vinyl Alcohol) Composite Membrane and Pervaporation Performance for Ethanol Dehydration. RSC Adv. 2019, 9, 15457–15465. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Taufique, M.F.N.; Devanathan, R.; Cutsforth, E.C.; Lee, J.; Liu, W.; Fifield, L.S.; Gotthold, D.W. Highly Selective Supported Graphene Oxide Membranes for Water-Ethanol Separation. Sci. Rep. 2019, 9, 2251. [Google Scholar] [CrossRef] [PubMed]
- Wittig, R.; Lohmann, J.; Gmehling, J. Vapor−Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension. Ind. Eng. Chem. Res. 2003, 42, 183–188. [Google Scholar] [CrossRef]
- Rouzière, S.; Launois, P.; Benito, A.M.; Maser, W.K.; Paineau, E. Unravelling the Hydration Mechanism in a Multi-Layered Graphene Oxide Paper by In-Situ X-Ray Scattering. Carbon 2018, 137, 379–383. [Google Scholar] [CrossRef]
- You, S.; Sundqvist, B.; Talyzin, A.V. Enormous Lattice Expansion of Hummers Graphite Oxide in Alcohols at Low Temperatures. ACS Nano 2013, 7, 1395–1399. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Buera-González, J.; de la Iglesia, O.; Galiano, F.; Fíla, V.; Malankowska, M.; Rubio, C.; Figoli, A.; Téllez, C.; Coronas, J. Towards the Dehydration of Ethanol Using Pervaporation Cross-Linked Poly(Vinyl Alcohol)/Graphene Oxide Membranes. J. Memb. Sci. 2019, 582, 423–434. [Google Scholar] [CrossRef] [Green Version]
Type of Membrane | Crosslinker/GO (w/w) | Interlayer Spacing (Å) |
---|---|---|
GO | - | 6.55 |
GO-HBPO | 0.2 | 7.93 |
GO-HAL | 0.4 | 6.21 |
GO-PEG | 10 | 12.42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo Strunck, A.; Suri, A.; Boffa, V. Effect of Temperature and Branched Crosslinkers on Supported Graphene Oxide Pervaporation Membranes for Ethanol Dehydration. Nanomaterials 2020, 10, 1571. https://doi.org/10.3390/nano10081571
Bo Strunck A, Suri A, Boffa V. Effect of Temperature and Branched Crosslinkers on Supported Graphene Oxide Pervaporation Membranes for Ethanol Dehydration. Nanomaterials. 2020; 10(8):1571. https://doi.org/10.3390/nano10081571
Chicago/Turabian StyleBo Strunck, Azeem, Anil Suri, and Vittorio Boffa. 2020. "Effect of Temperature and Branched Crosslinkers on Supported Graphene Oxide Pervaporation Membranes for Ethanol Dehydration" Nanomaterials 10, no. 8: 1571. https://doi.org/10.3390/nano10081571
APA StyleBo Strunck, A., Suri, A., & Boffa, V. (2020). Effect of Temperature and Branched Crosslinkers on Supported Graphene Oxide Pervaporation Membranes for Ethanol Dehydration. Nanomaterials, 10(8), 1571. https://doi.org/10.3390/nano10081571