Removal of As(III) from Water Using the Adsorptive and Photocatalytic Properties of Humic Acid-Coated Magnetite Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Humic Acid-Coated Magnetite Nanoparticles
2.3. Characterization of Synthesized Materials
2.4. Experiments
2.5. Roles of Molecular Oxygen and ROS
2.6. Formation of Hydroxyl Radicals
2.7. Formation of Singlet Oxygen
2.8. Formation of the Triplet Excited State of HA-MNP
3. Results and Discussion
3.1. Material Characterization
3.2. Formation of ROS and 3HA-MNP*
3.3. Effect of Photo-Oxidation on the Adsorption of As Species by HA-MNP
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef]
- Nriagu, J.O. Arsenic in the Environment: Cycling and Characterization; John Wiley & Sons, Inc.: New York, NY, USA, 1994; Volume 1. [Google Scholar]
- Bissen, M.; Frimmel, F.H. Arsenic—A review. Part. I: Occurrence, toxicity, speciation, mobility. Acta Hydrochim. Hydrobiol. 2003, 31, 9–18. [Google Scholar] [CrossRef]
- Garelick, H.; Dybsowska, A.; Valsami-Jones, E.; Priest, N. Remediation Technologies for Arsenic Contaminated Drinking Waters. J. Soils Sediments 2005, 5, 182–190. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, G.; Cai, Y. Thiolated arsenicals in arsenic metabolism: Occurrence, formation, and biological implications. J. Environ. Sci. 2016, 49, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Spuches, A.M.; Kruszyna, H.G.; Rich, A.M.; Wilcox, D.E. Thermodynamics of the As(III)−Thiol Interaction: Arsenite and Monomethylarsenite Complexes with Glutathione, Dihydrolipoic Acid, and Other Thiol Ligands. Inorg. Chem. 2005, 44, 2964–2972. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Sohn, M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environ. Int. 2009, 35, 743–759. [Google Scholar] [CrossRef]
- Shen, S.; Li, X.F.; Cullen, W.R.; Weinfeld, M.; Le, X.C. Arsenic Binding to Proteins. Chem. Rev. 2013, 113, 7769–7792. [Google Scholar] [CrossRef]
- Zhang, F.S.; Itoh, H. Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent. Chemosphere 2006, 65, 125–131. [Google Scholar] [CrossRef]
- Hope, D.; Billett, M.F.; Cresser, M.S. A review of the export of carbon in river water: Fluxes and processes. Environ. Pollut. 1994, 84, 301–324. [Google Scholar] [CrossRef]
- Guo, M.; Chorover, J. Transport and fractionation of dissolved organic matter in soil columns. Soil Sci. 2003, 168, 108–118. [Google Scholar] [CrossRef]
- Buschmann, J.; Kappeler, A.; Lindauer, U.; Kistler, D.; Berg, M.; Sigg, L. Arsenite and arsenate binding to dissolved humic acids: Influence of pH, type of humic acid, and aluminum. Environ. Sci. Technol. 2006, 40, 6015–6020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Li, Y.; Cai, Y. Adsorption of mercury on solids in the aquatic environment. In Environmental Chemistry and Toxicology of Mercury; Liu, G., Cai, Y., O’Driscoll, N., Eds.; John Whiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Liu, G.; Cai, Y. Complexation of arsenite with dissolved organic matter: Conditional distribution coefficients and apparent stability constants. Chemosphere 2010, 81, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.F.; Zhao, Z.S.; Jiang, G.B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 2008, 42, 6949–6954. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Cai, Q.; Xu, W.; Yang, M.; Cai, Y.; Dionysios D, D.; O’Shea, K.E. Cr (VI) adsorption and reduction by humic acid coated on magnetite. Environ. Sci. Technol. 2014, 48, 8078–8085. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.; Sterbinsky, G.E.; Gracia Pinilla, M.A.; Cai, Y.; O’Shea, K.E. Kinetic and Mechanistic Evaluation of Inorganic Arsenic Species Adsorption onto Humic Acid Grafted Magnetite Nanoparticles. J. Phys. Chem. C 2018, 122, 13540–13547. [Google Scholar] [CrossRef]
- Rashid, M.; Price, N.T.; Pinilla, M.Á.G.; O’Shea, K.E. Effective removal of phosphate from aqueous solution using humic acid-coated magnetite nanoparticles. Water Res. 2017, 123, 353–360. [Google Scholar]
- Singhal, P.; Jha, S.K.; Pandey, S.P.; Neogy, S. Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles. J. Hazard. Mater. 2017, 335, 152–161. [Google Scholar] [CrossRef]
- Yang, S.; Zong, P.; Ren, X.; Wang, Q.; Wang, X. Rapid and Highly Efficient Preconcentration of Eu(III) by Core–Shell Structured Fe3O4@Humic Acid Magnetic Nanoparticles. ACS Appl. Mater. Interfaces 2012, 4, 6891–6900. [Google Scholar] [CrossRef]
- Peng, L.; Qin, P.; Lei, M.; Zeng, Q.; Song, H.; Yang, J.; Shao, J.; Liao, B.; Gu, J. Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J. Hazard. Mater. 2012, 209–210, 193–198. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Wu, Z.; Zhang, L.; Zeng, G.; Zhou, C. Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2013, 435, 85–90. [Google Scholar] [CrossRef]
- Carlos, L.; Cipollone, M.; Soria, D.B.; Moreno, M.S.; Ogilby, P.R.; Einschlag, F.S.G.; Martire, D.O. The effect of humic acid binding to magnetite nanoparticles on the photogeneration of reactive oxygen species. Sep. Purif. Technol. 2012, 91, 23–29. [Google Scholar] [CrossRef]
- Blough, N.V.; Zepp, R.G. Reactive Oxygen Species in Natural Waters. In Active Oxygen in Chemistry; Foote, C.S., Ed.; Blackle Academic and Professional: Glasgow, UK, 1995; pp. 280–333. [Google Scholar]
- Vaughan, P.P.; Blough, N.V. Photochemical Formation of Hydroxyl Radical by Constituents of Natural Waters. Environ. Sci. Technol. 1998, 32, 2947–2953. [Google Scholar] [CrossRef]
- Gomes, A.; Fernandes, E.; Lima, J.L.F.C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 2005, 65, 45–80. [Google Scholar] [CrossRef] [PubMed]
- Rosario-Ortiz, F.L.; Canonica, S. Probe Compounds to Assess. the Photochemical Activity of Dissolved Organic Matter. Environ. Sci. Technol. 2016, 50, 12532–12547. [Google Scholar]
- Wang, W.; Zafiriou, O.C.; Chan, I.Y.; Zepp, R.G.; Blough, N.V. Production of Hydrated Electrons from Photoionization of Dissolved Organic Matter in Natural Waters. Environ. Sci. Technol. 2007, 41, 1601–1607. [Google Scholar] [CrossRef]
- Zhang, D.; Yan, S.; Song, W. Photochemically induced formation of reactive oxygen species (ROS) from effluent organic matter. Environ. Sci. Technol. 2014, 48, 12645–12653. [Google Scholar] [CrossRef]
- Gaskill, A.; Byrd, J.T.; Shuman, M.S. Fractionation and trace metal content of a commercial humic acid. J. Environ. Sci. Heal. Part A 1977, 12, 95–103. [Google Scholar] [CrossRef]
- Richard, C.; Canonica, S. Aquatic Phototransformation of Organic Contaminants Induced by Coloured Dissolved Natural Organic Matter. In Environmental Photochemistry Part II; Boule, P., Bahnemann, D.W., Robertson, P.K.J., Eds.; Springer: Berlin/Heidelberg, Berlin, 2005; pp. 299–323. [Google Scholar]
- Southworth, B.A.; Voelker, B.M. Hydroxyl Radical Production via the Photo-Fenton Reaction in the Presence of Fulvic Acid. Environ. Sci. Technol. 2003, 37, 1130–1136. [Google Scholar] [CrossRef]
- Foote, C.S. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 1991, 54, 659. [Google Scholar] [CrossRef]
- Ahn, T.; Kim, J.H.; Yang, H.-M.; Lee, J.W.; Kim, J.-D. Formation Pathways of Magnetite Nanoparticles by Coprecipitation Method. J. Phys. Chem. C 2012, 116, 6069–6076. [Google Scholar] [CrossRef]
- Ognjanović, M.; Radović, M.; Mirković, M.; Prijović, Ž.; Del Puerto Morales, M.; Ćeh, M.; Vranješ Đurić, S.; Antić, B. 99mTc-, 90Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis. Appl. Mater. Interfaces 2019, 11, 41109–41117. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.M.; O’Shea, K.E. TiO2 photocatalytic degradation of the flame retardant tris (2-chloroethyl) phosphate (TCEP) in aqueous solution: A detailed kinetic and mechanistic study. J. Photochem. Photobiol. A 2019, 377, 130–137. [Google Scholar] [CrossRef]
- Le, X.C.; Lu, X.; Ma, M.; Cullen, W.R.; Aposhian, H.V.; Zheng, B. Speciation of Key Arsenic Metabolic Intermediates in Human Urine. Anal. Chem. 2000, 72, 5172–5177. [Google Scholar] [CrossRef]
- Klaning, U.K.; Bielski, B.H.J.; Sehested, K. Arsenic(IV). A pulse-radiolysis study. Inorg. Chem. 1989, 28, 2717–2724. [Google Scholar] [CrossRef]
- Xu, T.; Kamat, P.V.; O’Shea, K.E. Mechanistic Evaluation of Arsenite Oxidation in TiO2 Assisted Photocatalysis. J. Phys. Chem. A 2005, 109, 9070–9075. [Google Scholar] [CrossRef] [PubMed]
- Pettine, M.; Campanella, L.; Millero, F.J. Arsenite oxidation by H2O2 in aqueous solutions. Geochim. Cosmochim. Acta 1999, 63, 2727–2735. [Google Scholar] [CrossRef]
- Zhang, J.; Nosaka, Y. Quantitative Detection of OH Radicals for Investigating the Reaction Mechanism of Various Visible-Light TiO2 Photocatalysts in Aqueous Suspension. J. Phys. Chem. C 2013, 117, 1383–1391. [Google Scholar] [CrossRef]
- McNeill, K.; Canonica, S. Triplet state dissolved organic matter in aquatic photochemistry: Reaction mechanisms, substrate scope, and photophysical properties. Environ. Sci. Process. Impacts 2016, 18, 1381–1399. [Google Scholar] [CrossRef] [Green Version]
- Newton, G.L.; Milligan, J.R. Fluorescence detection of hydroxyl radicals. Radiat. Phys. Chem. 2006, 75, 473–478. [Google Scholar] [CrossRef]
- Latch, D.E.; McNeill, K. Microheterogeneity of Singlet Oxygen Distributions in Irradiated Humic Acid Solutions. Science 2006, 311, 1743–1747. [Google Scholar] [CrossRef]
- Li, Y.; Pan, Y.; Lian, L.; Yan, S.; Song, W.; Yang, X. Photosensitized degradation of acetaminophen in natural organic matter solutions: The role of triplet states and oxygen. Water Res. 2017, 109, 266–273. [Google Scholar] [PubMed] [Green Version]
- Haag, W.R.; Hoigne, J. Singlet oxygen in surface waters. 3. Photochemical formation and steady-state concentrations in various types of waters. Environ. Sci. Technol. 1986, 20, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Coelho, C.; Guyot, G.; Halle, A.; Cavani, L.; Ciavatta, C.; Richard, C. Photoreactivity of humic substances: Relationship between fluorescence and singlet oxygen production. Environ. Chem. Lett. 2011, 9, 447–451. [Google Scholar] [CrossRef]
- Hessler, D.P.; Frimmel, F.; Oliveros, E.; Braun, A.M. Quenching of singlet oxygen (1Δg) by humic substances. J. Photoch. Photobio. B. 1996, 36, 55–60. [Google Scholar] [CrossRef]
- Jaramillo, M.; Joens, J.A.; O’Shea, K.E. Fundamental Studies of the Singlet Oxygen Reactions with the Potent Marine Toxin Domoic Acid. Environ. Sci. Technol. 2020, 54, 6073–6081. [Google Scholar] [CrossRef] [PubMed]
- Marchisio, A.; Minella, M.; Maurino, V.; Minero, C.; Vione, D. Photogeneration of reactive transient species upon irradiation of natural water samples: Formation quantum yields in different spectral intervals, and implications for the photochemistry of surface waters. Water Res. 2015, 73, 145–156. [Google Scholar]
- Halladja, S.; Halle, A.T.; Aguer, J.P.; Boulkamh, A.; Richard, C. Inhibition of Humic Substances Mediated Photooxygenation of Furfuryl Alcohol by 2,4,6-Trimethylphenol. Evidence for Reactivity of the Phenol with Humic Triplet Excited States. Environ. Sci. Technol. 2007, 41, 6066–6073. [Google Scholar] [CrossRef]
- O’Connor, M.; Helal, S.R.; Latch, D.E.; Arnold, W.A. Quantifying photo-production of triplet excited states and singlet oxygen from effluent organic matter. Water Res. 2019, 156, 23–33. [Google Scholar]
- Zepp, R.G.; Wolfe, N.L.; Baughman, G.L.; Hollis, R.G. Singlet oxygen in natural waters. Nature 1977, 267, 421. [Google Scholar] [CrossRef]
- Zepp, R.G.; Schlotzhauer, P.F.; Sink, R.M. Photosensitized transformations involving electronic energy transfer in natural waters: Role of humic substances. Environ. Sci. Technol. 1985, 19, 74–81. [Google Scholar] [CrossRef]
- Wilkinson, F.; Helman, W.P.; Ross, A.B. Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. J. Phys. Chem. Ref. Data 1993, 22, 113–262. [Google Scholar] [CrossRef] [Green Version]
- McCabe, A.J.; Arnold, W.A. Reactivity of triplet excited states of dissolved natural organic matter in stormflow from mixed-use watersheds. Environ. Sci. Technol. 2017, 51, 9718–9728. [Google Scholar] [CrossRef] [PubMed]
- Hay, M.B.; Myneni, S.C.B. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta 2007, 71, 3518–3532. [Google Scholar] [CrossRef]
- Gu, B.; Schmitt, J.; Chen, Z.; Liang, L.; McCarthy, J.F. Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environ. Sci. Technol. 1994, 28, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Illés, E.; Tombácz, E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J. Colloid. Interf. Sci. 2006, 295, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Rosado-Lausell, S.L.; Wang, H.; Gutiérrez, L.; Romero-Maraccini, O.C.; Nium, X.Z.; Gin, K.Y.H.; Croué, J.P.; Nguyen, T.H. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation. Water Res. 2013, 47, 4869–4879. [Google Scholar] [CrossRef] [PubMed]
- Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental Implications of Hydroxyl Radicals (•OH). Chem. Rev. 2015, 115, 13051–13092. [Google Scholar] [CrossRef] [PubMed]
- Timko, S.A.; Romera-Castillo, C.; Jaffé, R.; Cooper, W.J. Photo-reactivity of natural dissolved organic matter from fresh to marine waters in the Florida Everglades, USA. Environ. Sci. Process. Impacts 2014, 16, 866–878. [Google Scholar] [CrossRef]
- Vione, D.; Bagnus, D.; Maurino, V.; Minero, C. Quantification of singlet oxygen and hydroxyl radicals upon UV irradiation of surface water. Environ. Chem. Lett. 2010, 8, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Loiselle, S.; Vione, D.; Minero, C.; Maurino, V.; Tognazzi, A.; Dattilo, A.M.; Rossi, C.; Bracchini, L. Chemical and optical phototransformation of dissolved organic matter. Water Res. 2012, 46, 3197–3207. [Google Scholar]
- Pozdnyakov, I.P.; Romanova, T.E.; Cai, X.; Salomatova, V.A.; Plyusnin, V.F.; Na, P.; Shuvaeva, O.V. Near-UV photooxidation of As (III) by iron species in the presence of fulvic acid. Chemosphere 2017, 181, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Cory, R.M.; Cotner, J.B.; McNeill, K. Quantifying Interactions between Singlet Oxygen and Aquatic Fulvic Acids. Environ. Sci. Technol. 2009, 43, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Buschmann, J.; Canonica, S.; Lindauer, U.; Hug, S.J.; Sigg, L. Photoirradiation of Dissolved Humic Acid Induces Arsenic(III) Oxidation. Environ. Sci. Technol. 2005, 39, 9541–9546. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Mikutta, C.; Kretzschmar, R. Arsenite Binding to Natural Organic Matter: Spectroscopic Evidence for Ligand Exchange and Ternary Complex Formation. Environ. Sci. Technol. 2013, 47, 12165–12173. [Google Scholar] [CrossRef]
- Biswas, A.; Besold, J.; Sjöstedt, C.; Gustafsson, J.P.; Scheinost, A.C.; Friederich-Planer, B. Complexation of Arsenite, Arsenate, and Monothioarsenate with Oxygen-Containing Functional Groups of Natural Organic Matter: An XAS Study. Environ. Sci. Technol. 2019, 53, 10723–10731. [Google Scholar] [CrossRef]
- Ding, W.; Romanova, T.E.; Pozdnyakov, I.P.; Salomatova, V.A.; Parkhats, M.V.; Dzhagarov, B.M.; Glebov, E.M.; Wu, F.; Shuvaeva, O.V. Photooxidation of arsenic(III) in the presence of fulvic acid. Mendeleev Commun. 2016, 26, 266–268. [Google Scholar] [CrossRef]
- Page, S.E.; Sander, M.; Arnold, W.A.; McNeill, K. Hydroxyl Radical Formation upon Oxidation of Reduced Humic Acids by Oxygen in the Dark. Environ. Sci. Technol. 2012, 46, 1590–1597. [Google Scholar] [CrossRef]
- Hug, S.J.; Canonica, L.; Wegelin, M.; Gechter, D.; Gunten, U. Solar Oxidation and Removal of Arsenic at Circumneutral pH in Iron Containing Waters. Environ. Sci. Technol. 2001, 35, 2114–2121. [Google Scholar] [CrossRef]
- Hug, S.J.; Leupin, O. Iron-Catalyzed Oxidation of Arsenic(III) by Oxygen and by Hydrogen Peroxide: pH-Dependent Formation of Oxidants in the Fenton Reaction. Environ. Sci. Technol. 2003, 37, 2734–2742. [Google Scholar] [CrossRef]
- Hu, J.D.; Zevi, Y.; Kou, X.M.; Xiao, J.; Wang, X.J.; Jin, Y. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci. Total Environ. 2010, 408, 3477–3489. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, P.; Rashid, M.; Cai, Y.; Yoshinaga, M.; Dionysiou, D.D.; O’Shea, K. Removal of As(III) from Water Using the Adsorptive and Photocatalytic Properties of Humic Acid-Coated Magnetite Nanoparticles. Nanomaterials 2020, 10, 1604. https://doi.org/10.3390/nano10081604
Pham P, Rashid M, Cai Y, Yoshinaga M, Dionysiou DD, O’Shea K. Removal of As(III) from Water Using the Adsorptive and Photocatalytic Properties of Humic Acid-Coated Magnetite Nanoparticles. Nanomaterials. 2020; 10(8):1604. https://doi.org/10.3390/nano10081604
Chicago/Turabian StylePham, Phuong, Mamun Rashid, Yong Cai, Masafumi Yoshinaga, Dionysios D. Dionysiou, and Kevin O’Shea. 2020. "Removal of As(III) from Water Using the Adsorptive and Photocatalytic Properties of Humic Acid-Coated Magnetite Nanoparticles" Nanomaterials 10, no. 8: 1604. https://doi.org/10.3390/nano10081604
APA StylePham, P., Rashid, M., Cai, Y., Yoshinaga, M., Dionysiou, D. D., & O’Shea, K. (2020). Removal of As(III) from Water Using the Adsorptive and Photocatalytic Properties of Humic Acid-Coated Magnetite Nanoparticles. Nanomaterials, 10(8), 1604. https://doi.org/10.3390/nano10081604