Adsorption of Lead Ions by a Green AC/HKUST-1 Nanocomposite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Techniques
2.3. Methods
2.3.1. Preparation of Active Carbon from Cortaderia selloana
2.3.2. Preparation of AC/HKUST-1
2.3.3. Lead Adsorption Experiments
3. Results and Discussion
3.1. Characterization of Adsorbent and Its Components
3.2. Factors Affecting Adsorption Processes
3.2.1. Effect of pH on Pb (II) Adsorption
3.2.2. Effect of Contact Time (Adsorption Kinetics)
3.2.3. Effect of Lead Concentration
3.2.4. Effect of Adsorbent Dose
3.2.5. Comparison between Nanocomposite and Its Components
3.3. Adsorption Isotherm
3.4. A Comparative Adsorption Study with Various Ions
3.5. Reusability Potential
3.6. Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rouhani, F.; Morsali, A. Fast and Selective Heavy Metal Removal by a Novel Metal-Organic Framework Designed with In-Situ Ligand Building Block Fabrication Bearing Free Nitrogen. Chem. A Eur. J. 2018, 24, 5529–5537. [Google Scholar] [CrossRef]
- Zhu, H.; Yuan, J.; Tan, X.; Zhang, W.; Fang, M.; Wang, X. Efficient removal of Pb2+ by Tb-MOFs: Identifying the adsorption mechanism through experimental and theoretical investigations. Environ. Sci. Nano 2019, 6, 261–272. [Google Scholar] [CrossRef]
- Bensacia, N.; Fechete, I.; Moulay, S.; Hulea, O.; Boos, A.; Garin, F. Kinetic and equilibrium studies of lead (II) adsorption from aqueous media by KIT-6 mesoporous silica functionalized with–COOH. C. R. Chim. 2014, 17, 869–880. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-Odayni, A.B.; Saeed, W.S.; Al-Kahtani, A.; Alharthi, F.A.; Aouak, T. Efficient adsorption of lead (II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials 2019, 12, 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Largitte, L.; Laminie, J. Modelling the lead concentration decay in the adsorption of lead onto a granular activated carbon. J. Environ. Chem. Eng. 2015, 3, 474–481. [Google Scholar] [CrossRef]
- Chen, W.; Yan, C. Comparison of EDTA and SDS as potential surface impregnation agents for lead adsorption by activated carbon. Appl. Surf. Sci. 2014, 309, 38–45. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, S.; Chen, X.; Mijowska, E. Evaluation fo Nanoporous Carbon Synthesised from Direct Carbonization of a Metal-Organic Complex as a Highly Effective Dye Asorbent and Supercapacitor. Nanomaterials 2019, 9, 601. [Google Scholar] [CrossRef] [Green Version]
- Gorzin, F.; Abadi, M.B.R. Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorpt. Sci. Technol. 2017, 36, 149–169. [Google Scholar] [CrossRef]
- Osasona, I.; Aiyedatiwa, K.; Johnson, J.; Faboya, L. 45 Activated Carbon from Spent Brewery Barley Husks for Cadmium Ion Adsorption from Aqueous Solution. Indones. J. Chem. 2018, 18, 145–152. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y. Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr(VI) from aqueous solution. Microporous Mesoporous Mater. 2019, 277, 277–285. [Google Scholar] [CrossRef]
- Kussainova, M.Z.; Chernyakova, R.M.; Jussipbekov, U.Z.; Temel, H. Sorption removal of Pb2+, Cd2+, Cu2+ from diluted acid solution by chitosan modified zeolite. J. Chem. Technol. Met. 2018, 53, 94–100. [Google Scholar]
- Gupta, V.K.; Gupta, B.; Rastogi, A.; Agarwal, S.; Nayak, A. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113. J. Hazard. Mater. 2011, 186, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Tzvetkova, P.; Nickolov, R. Modified and unmodified silica gel used for heavy metal ions removal from aqueous solutions. J. Univ. Chem. Tech. Met. 2012, 47, 498–504. [Google Scholar]
- Yusuff, A.S.; Popoola, L.T.; Babatunde, E.O. Adsorption of cadmium ion from aqueous solutions by copper-based metal organic framework: Equilibrium modeling and kinetic studies. Appl. Water Sci. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, T.; Zhang, L.; Zhang, J.; Aggarwal, S. Removal of arsenic(III) from aqueous solution using metal organic framework-graphene oxide nanocomposite. Nanomaterials 2018, 8, 1062. [Google Scholar] [CrossRef] [Green Version]
- Kobielska, P.A.; Howarth, A.J.; Farha, O.K.; Nayak, S. Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 2018, 358, 92–107. [Google Scholar] [CrossRef]
- Bakhtiari, N.; Azizian, S. Adsorption of copper ion from aqueous solution by nanoporous MOF-5: A kinetic and equilibrium study. J. Mol. Liq. 2015, 206, 114–118. [Google Scholar] [CrossRef]
- Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E.B. A luminescent microporous metal-organic framework for the recognition and sensing of anions. J. Am. Chem. Soc. 2008, 130, 6718–6719. [Google Scholar] [CrossRef]
- Wu, M.X.; Yang, Y.W. Metal–Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29, 1606134. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Vargun, E.; Plachy, T.; Saha, P.; Cheng, Q. 3D Porous Ti3C2 MXene/NiCo-MOF Composites for Enhanced Lithium Storage. Nanomaterials 2020, 10, 695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Farha, O.; Roberts, J.; Scheidt, K.A.; Nguyen, T.S.; Hupp, J.T. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Shang, S.; Zeng, X.; Zhou, J.; Li, Y. A Novel Bi2MoO6/ZIF-8 Composite for Enhanced Visible Light Photocatalytic Activity. Nanomaterials 2019, 9, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, A.; Forster, M.; Clowes, R.; Bradshaw, D.; Myers, P.; Zhang, H. Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation. J. Mater. Chem. 2013, 1, 3276–3286. [Google Scholar] [CrossRef]
- Jia, Z.; Li, Z.; Ni, T.; Li, S. Adsorption of low-cost absorption materials based on biomass (Cortaderia selloana flower spikes) for dye removal: Kinetics, isotherms and thermodynamic studies. J. Mol. Liq. 2017, 229, 285–292. [Google Scholar] [CrossRef]
- Angelova, R.; Baldikova, E.; Pospiskova, K.; Maderova, Z.; Safarikova, M.; Safarik, I. Magnetically modified Sargassum horneri biomass as an adsorbent for organic dye removal. J. Clean. Prod 2016, 137, 189–194. [Google Scholar] [CrossRef]
- Tahir, N.; Bhatti, H.N.; Iqbal, M.; Noreen, S. Biopolymers composites with peanut hull waste biomass and application for Crystal Violet adsorption. Int. J. Biol. Macromol. 2017, 94, 210–220. [Google Scholar] [CrossRef]
- Domènech, R.; Vilà, M. Cortaderia selloana invasion across a Mediterranean coastal strip. Acta Oecol. 2007, 32, 255–261. [Google Scholar] [CrossRef]
- Sarker, M.; Song, J.Y.; Jhung, S.H. Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites. Chem. Eng. J. 2018, 335, 74–81. [Google Scholar] [CrossRef]
- Tanhaei, M.; Mahjoub, A.R.; Safarifard, V. Sonochemical synthesis of amide-functionalized metal-organic framework/graphene oxide nanocomposite for the adsorption of methylene blue from aqueous solution. Ultrason. Sonochem. 2018, 41, 189–195. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Taghizadeh, M.; Taghizadeh, A. Activated carbon/metal-organic framework composite as a bio-based novel green adsorbent: Preparation and mathematical pollutant removal modeling. J. Mol. Liq. 2019, 277, 310–322. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Y.; Gao, F.; Ni, J.; Zhang, Y.; Lin, Z. Graphene Oxide Directed One-Step Synthesis of Flowerlike Graphene@HKUST-1 for Enzyme-Free Detection of Hydrogen Peroxide in Biological Samples. ACS Appl. Mater. Interfaces 2016, 8, 32477–32487. [Google Scholar] [CrossRef] [PubMed]
- Seyfi Hasankola, Z.; Rahimi, R.; Shayegan, H.; Moradi, E.; Safarifard, V. Removal of Hg2+ heavy metal ion using a highly stable mesoporous porphyrinic zirconium metal-organic framework. Inorg. Chim. Acta 2020, 501, 119264. [Google Scholar] [CrossRef]
- Abdulrazak, S.; Hussaini, K.; Sani, H.M. Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit. Appl. Water Sci. 2017, 7, 3151–3155. [Google Scholar] [CrossRef] [Green Version]
- Petit, C.; Burress, J.; Bandosz, T.J. The synthesis and characterization of copper-based metal organic framework/graphite oxide composites. Carbon N. Y. 2011, 49, 563–572. [Google Scholar] [CrossRef]
- Schlichte, K.; Kratzke, T.; Kaskel, S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater. 2004, 73, 81–88. [Google Scholar] [CrossRef]
- Igberase, E.; Osifo, P.; Ofomaja, A. The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: Equilibrium, kinetic and desorption studies. J. Environ. Chem. Eng. 2014, 2, 362–369. [Google Scholar] [CrossRef]
- Xu, J.; Chen, L.; Qu, H.; Jiao, Y.; Xie, J.; Xing, G. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl. Surf. Sci. 2014, 320, 674–680. [Google Scholar] [CrossRef]
- Tahmasebi, E.; Masoomi, M.Y.; Yamini, Y.; Morsali, A. Application of Mechanosynthesized Azine-Decorated Zinc(II) Metal–Organic Frameworks for Highly Efficient Removal and Extraction of Some Heavy-Metal Ions from Aqueous Samples: A Comparative Study. Inorg. Chem. 2014, 54, 425–433. [Google Scholar]
- Yang, Q.X.; Zhao, Q.Q.; Ren, S.S.; Lu, Q.Q.; Guo, X.M.; Chen, Z.J. Fabrication of core-shell Fe3O4@MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution. J. Solid State Chem. 2016, 244, 25–30. [Google Scholar] [CrossRef]
- Abbasi, A.; Moradpour, T.; Van Hecke, K. A new 3D cobalt (II) metal-organic framework nanostructure for heavy metal adsorption. Inorg. Chim. Acta 2015, 430, 261–267. [Google Scholar] [CrossRef]
- Fang, Q.-R.; Yuan, D.-Q.; Sculley, J.; Li, J.-R.; Han, Z.-B.; Zhou, H.-C. Functional Mesoporous Metal−Organic Frameworks for the Capture of Heavy Metal Ions and Size-Selective Catalysis. Inorg. Chem. 2010, 49, 11637–11642. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Yu, R.; Li, R.; Li, W. Microwave-Assisted Synthesis of HKUST-1 and Functionalized HKUST-1-@H3PW12O40: Selective Adsorption of Heavy Metal Ions in Water Analyzed with Synchrotron Radiation. ChemPhysChem 2013, 14, 2825–2832. [Google Scholar] [CrossRef]
- Jamali, A.; Tehrani, A.A.; Shemirani, F.; Morsali, A. Lanthanide metal-organic frameworks as selective microporous materials for adsorption of heavy metal ions. Dalt. Trans. 2016, 45, 9193–9200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuchi, Y.; Qian, Q.; Machida, M.; Tatsumoto, H. Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution. Carbon N. Y. 2006, 44, 195–202. [Google Scholar] [CrossRef]
- Johns, M.M.; Marshall, W.E.; Toles, C.A. Agricultural by-products as granular activated carbons for adsorbing dissolved metals and organics. J. Chem. Technol. Biotechnol. 1998, 71, 131–140. [Google Scholar] [CrossRef]
- Issabayeva, G.; Aroua, M.K.; Sulaiman, N.M.N. Removal of lead from aqueous solutions on palm shell activated carbon. Bioresour. Technol. 2006, 97, 2350–2355. [Google Scholar] [CrossRef]
Kinetics Model | k | R2 | qe |
---|---|---|---|
Pseudo-first order | 0.34 | 0.994 | 135.69 |
Pseudo-second order | 1.09 × 10−2 | 0.998 | 250 |
HKUST-1 | AC | AC/HKUST-1 | |
---|---|---|---|
Adsorption (%) | 72.98 | 40.58 | 97 |
Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|
Adsorbent | qm (mg/g) | k1 (L/mg) | R2 | kF | n | R2 |
AC/HKUST-1 | 227.77 | 0.507 | 0.99 | 76.39 | 3.017 | 0.79 |
Adsorbents | Adsorption Capacity of Pb (II) Ions (mg g−1) | Time of Adsorption (min) | Optimum pH | Ref |
---|---|---|---|---|
TMU-5 (Zn(oba)(4-bpdh)0.5]n·(DMF)y) | 251 | 15 | 10 | [39] |
HKUST-1 TMW@H3PW12O40 | 98 | 10 | 7 | [40] |
UiO-66NHC(S)NHMe | 232 | 240 | - | [41] |
AMOF-1 | 71 | 1440 | - | [42] |
Cu-terephthalate Metal Organic Framework (MOF) | 80 | 120 | 7 | [43] |
Dy(BTC)(H2O)(DMF)1.1 | 5 | 10 | 6.5 | [44] |
ZnO/AC from coconut shell | 76.66 | - | 5.6 | [45] |
AC from rice straw | 36.05 | - | 5 | [46] |
AC from palm shell | 95.20 | - | 3.0 and 5.0 | [47] |
AC/HKUST-1 | 249.4 | 15 | 6.1 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abhari, P.S.; Manteghi, F.; Tehrani, Z. Adsorption of Lead Ions by a Green AC/HKUST-1 Nanocomposite. Nanomaterials 2020, 10, 1647. https://doi.org/10.3390/nano10091647
Abhari PS, Manteghi F, Tehrani Z. Adsorption of Lead Ions by a Green AC/HKUST-1 Nanocomposite. Nanomaterials. 2020; 10(9):1647. https://doi.org/10.3390/nano10091647
Chicago/Turabian StyleAbhari, Paria Soleimani, Faranak Manteghi, and Zari Tehrani. 2020. "Adsorption of Lead Ions by a Green AC/HKUST-1 Nanocomposite" Nanomaterials 10, no. 9: 1647. https://doi.org/10.3390/nano10091647
APA StyleAbhari, P. S., Manteghi, F., & Tehrani, Z. (2020). Adsorption of Lead Ions by a Green AC/HKUST-1 Nanocomposite. Nanomaterials, 10(9), 1647. https://doi.org/10.3390/nano10091647