Microemulsion Microstructure(s): A Tutorial Review
Abstract
:1. Introduction
2. Microemulsion Structures
2.1. Shape and Size of Self-Assembled Surfactant Structures
2.2. Experimental Determination of the Microstructure
2.2.1. Diffusion NMR
2.2.2. Electrical Conductivity
2.2.3. Dynamic Light-Scattering
2.2.4. Small-Angle Scattering
2.2.5. Electron Microscopy (EM)
2.2.6. Composition Perturbation
3. Microemulsion Phase Behavior
- o/w μEs are found at high temperature and w/o μEs are found at low temperatures; this is the contrary of the trend found for nonionic surfactants.
- The lamellar phase is found at T T0 because the interface curvature and stiffness decrease with increasing the ionic surfactant concentration but increase with the temperature.
- For the same surfactant, the balance temperature T0 increases with the added salt concentration for the same reason than above.
- As a consequence, the “fish” in the Kahlweit’s plot is “tilted” with the tail higher than the body.
- The symmetry observed for nonionic surfactants in the χ-plot is lost in the case of ionic surfactants. Exchanging oil and water changes the ion concentration (besides the balanced condition ϕo = ϕw).
4. Cylindrical Aggregates: Living Polymers vs. Living Networks
- The phase separation is re-entrant, i.e., the μE phase separates at low ϕs but is stable at high surfactant concentration (as in the case of samples in Figure 6);
- Micellar junctions lead to a reduction in viscosity because the branches can slide without restrictions along the micellar contour (for experimental confirmation, see [65]).
5. Modeling the Microstructure as Rationale for µE Formulation
5.1. Packing Parameter and HLB
5.2. Measures of the Curvature of a Surface
- For a sphere and (Rs = sphere radius);
- For a cylinder and (Rc = cross-sectional radius of the cylinder);
- For a plane H = 0 and K = 0;
- For a saddle shape as in Figure 11A, R1 and R2 have opposite sign, and in the case R1 = −R2, one as such that the mean curvature is null H = 0 and 0.
5.3. Effective Packing Parameter
5.4. Flexible Surface Model
5.5. Hydrophilic–Lipophilic Difference (HLD)
5.6. Net Average Curvature (NAC)
6. Achievements and Challenges
6.1. Modern Applications
6.1.1. Reaction Media for Synthesis and Catalysis
6.1.2. Nanoparticle Synthesis
6.1.3. Drug Delivery
6.1.4. Pesticides and Antibacterial
6.1.5. Food Technology
6.2. The Challenge of Biosurfactants
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Evans, F.; Wennerström, H. Colloidal Domain: Where Physics, Chemistry and Biology Meet; Wiley-VCH: Weinheim, Germany, 1999; ISBN 978-0-471-24247-5. [Google Scholar]
- Schulman, J.H.; Stoeckenius, W.; Prince, L.M. Mechanism of formation and structure of micro emulsions by electron microscopy. J. Phys. Chem. 1959, 63, 1677–1680. [Google Scholar] [CrossRef]
- Prince, L.M. Microemulsions: Theory and Practice; Academic Press: Cambridge, MA, USA, 1977; ISBN 9780323160407. [Google Scholar]
- Margulis-Goshen, K.; Magdassi, S. Organic nanoparticles from microemulsions: Formation and applications. Curr. Opin. Colloid Interface Sci. 2012, 17, 290–296. [Google Scholar] [CrossRef]
- Hejazifar, M.; Lanaridi, O.; Bica-Schröder, K. Ionic liquid based microemulsions: A review. J. Mol. Liq. 2020, 303, 112264. [Google Scholar] [CrossRef]
- Hou, W.; Xu, J. Surfactant-free microemulsions. Curr. Opin. Colloid Interface Sci. 2016, 25, 67–74. [Google Scholar] [CrossRef]
- Holmberg, K.; Jönsson, B.; Kronberg, B.; Lindman, B. Surfactants and Polymers in Aqueous Solution; John Wiley Sons Ltd.: Chichester, UK, 2002; ISBN 0471498831. [Google Scholar]
- Eastoe, J.; Tabor, R.F. Surfactants and Nanoscience. In Colloidal Foundations of Nanoscience; Berti, D., Palazzo, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 135–157. ISBN 9780444595416. [Google Scholar]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1976, 72, 1525–1568. [Google Scholar] [CrossRef]
- Zana, R.; Kaler, E.W. Giant Micelles Properties and Applications; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Hyde, S.; Stephen, T.; Andersson, S.; Larsson, K.; Blum, Z.; Landh, T.; Lidin, S.; Ninham, B.W. The Language of Shape: The Role of CURVATURE in Condensed Matter-Physics, Chemistry, and Biology; Elsevier: Amsterdam, The Netherlands, 1997; ISBN 9780444815385. [Google Scholar]
- Olsson, U.; Nakamura, K.; Kunieda, H.; Strey, R. Normal and reverse vesicles with nonionic surfactant: Solvent diffusion and permeability. Langmuir 1996, 12, 3045–3054. [Google Scholar] [CrossRef]
- Duvail, M.; Dufrêche, J.F.; Arleth, L.; Zemb, T. Mesoscopic modelling of frustration in microemulsions. Phys. Chem. Chem. Phys. 2013, 15, 7133–7141. [Google Scholar] [CrossRef]
- De Gennes, P.G.; Taupin, C. Microemulsions and the flexibility of oil/water interfaces. J. Phys. Chem. 1982, 86, 2294–2304. [Google Scholar] [CrossRef]
- Talmon, Y.; Prager, S. Statistical thermodynamics of phase equilibria in microemulsions. J. Chem. Phys. 1978, 69, 2984–2991. [Google Scholar] [CrossRef]
- Chen, S.J.; Evans, D.F.; Ninham, B.W.; Mitchell, D.J.; Blum, F.D.; Pickup, S. Curvature as a determinant of microstructure and microemulsions. J. Phys. Chem. 1986, 90, 842–847. [Google Scholar] [CrossRef]
- Bernheim-Groswasser, A.; Tlusty, T.; Safran, S.A.; Talmon, Y. Direct observation of phase separation in microemulsion networks. Langmuir 1999, 15, 5448–5453. [Google Scholar] [CrossRef]
- Ambrosone, L.; Angelico, R.; Ceglie, A.; Olsson, U.; Palazzo, G. Molecular diffusion in a living network. Langmuir 2001, 17, 6822–6830. [Google Scholar] [CrossRef]
- Tlusty, T.; Safran, S.A. Microemulsion networks: The onset of bicontinuity. J. Phys. Condens. Matter 2000, 12, A253–A262. [Google Scholar] [CrossRef] [Green Version]
- Söderman, O.; Olsson, U. Dynamics of amphiphilic systems studied using NMR relaxation and pulsed field gradient experiments. Curr. Opin. Colloid Interface Sci. 1997, 2, 131–136. [Google Scholar] [CrossRef]
- Colafemmina, G.; Mateos, H.; Palazzo, G. Diffusion NMR studies of complex liquid formulations. Curr. Opin. Colloid Interface Sci. 2020, 48, 109–120. [Google Scholar] [CrossRef]
- Giustini, M.; Palazzo, G.; Colafemmina, G.; Della Monica, M.; Giomini, M.; Ceglie, A. Microstructure and dynamics of the water-in-oil CTAB/n-pentanol/n-hexane/water microemulsion: A spectroscopic and conductivity study. J. Phys. Chem. 1996, 100, 3190–3198. [Google Scholar] [CrossRef]
- Anderson, D.M.; Wennerström, H. Self-diffusion in bicontinuous cubic phases, L3 phases, and microemulsions. J. Phys. Chem. 1990, 94, 8683–8694. [Google Scholar] [CrossRef]
- Murgia, S.; Palazzo, G.; Mamusa, M.; Lampis, S.; Monduzzi, M. Aerosol-OT in water forms fully-branched cylindrical direct micelles in the presence of the ionic liquid 1-butyl-3-methylimidazolium bromide. Phys. Chem. Chem. Phys. 2011, 13, 9238–9245. [Google Scholar] [CrossRef]
- Söderman, O.; Nydén, M. NMR in microemulsions. NMR translational diffusion studies of a model microemulsion. Colloids Surfaces A Physicochem. Eng. Asp. 1999, 158, 273–280. [Google Scholar] [CrossRef]
- Dogra, A.; Rakshit, A.K. Phase behavior and percolation studies on microemulsion system water/SDS + Myrj45/cyclohexane in the presence of various alcohols as cosurfactants. J. Phys. Chem. B 2004, 108, 10053–10061. [Google Scholar] [CrossRef]
- Pitzalis, P.; Angelico, R.; Soderman, O.; Monduzzi, M. A Structural investigation of CaAOT/water/oil microemulsions. Langmuir 2000, 16, 442–450. [Google Scholar] [CrossRef]
- Eicke, H.F.; Borkovec, M.; Das-Gupta, B. Conductivity of water-in-oil microemulsions: A quantitative charge fluctuation model. J. Phys. Chem. 1989, 93, 314–317. [Google Scholar] [CrossRef]
- Kallay, N.; Chittofrati, A. Conductivity of microemulsions: Refinement of charge fluctuation model. J. Phys. Chem. 1990, 94, 4755–4756. [Google Scholar] [CrossRef]
- Palazzo, G.; Berti, D. Diffusion and Aggregation. In Colloidal Foundations of Nanoscience; Berti, D., Palazzo, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780444595416. [Google Scholar]
- Cazabat, A.M.; Langevin, D. Diffusion of interacting particles: Light scattering study of microemulsions. J. Chem. Phys. 1981, 74, 3148–3158. [Google Scholar] [CrossRef]
- Olsson, U.; Schurtenberger, P. Structure, interactions, and diffusion in a ternary nonionic microemulsion near emulsification failure. Langmuir 1993, 9, 3389–3394. [Google Scholar] [CrossRef]
- Galantini, L.; Giampaolo, S.M.; Mannina, L.; Pavel, N.V.; Viel, S. Study of intermicellar interactions and micellar sizes in ionic micelle solutions by comparing collective diffusion and self-diffusion coefficients. J. Phys. Chem. B 2004, 108, 4799–4805. [Google Scholar] [CrossRef]
- Annese, C.; D’Accolti, L.; Fusco, C.; Mele, G.; Giorgio, G.; Colafemmina, G.; Murgia, S.; Palazzo, G. Oxidation-proof microemulsions: Microstructure and reactivity in the presence of dioxiranes. J. Colloid Interface Sci. 2013, 408, 138–144. [Google Scholar] [CrossRef]
- Glatter, O.; Kratky, O. Glatter_Kratky_SAXS_1982.pdf; Glatter, O., Kratky, O., Eds.; Academic Press: London, UK, 1982. [Google Scholar]
- Stribeck, N. X-ray Scattering of Soft Matter; Stribeck, N., Ed.; Springer Verlag: Heidelberg, Germany, 2007; ISBN 3-540-46488-4. [Google Scholar]
- Berti, D.; Palazzo, G. Scattering of Radiation. In Colloidal Foundations of Nanoscience; Berti, D., Palazzo, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780444595416. [Google Scholar]
- Brunner-Popela, J.; Glatter, O. Small-angle scattering of interacting particles. I. Basic principles of a global evaluation technique. J. Appl. Crystallogr. 1997, 30, 431–442. [Google Scholar] [CrossRef]
- Prévost, S.; Gradzielski, M.; Zemb, T. Self-assembly, phase behaviour and structural behaviour as observed by scattering for classical and non-classical microemulsions. Adv. Colloid Interface Sci. 2017, 247, 374–396. [Google Scholar] [CrossRef]
- Fanun, M. Microemulsions: Properties and Applications—1st Edition—Monzer Fa; CRC Press: Boca Raton, FL, USA, 2008; ISBN 9781420089592. [Google Scholar]
- Gradzielski, M. Recent developments in the characterisation of microemulsions. Curr. Opin. Colloid Interface Sci. 2008, 13, 263–269. [Google Scholar] [CrossRef]
- Goindi, S.; Kaur, R.; Kaur, R. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: Development, ex-vivo and in-vivo evaluation. Int. J. Pharm. 2015, 495, 913–923. [Google Scholar] [CrossRef]
- Belkoura, L.; Stubenrauch, C.; Strey, R. Freeze fracture direct imaging: A new freeze fracture method for specimen preparation in cryo-transmission electron microscopy. Langmuir 2004, 20, 4391–4399. [Google Scholar] [CrossRef]
- Danino, D.; Talmon, Y.; Zana, R. Cryo-TEM of thread-like micelles: On-the-grid microstructural transformations induced during specimen preparation. Colloids Surfaces A Physicochem. Eng. Asp. 2000, 169, 67–73. [Google Scholar] [CrossRef]
- Kuntsche, J.; Horst, J.C.; Bunjes, H. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int. J. Pharm. 2011, 417, 120–137. [Google Scholar] [CrossRef]
- Regev, O.; Ezrahi, S.; Aserin, A.; Garti, N.; Wachtel, E.; Kaler, E.W.; Khan, A.; Talmon, Y. A Study of the microstructure of a four-component nonionic microemulsion by cryo-TEM, NMR, SAXS, and SANS. Langmuir 1996, 12, 668–674. [Google Scholar] [CrossRef]
- Bowcott, J.E.; Schulman, J.H. Emulsions Control of droplet size and phase continuity in transparent oil-water dispersions stabilized with soap and alcohol. Z. Elektrochem. Berichte Bunsenges. Phys. Chem. 1955, 59, 283–290. [Google Scholar] [CrossRef]
- Bardhan, S.; Kundu, K.; Chakraborty, G.; Saha, S.K.; Paul, B.K. The Schulman Method of cosurfactant titration of the oil/water interface (Dilution Method): A review on a well-known powerful technique in interfacial science for characterization of water-in-oil microemulsions. J. Surfactants Deterg. 2015, 18, 547–567. [Google Scholar] [CrossRef]
- Giustini, M.; Murgia, S.; Palazzo, G. Does the Schulman’s titration of microemulsions really provide meaningful parameters? Langmuir 2004, 20, 7381–7384. [Google Scholar] [CrossRef]
- Zilman, A.G.; Safran, S.A. Thermodynamics and structure of self-assembled networks. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2002, 66, 28. [Google Scholar] [CrossRef] [Green Version]
- Palazzo, G. Wormlike reverse micelles. Soft Matter 2013, 9, 10668–10677. [Google Scholar] [CrossRef]
- Olsson, U.; Wennerström, H. Globular and bicontinuous phases of nonionic surfactant films. Adv. Colloid Interface Sci. 1994, 49, 113–146. [Google Scholar] [CrossRef]
- Olsson, U. Colloid Phase Behavior. In Colloidal Foundations of Nanoscience; Berti, D., Palazzo, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 159–176. ISBN 9780444595416. [Google Scholar]
- Abbott, S. Surfactant Science: Principles and Practice; DEStech Publications: Lancaster, PA, USA, 2015; ISBN 9781605954844. [Google Scholar]
- Abbott, S. Gibbs Phase Rule | Practical Surfactants Science. Available online: https://www.stevenabbott.co.uk/practical-surfactants/gibbs.php (accessed on 19 August 2020).
- Olsson, U.; Shinoda, K.; Lindman, B. Change of the structure of microemulsions with the hydrophile-llpophile balance of nonionic surfactant as revealed by NMR self-diffusion studies. J. Phys. Chem 1986, 90, 4083–4088. [Google Scholar] [CrossRef]
- Sabatini, D.A.; Acosta, E.; Harwell, J.H. Linker molecules in surfactant mixtures. Curr. Opin. Colloid Interface Sci. 2003, 8, 316–326. [Google Scholar] [CrossRef]
- Intermolecular and Surface Forces—3rd Edition. Available online: https://www.elsevier.com/books/intermolecular-and-surface-forces/israelachvili/978-0-12-375182-9 (accessed on 31 July 2020).
- Cates, M.; Fielding, S. Theoretical Rheology of Giant Micelles. In Giant Micelles: Properties and Applications; Zana, R., Kaler, E.W., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 109–162. ISBN 9781420007121. [Google Scholar]
- Cates, M.E. Reptation of living polymers: Dynamics. Macromolecules 1987, 20, 2289–2296. [Google Scholar] [CrossRef]
- Drye, T.J.; Cates, M.E. Living networks: The role of cross-links in entangled surfactant solutions. J. Chem. Phys. 1992, 96, 1367–1375. [Google Scholar] [CrossRef]
- Tlusty, T.; Safran, S.A.; Strey, R. Topology, phase instabilities, and wetting of microemulsion networks. Phys. Rev. Lett. 2000, 84, 1280–1283. [Google Scholar] [CrossRef] [Green Version]
- Dan, N.; Safran, S.A. Junctions and end-caps in self-assembled non-ionic cylindrical micelles. Adv. Colloid Interface Sci. 2006, 123–126, 323–331. [Google Scholar] [CrossRef]
- Angelico, R.; Murgia, S.; Palazzo, G. Reverse Wormlike Micelles: A Special Focus on Nuclear Magnetic Resonance Investigations. In Wormlike Micelles: Advances in Systems, Characterisation and Applications; Dreiss, C., Feng, Y., Eds.; Royal Society of Chemistry: Cambridge, UK, 2017. [Google Scholar]
- Angelico, R.; Amin, S.; Monduzzi, M.; Murgia, S.; Olsson, U.; Palazzo, G. Impact of branching on the viscoelasticity of wormlike reverse micelles. Soft Matter. 2012, 8, 10941–10949. [Google Scholar] [CrossRef]
- Griffin, W.C. Classification of surface-active agents by “HLB”. J. Soc. Cosmet. Chem. 1949, 1, 311–326. [Google Scholar]
- Requena, J.; Billett, D.F.; Haydon, D.A. Van Der Waals forces in oil-water systems from the study of thin lipid films. I. Measurement of the contact angle and the estimation of the Van Der Waals free energy of thinning of a film. Source Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1975, 347, 141–159. [Google Scholar] [CrossRef]
- Barnes, I.S.; Derian, P.J.; Hyde, S.T.; Ninham, B.W.; Zemb, T.N. Disordered lamellar structure in the isotropic phase of a ternary double-chain surfactant system. J. Phys. Paris 1990, 51, 2605–2628. [Google Scholar] [CrossRef]
- Hyde, S.T.; Ninham, B.W.; Zemb, T. Phase boundaries for ternary microemulsions. Predictions of a geometric model. J. Phys. Chem. 1989, 93, 1464–1471. [Google Scholar] [CrossRef]
- Chen, V.; Warr, G.G.; Evans, D.F.; Prendergast, F.G. Curvature and geometric constraints as determinants of microemulsion structure: Evidence from fluorescence anisotropy measurements. J. Phys. Chem. 1988, 92, 768–773. [Google Scholar] [CrossRef]
- Zemb, T. Flexibility, persistence length and bicontinuous microstructures in microemulsions. C. R. Chim. 2009, 12, 218–224. [Google Scholar] [CrossRef]
- Fogden, A.; Hyde, S.T.; Lundberg, G. Bending energy of surfactant films. J. Chem. Soc. Faraday Trans. 1991, 87, 949–955. [Google Scholar] [CrossRef]
- Strey, R. Microemulsion microstructure and interfacial curvature. Colloid Polym. Sci. 1994, 272, 1005–1019. [Google Scholar] [CrossRef]
- Gradzielski, M.; Langevin, D.; Farago, B. Experimental investigation ofthe structure of nonionic microemulsions and their relation to the bending elasticity of the amphiphilic film. Phys. Rev. E 1996, 53, 3900–3919. [Google Scholar] [CrossRef]
- Safran, S. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes; CRC Press: Boca Raton, FL, USA, 2003; ISBN 9780367091958. [Google Scholar]
- Wennerstrom, H.; Olsson, U. On the flexible surface model of sponge Phases and microemulsions. Langmuir 1993, 9, 365–368. [Google Scholar] [CrossRef]
- Le, T.D.; Olsson, U.; Wennerströ, H.; Schurtenberger, P. Thermodynamics of a Nonionic Sponge Phase. Phys. Rev. E 1999, 60, 4300–4309. [Google Scholar] [CrossRef]
- Daicic, J.; Olsson, U.; Wennerstrom, H. Phase Equilibria of balanced microemulsions. Langmuir 1995, 11, 2451–2458. [Google Scholar] [CrossRef]
- Salager, J.L.; Morgan, J.C.; Schechter, R.S.; Wade, W.H.; Vasquez, E. Optimum formulation of surfactant/water/oil systems for minimum interfacial tension or phase behavior. Soc. Pet. Eng. J. 1979, 19, 107–115. [Google Scholar] [CrossRef]
- Salager, J.L.; Marquez, N.; Graciaa, A.; Lachaise, J. Partitioning of ethoxylated octylphenol surfactants in microemulsion-oil-water systems: Influence of temperature and relation between partitioning coefficient and physicochemical formulation. Langmuir 2000, 16, 5534–5539. [Google Scholar] [CrossRef]
- Acosta, E.; Szekeres, E.; Sabatini, D.A.; Harwell, J.H. Net-average curvature model for solubilization and supersolubilization in surfactant microemulsions. Langmuir 2003, 19, 186–195. [Google Scholar] [CrossRef]
- Acosta, E.J.; Yuan, J.S.; Bhakta, A.S. The characteristic curvature of ionic surfactants. J. Surfactants Deterg. 2008, 11, 145–158. [Google Scholar] [CrossRef]
- Kunz, W.; Testard, F.; Zemb, T. Correspondence between curvature, packing parameter, and hydrophilic-lipophilic deviation scales around the phase-inversion temperature. Langmuir 2009, 25, 112–115. [Google Scholar] [CrossRef]
- Zarate-Muñoz, S.; de Vasconcelos, F.T.; Myint-Myat, K.; Minchom, J.; Acosta, E. A simplified methodology to measure the characteristic curvature (Cc) of alkyl ethoxylate nonionic surfactants. J. Surfactants Deterg. 2016, 19, 249–263. [Google Scholar] [CrossRef]
- Salager, J.-L.; Forgiarini, A.M.; Bullón, J. How to attain ultralow interfacial tension and three-phase behavior with surfactant formulation for enhanced oil recovery: A review. Part 1. Optimum formulation for simple surfactant–oil–water ternary systems. J. Surfactants Deterg. 2013, 16, 449–472. [Google Scholar] [CrossRef]
- Hammond, C.E.; Acosta, E.J. On the characteristic curvature of alkyl-polypropylene oxide sulfate extended surfactants. J. Surfactants Deterg. 2011, 15, 157–165. [Google Scholar] [CrossRef]
- Witthayapanyanon, A.; Harwell, J.H.; Sabatini, D.A. Hydrophilic–lipophilic deviation (HLD) method for characterizing conventional and extended surfactants. J. Colloid Interface Sci. 2008, 325, 259–266. [Google Scholar] [CrossRef]
- Queste, S.; Salager, J.L.; Strey, R.; Aubry, J.M. The EACN scale for oil classification revisited thanks to fish diagrams. J. Colloid Interface Sci. 2007, 312, 98–107. [Google Scholar] [CrossRef]
- Acosta, E. Engineering cosmetics with the Net-Average-Curvature (NAC) model. Curr. Opin. Colloid Interface Sci. 2020, 48, 149–167. [Google Scholar] [CrossRef]
- Acosta, E. The HLD–NAC equation of state for microemulsions formulated with nonionic alcohol ethoxylate and alkylphenol ethoxylate surfactants. Colloids Surfaces A: Physicochem. Eng. Asp. 2008, 320, 193–204. [Google Scholar] [CrossRef]
- Bonini, M.; Bardi, U.; Berti, D.; Neto, C.; Baglioni, P. A new way to prepare nanostructured materials: Flame spraying of microemulsions. J. Phys. Chem. B 2002, 106, 6178–6183. [Google Scholar] [CrossRef]
- Aramaki, K.; Tawa, K.; Kumar Shrestha, L.; Iwanaga, T.; Kamada, M. Formation and cleansing performance of bicontinuous microemulsions in water/poly (oxyethylene) alkyl ether/ester-type oil systems. J. Oleo Sci. 2013, 62, 803–808. [Google Scholar] [CrossRef]
- Antunes, F.E.; Thuresson, K.; Lindman, B.; Miguel, M.G. A rheological investigation of the association between a non-ionic microemulsion and hydrophobically modified PEG. Influence of polymer architecture. Colloids Surfaces A Physicochem. Eng. Asp. 2003, 215, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Baglioni, P.; Berti, D.; Bonini, M.; Carretti, E.; Dei, L.; Fratini, E.; Giorgi, R. Micelle, microemulsions, and gels for the conservation of cultural heritage. Adv. Colloid Interface Sci. 2013, 205, 361–371. [Google Scholar] [CrossRef]
- Häger, M.; Olsson, U.; Holmberg, K. A nucleophilic substitution reaction performed in different types of self-assembly structures. Langmuir 2004, 20, 6107–6115. [Google Scholar] [CrossRef]
- Jiang, J.Z.; Cai, C. Copper-and ligand-free Sonogashira reaction catalyzed by palladium in microemulsion. J. Colloid Interface Sci. 2007, 307, 300–303. [Google Scholar] [CrossRef]
- Angelico, R.; Ceglie, A.; Cuomo, F. Reaction mixtures based on the CTAB-Dodecyl Epoxide-water microemulsion for the synthesis of novel Nucleo-Lipids. Colloids Surfaces B Biointerfaces 2009, 70, 68–75. [Google Scholar] [CrossRef]
- Angelico, R.; Losito, I.; Cuomo, F.; Ceglie, A.; Palmisano, F. Alkylation of complementary ribonucleotides in nanoreactors. Phys. Chem. Chem. Phys. 2013, 15, 586–595. [Google Scholar] [CrossRef]
- Angelico, R.; Ambrosone, L.; Ceglie, A.; Losito, I.; De Zio, G.; Palmisano, F. Complementary amphiphilic ribonucleotides confined into nanostructured environments. Phys. Chem. Chem. Phys. 2010, 12, 7977–7987. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, K. Organic reactions in microemulsions. Eur. J. Org. Chem. 2007, 2007, 731–742. [Google Scholar] [CrossRef]
- Menger, F.M.; Elrington, A.R. Organic Reactivity in Microemulsion Systems. J. Am. Chem. Soc. 1991, 113, 9621–9624. [Google Scholar] [CrossRef]
- Gutfelt, S.; Kizling, J.; Holmberg, K. Microemulsions as reaction medium for surfactant synthesis. Colloids Surfaces A Physicochem. Eng. Asp. 1997, 128, 271. [Google Scholar] [CrossRef]
- Serrano-Luginbühl, S.; Ruiz-Mirazo, K.; Ostaszewski, R.; Gallou, F.; Walde, P. Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nat. Rev. Chem. 2018, 2, 306–327. [Google Scholar] [CrossRef]
- Sanchez-Dominguez, M.; Pemartin, K.; Boutonnet, M. Preparation of inorganic nanoparticles in oil-in-water microemulsions: A soft and versatile approach. Curr. Opin. Colloid Interface Sci. 2012, 17, 297–305. [Google Scholar] [CrossRef]
- Wolf, S.; Feldmann, C. Microemulsions: Options to expand the synthesis of inorganic nanoparticles. Angew. Chem. Int. Ed. 2016, 55, 15728–15752. [Google Scholar] [CrossRef]
- Richard, B.; Lemyre, J.L.; Ritcey, A.M. Nanoparticle size control in microemulsion synthesis. Langmuir 2017, 33, 4748–4757. [Google Scholar] [CrossRef]
- Malik, M.A.; Wani, M.Y.; Hashim, M.A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. 1st Nano Update. Arab. J. Chem. 2012, 5, 397–417. [Google Scholar] [CrossRef] [Green Version]
- Boutonnet, M.; Lögdberg, S.; Svensson, E.E. Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis. Curr. Opin. Colloid Interface Sci. 2007, 13, 270–286. [Google Scholar] [CrossRef]
- López-Quintela, M.A.; Tojo, C.; Blanco, M.C.; Rio, L.G.; Leis, J.R. Microemulsion dynamics and reactions in microemulsions. Curr. Opin. Colloid Interface Sci. 2004, 9, 264–278. [Google Scholar] [CrossRef]
- López-Quintela, M.A. Synthesis of nanomaterials in microemulsions: Formation mechanisms and growth control. Curr. Opin. Colloid Interface Sci. 2003, 8, 137–144. [Google Scholar] [CrossRef]
- Holmberg, K. Surfactant-templated nanomaterials synthesis. J. Colloid Interface Sci. 2004, 274, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Eastoe, J.; Hollamby, M.J.; Hudson, L. Recent advances in nanoparticle synthesis with reversed micelles. Adv. Colloid Interface Sci. 2007, 128–130, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Destrée, C.; Nagy, J.B. Mechanism of formation of inorganic and organic nanoparticles from microemulsions. Adv. Colloid Interface Sci. 2006, 123–126, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Pileni, M.P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2003, 2, 145–150. [Google Scholar] [CrossRef]
- Soleimani Zohr Shiri, M.; Henderson, W.; Mucalo, M.R. A review of the lesser-studied microemulsion-based synthesis methodologies used for preparing nanoparticle systems of the noble. Materials 2019, 12, 1896. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, R.; Vaidya, S.; Thaplyal, P.; Qamar, M.; Ahmed, J.; Ganguli, A.K. Controlling the size, morphology, and aspect ratio of nanostructures using reverse micelles: A case study of copper oxalate monohydrate. Langmuir 2009, 25, 6469–6475. [Google Scholar] [CrossRef]
- Ganguli, A.K.; Ganguly, A.; Vaidya, S. Microemulsion-based synthesis of nanocrystalline materials. Chem. Soc. Rev. 2010, 39, 474–485. [Google Scholar] [CrossRef]
- Zhou, G.; Luo, Z.; Fu, X. Preparation and characterization of starch nanoparticles in ionic liquid-in-oil microemulsions system. Ind. Crops Prod. 2014, 52, 105–110. [Google Scholar] [CrossRef]
- Bonini, M.; Wiedenmann, A.; Baglioni, P. Synthesis and characterization of surfactant and silica-coated cobalt ferrite nanoparticles. Phys. A Stat. Mech. Appl. 2004, 339, 86–91. [Google Scholar] [CrossRef]
- Orlich, B.; Berger, H.; Lade, M.; Schomäcker, R. Stability and activity of alcohol dehydrogenases in W/O-microemulsions: Enantioselective reduction including cofactor regeneration. Biotechnol. Bioeng. 2000, 70, 638–646. [Google Scholar] [CrossRef]
- Jing, F.; An, X.; Shen, W. The characteristics of hydrolysis of triolein catalyzed by wheat germ lipase in water-in-oil microemulsions. J. Mol. Catal. B Enzym. 2003, 24–25, 53–60. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Jeong, E.S.; Yun, S.E.; Mun, S.P.; Rusling, J.F. Bicontinuous microemulsion as reaction medium for the β-glucosidase-catalyzed synthesis of n-hexyl-β-d-glucopyranoside. Enzyme Microb. Technol. 2008, 42, 252–258. [Google Scholar] [CrossRef]
- Prichanont, S.; Leak, D.J.; Stuckey, D.C. Chiral epoxide production using mycobacterium solubilized in a water-in-oil microemulsion. Enzyme Microb. Technol. 2000, 27, 134–142. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Jayabalan, R.; Mun, S.P.; Yun, S.E. Role of bicontinuous microemulsion in the rapid enzymatic hydrolysis of (R,S)-ketoprofen ethyl ester in a micro-reactor. Bioresour. Technol. 2010, 101, 7834–7840. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Kamiya, N.; Goto, M. Biocatalysis in water-in-ionic liquid microemulsions: A case study with horseradish peroxidase. Langmuir 2009, 25, 977–982. [Google Scholar] [CrossRef]
- Yu, X.; Li, Q.; Wang, M.; Du, N.; Huang, X. Study on the catalytic performance of laccase in the hydrophobic ionic liquid-based bicontinuous microemulsion stabilized by polyoxyethylene-type nonionic surfactants. Soft Matter 2016, 12, 1713–1720. [Google Scholar] [CrossRef]
- Xu, F.; Chen, L.; Wang, A.; Yan, Z. Influence of surfactant-free ionic liquid microemulsions pretreatment on the composition, structure and enzymatic hydrolysis of water hyacinth. Bioresour. Technol. 2016, 208, 19–23. [Google Scholar] [CrossRef]
- Xia, W.-J.; Xie, Z.-B.; Jiang, G.-F.; Le, Z.-G. The Henry Reaction in [Bmim][PF6]-based Microemulsions Promoted by Acylase. Molecules 2013, 18, 13910–13919. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Qi, S.; Li, Z.; Luo, R.; Yang, B.; Wang, Y. Enzymatic synthesis of phytosterol esters catalyzed by Candida rugosa lipase in water-in-[Bmim]PF6 microemulsion. Bioprocess. Biosyst. Eng. 2015, 38, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Zhang, X. Enzymatic hydrolysis of p-nitrophenyl butyrate in water-in-ionic liquid microemulsion. Ferroelectrics 2018, 528, 122–130. [Google Scholar] [CrossRef]
- Van Rantwijk, F.; Sheldon, R.A. Biocatalysis in ionic liquids. Chem. Rev. 2007, 107, 2757–2785. [Google Scholar] [CrossRef] [PubMed]
- Freemantle, M. An Introduction to Ionic Liquids; The Royal Society of Chemistry: Cambridge, UK, 2010; ISBN 978-1-84755-161-0. [Google Scholar]
- Earle, M.J.; Seddon, K.R. Ionic liquids. Green solvents for the future. Pure Appl. Chem. 2000, 72, 1391–1398. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Texter, J. Surfactant ionic liquid-based microemulsions for polymerization. Chem. Commun. 2006, 2696–2698. [Google Scholar] [CrossRef]
- Andújar-Matalobos, M.; García-Río, L.; López-garcía, S.; Rodríguez-dafonte, P. Polarity of the interface in ionic liquid in oil microemulsions. J. Colloid Interface Sci. 2011, 363, 261–267. [Google Scholar] [CrossRef]
- Serrà, A.; Gómez, E.; Vallés, E. Facile electrochemical synthesis, using microemulsions with ionic liquid, of highly mesoporous CoPt nanorods with enhanced electrocatalytic performance for clean energy. Int. J. Hydrogen Energy 2015, 40, 8062–8070. [Google Scholar] [CrossRef] [Green Version]
- Serrà, A.; Gómez, E.; Vallés, E. Novel electrodeposition media to synthesize CoNi-Pt Core@Shell stable mesoporous nanorods with very high active surface for methanol electro-oxidation. Electrochim. Acta 2015, 174, 630–639. [Google Scholar] [CrossRef] [Green Version]
- Serrà, A.; Gimeno, N.; Gómez, E.; Mora, M.; Sagristá, M.L.; Vallés, E. Magnetic mesoporous nanocarriers for drug delivery with improved therapeutic efficacy. Adv. Funct. Mater. 2016, 26, 6601–6611. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Nanoreactors stable up to 200 °C: A class of high temperature microemulsions composed solely of ionic liquids. Chem. Commun. 2018, 54. [Google Scholar] [CrossRef]
- Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 2012, 64, 175–193. [Google Scholar] [CrossRef]
- Hu, J.; Akula, N.; Wang, N. Development of a Microemulsion Formulation for Antimicrobial SecA Inhibitors. PLoS ONE 2016, 11, e0150433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spernath, A.; Aserin, A. Microemulsions as carriers for drugs and nutraceuticals. Adv. Colloid Interface Sci. 2006, 128–130, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, N.; Goindi, S.; Khurana, R. Formulation, Characterization and evaluation of an optimized microemulsion formulation of griseofulvin for topical application. Colloids Surfaces B Biointerfaces 2013, 105, 158–166. [Google Scholar] [CrossRef]
- Erel, G.; Kotmakçı, M.; Akbaba, H.; Sözer Karadağlı, S.; Kantarcı, A.G. Nanoencapsulated chitosan nanoparticles in emulsion-based oral delivery system: In vitro and in vivo evaluation of insulin loaded formulation. J. Drug Deliv. Sci. Technol. 2016, 36, 161–167. [Google Scholar] [CrossRef]
- Faizan Nazar, M.; Yasir Siddique, M.; Atif Saleem, M.; Zafar, M.; Nawaz, F.; Ashfaq, M.; Muhammad Khan, A.; Muhammad Abd Ur Rahman, H.; Bilal Tahir, M.; Mat Lazim, A. Fourth-generation antibiotic gatifloxacin encapsulated by microemulsions: Structural and probing dynamics. Langmuir 2018, 34, 10603–10612. [Google Scholar] [CrossRef]
- Faizan Nazar, M.; Muhammad, A.S.; Nawaz Bajwa, S.; Yameen, B.; Ashfaq, M.; Nadeem Zafar, M.; Zubair, M. Encapsulation of antibiotic levofloxacin in biocompatible microemulsion formulation: Insights from microstructure analysis. J. Phys. Chem. B 2016, 121. [Google Scholar] [CrossRef]
- Barot, B.S.; Parejiya, P.B.; Patel, H.K.; Mehta, D.M.; Shelat, P.K. Microemulsion-based antifungal gel delivery to nail for the treatment of onychomycosis: Formulation, optimization, and efficacy studies. Drug Deliv. Transl. Res. 2012, 2, 463–476. [Google Scholar] [CrossRef]
- Guimarães, G.P.; Reis, M.Y.d.F.A.; da Silva, D.T.C.; Mendonça Junior, F.J.B.; Converti, A.; Pessoa, A.; Damasceno, B.P.G.d.L.; da Silva, J.A. Antifungal activity of topical microemulsion containing a thiophene derivative. Braz. J. Microbiol. 2014, 45, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Leng, P.; Zhang, Z.; Li, Q.; Zhao, M.; Pan, G. Microemulsion formulation of carbendazim and its in vitro antifungal activities evaluation. PLoS ONE 2014, 9, e109580. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Nayak, K.; Misra, M. Cow ghee fortified ocular topical microemulsion; in vitro, ex vivo, and in vivo evaluation. J. Microencapsul. 2019, 36, 603–621. [Google Scholar] [CrossRef] [PubMed]
- Habib, F.; El-Mahdy, M.; Abdel-Hafez, A.; Maher, S. Microemulsion for ocular delivery: Ocular irritancy test and in vivo studies of anti-inflammatory action. J. Drug Deliv. Sci. Technol. 2012, 22, 541–544. [Google Scholar] [CrossRef]
- Rama Hegde, R.; Verma, A.; Ghosh, A.; Al-Achi, A.; Cal, K.; Murata, Y.; Rios, M.Y.; Torrado, J. Microemulsion: New insights into the ocular drug delivery. Corp. ISRN Pharm. 2013, 2013, 11. [Google Scholar] [CrossRef]
- Todosijević, M.N.; Savić, M.M.; Batinić, B.B.; Marković, B.D.; Gašperlin, M.; Randnelović, D.V.; Lukić, M.; Savić, S.D. Biocompatible microemulsions of a model NSAID for skin delivery: A decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance. Int. J. Pharm. 2015, 496, 931–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, N.; Ghosal, S.K.; Moulik, S.P. Enhanced in vitro percutaneous absorption and in vivo anti-inflammatory effect of a selective cyclooxygenase inhibitor using microemulsion. Drug Dev. Ind. Pharm. 2005, 31, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Silva-Cunha, A.; Da Silva, G.R.; De Castro, W.V.; Fialho, S.L. Evaluation of the pharmacokinetics and ocular tolerance of a microemulsion containing tacrolimus. J. Ocul. Pharmacol. Ther. 2014, 30, 59–65. [Google Scholar] [CrossRef]
- Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Chougule, M.B.; Shoyele, S.A.; Alexander, A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release 2018, 281, 139–177. [Google Scholar] [CrossRef]
- Wang, S.; Chen, P.; Zhang, L.; Yang, C.; Zhai, G. Formulation and evaluation of microemulsion-based in situ ion-sensitive gelling systems for intranasal administration of curcumin. J. Drug Target. 2012, 20, 831–840. [Google Scholar] [CrossRef]
- Paul, B.K.; Moulik, S.P. Ionic Liquid-Based Surfactant Science: Formulation, Characterization, and Applications; Bidyut, K.P., Satya, P.M., Eds.; John Wiley Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Wang, C.; Zhu, J.; Zhang, D.; Yang, Y.; Zheng, L.; Qu, Y.; Yang, X.; Cui, X. Ionic liquid—Microemulsions assisting in the transdermal delivery of Dencichine: Preparation, in-vitro and in-vivo evaluations, and investigation of the permeation mechanism. Int. J. Pharm. 2018, 535, 120–131. [Google Scholar] [CrossRef]
- Al-Adham, I.S.I.; Ashour, H.; Al-Kaissi, E.; Khalil, E.; Kierans, M.; Collier, P.J. Studies on the kinetics of killing and the proposed mechanism of action of microemulsions against fungi. Int. J. Pharm. 2013, 454, 226–232. [Google Scholar] [CrossRef]
- Hazra, D.K.; Karmakar, R.; Poi, R.; Bhattacharya, S.K.; Mondal, S. Recent advances in pesticide formulations for eco-friendly and sustainable vegetable pest management: A review. Arch. Agric. Environ. Sci. 2017, 2, 232–237. [Google Scholar]
- Teixeira, P.C.; Leite, G.M.; Domingues, R.J.; Silva, J.; Gibbs, P.A.; Ferreira, J.P. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. Int. J. Food Microbiol. 2007, 118, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, J.; Singh, H. Microemulsions: A potential delivery system for bioactives in food. Crit. Rev. Food Sci. Nutr. 2006, 46, 221–237. [Google Scholar] [CrossRef] [PubMed]
- Chatzidaki, M.D.; Papadimitriou, V.; Xenakis, A. Encapsulation of food ingredients by microemulsions. Lipid Based Nanostruct. Food Enscapul. Purp. 2019, 2, 129–149. [Google Scholar] [CrossRef]
- Mcclements, D.J.; Decker, E.A.; Park, Y.; Weiss, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr. 2009, 49, 577–606. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Jin, J.; Zheng, M.; Zheng, Y.; Xu, X.; Liu, Y.; Wang, X. Co-surfactant free microemulsions: Preparation, characterization and stability evaluation for food application. Food Chem. 2016, 204, 194–200. [Google Scholar] [CrossRef]
- Amiri-Rigi, A.; Abbasi, S. Extraction of lycopene using a lecithin-based olive oil microemulsion. Food Chem. 2019, 272, 568–573. [Google Scholar] [CrossRef]
- Mitsou, E.; Tavantzis, G.; Sotiroudis, G.; Ladikos, D.; Xenakis, A.; Papadimitriou, V. Food grade water-in-oil microemulsions as replacement of oil phase to help process and stabilization of whipped cream. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 510, 69–76. [Google Scholar] [CrossRef]
- Zhang, L.; Critzer, F.; Davidson, P.M.; Zhong, Q. Formulating essential oil microemulsions as washing solutions for organic fresh produce production. Food Chem. 2014, 165, 113–118. [Google Scholar] [CrossRef]
- Drakontis, C.E.; Amin, S. Biosurfactants: Formulations, properties, and applications. Curr. Opin. Colloid Interface Sci. 2020, 48, 77–90. [Google Scholar] [CrossRef]
- Király, Z.; Findenegg, G.H. Calorimetric study of the adsorption of short-chain nonionic surfactants on silica glass and graphite: ~dimethyldecylamine oxide and octyl monoglucoside. Langmuir 2000, 16, 8842–8849. [Google Scholar] [CrossRef]
- Kocherbitov, V.; Söderman, O.; Wadsö, L. Phase diagram and thermodynamics of the n-octyl β-D-glucoside/water system. J. Phys. Chem. B 2002, 106, 2910–2917. [Google Scholar] [CrossRef]
- Stubenrauch, C. Sugar surfactants aggregation, interfacial, and adsorption phenomena. Curr. Opin. Colloid Interface Sci. 2001, 6, 160–170. [Google Scholar] [CrossRef]
- Ruiz, C.C. Sugar-Based Surfactants; Taylor Francis Ltd.: Abingdon, UK, 2019; ISBN 0367386240. [Google Scholar]
- Kumpulainen, A.J.; Persson, C.M.; Eriksson, J.C. Headgroup and hydrocarbon tail effects on the surface tension of sugar-based surfactant solutions. Langmuir 2004, 20, 10935–10942. [Google Scholar] [CrossRef]
- Persson, C.M.; Kumpulainen, A.J. Surface forces measured in sugar surfactant solutions between two hydrophobic thiolated silica spheres. Colloids Surfaces A Physicochem. Eng. Asp. 2004, 233, 43–49. [Google Scholar] [CrossRef]
- Kumpulainen, A.J.; Persson, C.M.; Eriksson, J.C.; Tyrode, E.C.; Johnson, C.M. Soluble monolayers ofn-decyl glucopyranoside andn-decyl maltopyranoside. Phase changes in the gaseous to the liquid-expanded range. Langmuir 2005, 21, 305–315. [Google Scholar] [CrossRef]
- Liljekvist, P.; Kjellin, M.; Eriksson, J.C. The surface pressure effect of pentaoxyethylene and maltoside surfactant head groups. Adv. Colloid Interface Sci. 2001, 89–90, 293–302. [Google Scholar] [CrossRef]
- Matsson, M.K.; Kronberg, B.; Claesson, P.M. Adsorption of alkyl polyglucosides on the solid/Water interface: ~equilibrium effects of alkyl chain length and head group polymerization. Langmuir 2004, 20, 4051–4058. [Google Scholar] [CrossRef]
- Muruganathan, R.M.; Krustev, R.; Müller, H.-J.; Möhwald, H.; Kolaric, B.; Klitzing, R.v. Foam films stabilized by dodecyl maltoside. 1. Film thickness and free energy of film formation. Langmuir 2004, 20, 6352–6358. [Google Scholar] [CrossRef]
- Muruganathan, R.M.; Krustev, R.; Ikeda, N.; Müller, H.J. Temperature dependence of the gas permeability of foam films stabilized by dodecyl maltoside. Langmuir 2003, 19, 3062–3065. [Google Scholar] [CrossRef]
- Persson, C.M.; Claesson, P.M.; Lunkenheimer, K. Interfacial behavior of n-decyl-beta-D-maltopyranoside on hydrophobic interfaces and the effect of small amounts of surface-active impurities. J. Colloid Interface Sci. 2002, 251, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; Wullbrandt, D. Rhamnose lipids—Biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 1999, 51, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Hayes, D. Biobased Surfactants and Detergents: Synthesis, Properties, and Applications; Academic Press: London, UK, 2019; ISBN 9780128127056. [Google Scholar]
- Jimoh, A.A.; Lin, J. Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicol. Environ. Saf. 2019, 184, 109607. [Google Scholar] [CrossRef] [PubMed]
- Ron, E.Z.; Rosenberg, E. Natural roles of biosurfactants. Minireview. Environ. Microbiol. 2001, 3, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Rufino, R.; Luna, J.; Santos, V.; Sarubbo, L. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [Green Version]
- Rojas, O.J.; Stubenrauch, C.; Schulze-Schlarmann, J.; Claesson, P.M. Interactions between nonpolar surfaces coated with the nonionic surfactant n-dodecyl-β-D-maltoside. Langmuir 2005, 21, 11836–11843. [Google Scholar] [CrossRef]
- Claesson, P.M.; Kjellin, M.; Rojas, O.J.; Stubenrauch, C. Short-range interactions between non-ionic surfactant layers. Phys. Chem. Chem. Phys. 2006, 8, 5501. [Google Scholar] [CrossRef]
- European Commission Standards, M/491 Mandate Addressed to Cen, Cenelec and Etsi for the Development of European Standards and Technical Specifications and/or Technical Reports for Bio-Surfactants and Bio-Solvents in Relation to Bio-Based Product Aspects. Available online: https://ec.europa.eu/growth/tools-databases/mandates/index.cfm?fuseaction=search.detailid=476 (accessed on 15 June 2020).
- Desai, J.D.; Banat, I.M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. MMBR 1997, 61, 47–64. [Google Scholar] [CrossRef]
- Mukherjee, S.; Das, P.; Sen, R. Towards commercial production of microbial surfactants. Trends Biotechnol. 2006, 24, 509–515. [Google Scholar] [CrossRef]
- Geetha, S.J.; Banat, I.M.; Joshi, S.J. Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). Biocatal. Agric. Biotechnol. 2018, 14, 23–32. [Google Scholar] [CrossRef]
- Haq, B.; Liu, J.; Liu, K.; Al Shehri, D. The role of biodegradable surfactant in microbial enhanced oil recovery. J. Pet. Sci. Eng. 2020, 189, 106688. [Google Scholar] [CrossRef]
- Christopher, F.C.; Ponnusamy, S.K.; Ganesan, J.J.; Ramamurthy, R. Investigating the prospects of bacterial biosurfactants for metal nanoparticle synthesis—A comprehensive review. IET Nanobiotechnology 2019, 13, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Kiran, G.S.; Selvin, J.; Manilal, A.; Sujith, S. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles. Crit. Rev. Biotechnol. 2011, 31, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Atwan, Q.S.; Hayder, N.H.A. Eco-friendly synthesis of Silver nanoparticles by using green method: Improved interaction and application in vitro and in vivo. Iraqi J. Agric. Sci. 2020, 51. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.; Banat, I.M.; Teixeira, J.; Oliveira, R. Biosurfactants: Potential applications in medicine. J. Antimicrob. Chemother. 2006, 57, 609–618. [Google Scholar] [CrossRef]
- Mulligan, C.N. Environmental applications for biosurfactants. Environ. Pollut. 2005, 133, 183–198. [Google Scholar] [CrossRef]
- Vecino, X.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Biosurfactants in cosmetic formulations: Trends and challenges. Crit. Rev. Biotechnol. 2017, 37, 911–923. [Google Scholar] [CrossRef]
- Galié, S.; Garcia-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the food industry: Health aspects and control methods. Front. Microbiol. 2018, 9, 898. [Google Scholar] [CrossRef]
- Acosta, E.J.; Bhakta, A.S. The HLD-NAC model for mixtures of ionic and nonionic surfactants. J. Surfactants Deterg. 2009, 12, 7–19. [Google Scholar] [CrossRef]
- Nouraei, M.; Acosta, E.J. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions. J. Colloid Interface Sci. 2017, 495, 178–190. [Google Scholar] [CrossRef]
- Abbott, S. Speeding Up the Transition to Greener Surfactants. 2011. Available online: http://vlci.biz/wpcontent/uploads/2017/01/Speeding-up-the-transition-to-greener-surfactant.pdf (accessed on 20 January 2019).
- Nguyen, T.T.L.; Edelen, A.; Neighbors, B.; Sabatini, D.A. Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: Formulation and potential applications. J. Colloid Interface Sci. 2010, 348, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Rongsayamanont, W.; Soonglerdsongpha, S.; Khondee, N.; Pinyakong, O.; Tongcumpou, C.; Sabatini, D.A.; Luepromchai, E. Formulation of crude oil spill dispersants based on the HLD concept and using a lipopeptide biosurfactant. J. Hazard. Mater. 2017, 334, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Nouraei, M.; Latta, T.; Acosta, E. Hydrophilic-lipophilic-difference (HLD) guided formulation of oil spill dispersants with biobased surfactants. Tenside Surfactants Deterg. 2019, 56, 417–428. [Google Scholar] [CrossRef]
- Förster, T.; Guckenbiehl, B.; Hensen, H.; von Rybinski, W. Physico-Chemical Basics of Microemulsions with Alkyl Polyglycosides. In Interfaces, Surfactants and Colloids in Engineering; Jacobasch, H.-J., Ed.; Steinkopff: Darmstadt, Germany, 1996; pp. 105–112. ISBN 978-3-7985-1664-9. [Google Scholar]
- Acosta, E.J.; Nguyen, T.; Witthayapanyanon, A.; Harwell, J.H.; Sabatini, D.A. Linker-based bio-compatible microemulsions. Environ. Sci. Technol. 2005, 39, 1275–1282. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tartaro, G.; Mateos, H.; Schirone, D.; Angelico, R.; Palazzo, G. Microemulsion Microstructure(s): A Tutorial Review. Nanomaterials 2020, 10, 1657. https://doi.org/10.3390/nano10091657
Tartaro G, Mateos H, Schirone D, Angelico R, Palazzo G. Microemulsion Microstructure(s): A Tutorial Review. Nanomaterials. 2020; 10(9):1657. https://doi.org/10.3390/nano10091657
Chicago/Turabian StyleTartaro, Giuseppe, Helena Mateos, Davide Schirone, Ruggero Angelico, and Gerardo Palazzo. 2020. "Microemulsion Microstructure(s): A Tutorial Review" Nanomaterials 10, no. 9: 1657. https://doi.org/10.3390/nano10091657
APA StyleTartaro, G., Mateos, H., Schirone, D., Angelico, R., & Palazzo, G. (2020). Microemulsion Microstructure(s): A Tutorial Review. Nanomaterials, 10(9), 1657. https://doi.org/10.3390/nano10091657