Investigating a Lock-In Thermal Imaging Setup for the Detection and Characterization of Magnetic Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Mathematical Modeling of the Sample Holder
3. Results
3.1. Sample and Sample Holder Dimensions
3.2. Heat Losses and Stimulation Frequency
3.3. Heating Power
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rosensweig, R.E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 2002, 252, 370–374. [Google Scholar] [CrossRef]
- Lin, M.M.; Kim, D.K.; El Haj, A.J.; Dobson, J. Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans. Nanobiosci. 2008, 7, 298–305. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 24–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lattuada, M.; Hatton, T.A. Functionalization of monodisperse magnetic nanoparticles. Langmuir 2007, 23, 2158–2168. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Dutz, S.; Häfeli, U.O.; Mahmoudi, M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 2011, 166, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zeng, H. Size-Controlled Synthesis of Magnetite Nanoparticles. J. Am. Chem. Soc. 2002, 124, 8204–8205. [Google Scholar] [CrossRef]
- Park, J.; An, K.; Hwang, Y.; Park, J.G.; Noh, H.J.; Kim, J.Y.; Park, J.H.; Hwang, N.M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895. [Google Scholar] [CrossRef]
- Gubin, S.P.; Koksharov, Y.A.; Khomutov, G.B.; Yurkov, G.Y. Magnetic nanoparticles: Preparation, structure and properties. Russ. Chem. Rev. 2005, 74, 489–520. [Google Scholar] [CrossRef]
- Shavel, A.; Rodríguez-González, B.; Spasova, M.; Farle, M.; Liz-Marzán, L.M. Synthesis and characterization of iron/iron oxide core/shell nanocubes. Adv. Funct. Mater. 2007, 17, 3870–3876. [Google Scholar] [CrossRef]
- Guardia, P.; Riedinger, A.; Nitti, S.; Pugliese, G.; Marras, S.; Genovese, A.; Materia, M.E.; Lefevre, C.; Manna, L.; Pellegrino, T. One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate. J. Mater. Chem. B 2014, 2, 4426–4434. [Google Scholar] [CrossRef]
- Hufschmid, R.; Arami, H.; Ferguson, R.M.; Gonzales, M.; Teeman, E.; Brush, L.N.; Browning, N.D.; Krishnan, K.M. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 2015, 7, 11142–11154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, D.; Lee, J.H.; Shin, T.H.; Cheon, J. Theranostic magnetic nanoparticles. Accounts Chem. Res. 2011, 44, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Ortega, D.; Pankhurst, Q.A. Magnetic hyperthermia. Nanoscience 2013, 1, 60–88. [Google Scholar] [CrossRef]
- Abenojar, E.C.; Wickramasinghe, S.; Bas-Concepcion, J.; Samia, A.C.S. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog. Nat. Sci. Mater. Int. 2016, 26, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Deatsch, A.E.; Evans, B.A. Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 2014, 354, 163–172. [Google Scholar] [CrossRef]
- Tong, S.; Quinto, C.A.; Zhang, L.; Mohindra, P.; Bao, G. Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles. ACS Nano 2017, 11, 6808–6816. [Google Scholar] [CrossRef]
- Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro Oncol. 2011, 103, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Andreu, I.; Natividad, E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int. J. Hyperth. 2013, 29, 739–751. [Google Scholar] [CrossRef] [Green Version]
- Lemal, P.; Geers, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Measuring the heating power of magnetic nanoparticles: An overview of currently used methods. Mater. Today Proc. 2017, 4, 107–117. [Google Scholar] [CrossRef]
- Monnier, C.A.; Lattuada, M.; Burnand, D.; Crippa, F.; Martinez-Garcia, J.C.; Hirt, A.M.; Rothen-Rutishauser, B.; Bonmarin, M.; Petri-Fink, A. A lock-in-based method to examine the thermal signatures of magnetic nanoparticles in the liquid, solid and aggregated states. Nanoscale 2016, 8, 13321–13332. [Google Scholar] [CrossRef] [Green Version]
- Monnier, C.A.; Crippa, F.; Geers, C.; Knapp, E.; Rothen-Rutishauser, B.; Bonmarin, M.; Lattuada, M.; Petri-Fink, A. Lock-In Thermography as an Analytical Tool for Magnetic Nanoparticles: Measuring Heating Power and Magnetic Fields. J. Phys. Chem. C 2017, 121, 27164–27175. [Google Scholar] [CrossRef] [Green Version]
- Lemal, P.; Geers, C.; Monnier, C.A.; Crippa, F.; Daum, L.; Urban, D.A.; Rothen-Rutishauser, B.; Bonmarin, M.; Petri-Fink, A.; Moore, T.L. Lock-in thermography as a rapid and reproducible thermal characterization method for magnetic nanoparticles. J. Magn. Magn. Mater. 2017, 427, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Breitenstein, O.; Warta, W.; Schubert, M.C. Lock-in Thermography, 3rd ed.; Springer Series in Advanced Microelectronics; Springer International Publishing: Cham, Switzerland, 2018; Volume 10, pp. 1–339. [Google Scholar] [CrossRef]
- Steinmetz, L.; Taladriz-Blanco, P.; Geers, C.; Spuch-Calvar, M.; Bonmarin, M.; Balog, S.; Rothen-Rutishauser, B.; Petri-Fink, A. Lock-In Thermography to Analyze Plasmonic Nanoparticle Dispersions. Part. Part. Syst. Charact. 2019, 36, 1900224. [Google Scholar] [CrossRef] [Green Version]
- Lemal, P.; Balog, S.; Ackermann-Hirschi, L.; Taladriz-Blanco, P.; Hirt, A.M.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Simple and fast evaluation of relaxation parameters of magnetic nanoparticles. J. Magn. Magn. Mater. 2020, 499, 166176. [Google Scholar] [CrossRef] [Green Version]
- Govorov, A.O.; Richardson, H.H. Generating heat with metal nanoparticles We describe recent studies on photothermal effects using colloidal. Nano Today 2007, 2, 30–38. [Google Scholar] [CrossRef]
- Hauser, D.; Estermann, M.; Milosevic, A.; Steinmetz, L.; Vanhecke, D.; Septiadi, D.; Drasler, B.; Petri-Fink, A.; Ball, V.; Rothen-Rutishauser, B. Polydopamine/Transferrin Hybrid Nanoparticles for Targeted Cell-Killing. Nanomaterials 2018, 8, 1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almasri, M.; Butler, D.P.; Çelik-Butler, Z. Self-supporting uncooled infrared microbolometers with low-thermal mass. J. Microelectromech. Syst. 2001, 10, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Pickering, S.G.; Almond, D.P. An evaluation of the performance of an uncooled microbolometer array infrared camera for transient thermography NDE. Nondestruct. Test. Eval. 2007, 22, 63–70. [Google Scholar] [CrossRef]
- Xenics. Xenics Onca Enables Accurate and Affordable Thermal Analysis; Technical Report March; Xenics: Leuven, Belgium, 2010. [Google Scholar]
- Optris. The Adequate Measurement Device; Technical Report; Optris: Berlin, Germany, 2019. [Google Scholar]
- Huang, S.; Wang, S.Y.; Gupta, A.; Borca-Tasciuc, D.A.; Salon, S.J. On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field. Meas. Sci. Technol. 2012, 23, 035701. [Google Scholar] [CrossRef]
- Verlag, S. VDI Heat Atlas; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Gonzales-Weimuller, M.; Zeisberger, M.; Krishnan, K.M. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 2009, 321, 1947–1950. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Fernandez, M.A.; Torres, T.E.; Andrés-Vergés, M.; Costo, R.; de la Presa, P.; Serna, C.J.; Morales, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G.F. Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties. J. Solid State Chem. 2009, 182, 2779–2784. [Google Scholar] [CrossRef]
Method | ||||
---|---|---|---|---|
Parameter | LIT | ST | FOC | TC |
Sensitivity | high | low | high | high |
Invasive | no | no | yes | yes |
Sample system | solid & liquid | solid & liquid | liquid | liquid |
Field of view | large | large | narrow | narrow |
d [mm] | l [mm] | [Hz] | h [W/(m2 · K)] | [W/m3] |
---|---|---|---|---|
1 | 0.5 | 0.1 | 0.1 | 104 |
2 | 1 | 0.2 | 1 | 2.575 × 105 |
3 | 2 | 1 | 5 | 5.05 × 105 |
4 | 3 | 2 | 10 | 7.525 × 105 |
8 | 4 | 4 | 50 | 106 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinmetz, L.; Kirsch, C.; Geers, C.; Petri-Fink, A.; Bonmarin, M. Investigating a Lock-In Thermal Imaging Setup for the Detection and Characterization of Magnetic Nanoparticles. Nanomaterials 2020, 10, 1665. https://doi.org/10.3390/nano10091665
Steinmetz L, Kirsch C, Geers C, Petri-Fink A, Bonmarin M. Investigating a Lock-In Thermal Imaging Setup for the Detection and Characterization of Magnetic Nanoparticles. Nanomaterials. 2020; 10(9):1665. https://doi.org/10.3390/nano10091665
Chicago/Turabian StyleSteinmetz, Lukas, Christoph Kirsch, Christoph Geers, Alke Petri-Fink, and Mathias Bonmarin. 2020. "Investigating a Lock-In Thermal Imaging Setup for the Detection and Characterization of Magnetic Nanoparticles" Nanomaterials 10, no. 9: 1665. https://doi.org/10.3390/nano10091665
APA StyleSteinmetz, L., Kirsch, C., Geers, C., Petri-Fink, A., & Bonmarin, M. (2020). Investigating a Lock-In Thermal Imaging Setup for the Detection and Characterization of Magnetic Nanoparticles. Nanomaterials, 10(9), 1665. https://doi.org/10.3390/nano10091665