Effect of Fiber Posts on Stress Distribution of Endodontically Treated Upper Premolars: Finite Element Analysis
Abstract
:1. Introduction
2. Materials and Methods
- Group 2:
- MOD nanohybrid resin composite restoration;
- Group 3:
- One fiber post in the palatal root canal and MOD nanohybrid resin composite restoration;
- Group 4:
- One fiber post in the buccal root canal and MOD nanohybrid resin composite restoration;
- Group 5:
- Two fiber posts and MOD nanohybrid resin composite restoration.
- -
- on the whole outer model (i.e., tooth) surface;
- -
- along the mid buccal–palatal plane, following the tooth long axis;
- -
- on a cervical horizontal plane, placed at the level of the alveolar ridge;
- -
- on a horizontal plane placed at the level of the root furcation;
- -
- on a cervical horizontal plane (alveolar ridge), taking into account just dental structures;
- -
- on a horizontal plane at the root-furcation level, taking into account just dental structures.
3. Results
4. Discussion
5. Conclusions
- When endodontically treated upper premolars with MOD nanohybrid resin composite restorations were subjected to subcritical occlusal loads, the maximum Von Mises stresses seemed concentrated at the occlusal interfaces between the tooth and composite, which indicates those areas to be critical for fractures originating from the coronal portion of the tooth.
- The use of adhesive fiber posts was neither able to reduce the maximum Von Mises stresses recorded on the occlusal surface, nor to optimize the stress distribution in the same areas.
- Concerning the root dentin, on the other hand, when fiber posts were placed, the Von Mises maps revealed a more favorable stress distribution, which could play a positive role in preventing root fractures.
- When fiber posts were present, both on cervical and on root-furcation horizontal sections, the highest levels of stress seemed to be concentrated within the fiber posts and away from the radicular dentin.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Eliyas, S.; Jalili, J.; Martin, N. Restoration of the root canal treated tooth. Br. Dent. J. 2015, 218, 53–62. [Google Scholar] [CrossRef] [PubMed]
- D’Arcangelo, C.; Cinelli, M.; De Angelis, F.; D’Amario, M. The effect of resin cement film thickness on the pullout strength of a fiber-reinforced post system. J. Prosthet. Dent. 2007, 98, 193–198. [Google Scholar] [CrossRef]
- D’Arcangelo, C.; De Angelis, F.; Vadini, M.; D’Amario, M.; Caputi, S. Fracture resistance and deflection of pulpless anterior teeth restored with composite or porcelain veneers. J. Endod. 2010, 36, 153–156. [Google Scholar] [CrossRef] [PubMed]
- D’Arcangelo, C.; De Angelis, F.; Vadini, M.; Zazzeroni, S.; Ciampoli, C.; D’Amario, M. In vitro fracture resistance and deflection of pulpless teeth restored with fiber posts and prepared for veneers. J. Endod. 2008, 34, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Acquaviva, P.A.; Madini, L.; Krokidis, A.; Gagliani, M.; Mangani, F.; Cerutti, A. Adhesive restoration of endodontically treated premolars: Influence of posts on cuspal deflection. J. Adhes. Dent. 2011, 13, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, E.; Alarami, N.; Wong, Y.I.; Lee, W.H.; Al-Haddad, A. The effect of fiber post location on fracture resistance of endodontically treated maxillary premolars. Dent. Med. Probl. 2018, 55, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Barcellos, R.R.; Correia, D.P.; Farina, A.P.; Mesquita, M.F.; Ferraz, C.C.; Cecchin, D. Fracture resistance of endodontically treated teeth restored with intra-radicular post: The effects of post system and dentine thickness. J. Biomech. 2013, 46, 2572–2577. [Google Scholar] [CrossRef]
- Zhu, Z.; Dong, X.Y.; He, S.; Pan, X.; Tang, L. Effect of Post Placement on the Restoration of Endodontically Treated Teeth: A Systematic Review. Int. J. Prosthodont. 2015, 28, 475–483. [Google Scholar] [CrossRef] [Green Version]
- Maroulakos, G.; Nagy, W.W.; Kontogiorgos, E.D. Fracture resistance of compromised endodontically treated teeth restored with bonded post and cores: An in vitro study. J. Prosthet. Dent. 2015, 114, 390–397. [Google Scholar] [CrossRef] [Green Version]
- Sorrentino, R.; Salameh, Z.; Zarone, F.; Tay, F.R.; Ferrari, M. Effect of post-retained composite restoration of MOD preparations on the fracture resistance of endodontically treated teeth. J. Adhes. Dent. 2007, 9, 49–56. [Google Scholar]
- Dietschi, D.; Duc, O.; Krejci, I.; Sadan, A. Biomechanical considerations for the restoration of endodontically treated teeth: A systematic review of the literature, Part II (Evaluation of fatigue behavior, interfaces, and in vivo studies). Quintessence Int. 2008, 39, 117–129. [Google Scholar] [PubMed]
- Maroli, A.; Hoelcher, K.A.L.; Reginato, V.F.; Spazzin, A.O.; Caldas, R.A.; Bacchi, A. Biomechanical behavior of teeth without remaining coronal structure restored with different post designs and materials. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.U.; Anchieta, R.B.; Rocha, E.P.; Kina, S.; Almeida, E.O.; Freitas, A.C., Jr.; Basting, R.T. Influence of crown ferrule heights and dowel material selection on the mechanical behavior of root-filled teeth: A finite element analysis. J. Prosthodont. 2012, 21, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Vadini, M.; De Angelis, F.; D’Amario, M.; Marzo, G.; Baldi, M.; D’Arcangelo, C. Conservative restorations of endodontically compromised anterior teeth in paediatric patients: Physical and mechanical considerations. Eur. J. Paediatr. Dent. 2012, 13, 263–267. [Google Scholar] [PubMed]
- D’Arcangelo, C.; De Angelis, F.; Vadini, M.; D’Amario, M. Clinical evaluation on porcelain laminate veneers bonded with light-cured composite: Results up to 7 years. Clin. Oral. Investig. 2012, 16, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- D’Arcangelo, C.; Zarow, M.; De Angelis, F.; Vadini, M.; Paolantonio, M.; Giannoni, M.; D’Amario, M. Five-year retrospective clinical study of indirect composite restorations luted with a light-cured composite in posterior teeth. Clin. Oral. Investig. 2014, 18, 615–624. [Google Scholar] [CrossRef]
- Mangold, J.T.; Kern, M. Influence of glass-fiber posts on the fracture resistance and failure pattern of endodontically treated premolars with varying substance loss: An in vitro study. J. Prosthet. Dent. 2011, 105, 387–393. [Google Scholar] [CrossRef]
- Drummond, J.L.; Bapna, M.S. Static and cyclic loading of fiber-reinforced dental resin. Dent. Mater. 2003, 19, 226–231. [Google Scholar] [CrossRef]
- Lamichhane, A.; Xu, C.; Zhang, F.Q. Dental fiber-post resin base material: A review. J. Adv. Prosthodont. 2014, 6, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Soares, P.V.; Santos-Filho, P.C.; Martins, L.R.; Soares, C.J. Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part I: Fracture resistance and fracture mode. J. Prosthet. Dent. 2008, 99, 30–37. [Google Scholar] [CrossRef]
- Soares, P.V.; Santos-Filho, P.C.; Gomide, H.A.; Araujo, C.A.; Martins, L.R.; Soares, C.J. Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part II: Strain measurement and stress distribution. J. Prosthet. Dent. 2008, 99, 114–122. [Google Scholar] [CrossRef]
- Scotti, N.; Rota, R.; Scansetti, M.; Paolino, D.S.; Chiandussi, G.; Pasqualini, D.; Berutti, E. Influence of adhesive techniques on fracture resistance of endodontically treated premolars with various residual wall thicknesses. J. Prosthet. Dent. 2013, 110, 376–382. [Google Scholar] [CrossRef] [PubMed]
- D’Arcangelo, C.; Zazzeroni, S.; D’Amario, M.; Vadini, M.; De Angelis, F.; Trubiani, O.; Caputi, S. Bond strengths of three types of fibre-reinforced post systems in various regions of root canals. Int. Endod. J. 2008, 41, 322–328. [Google Scholar] [CrossRef] [PubMed]
- D’Arcangelo, C.; D’Amario, M.; De Angelis, F.; Zazzeroni, S.; Vadini, M.; Caputi, S. Effect of application technique of luting agent on the retention of three types of fiber-reinforced post systems. J. Endod. 2007, 33, 1378–1382. [Google Scholar] [CrossRef]
- D’Arcangelo, C.; D’Amario, M.; Vadini, M.; Zazzeroni, S.; De Angelis, F.; Caputi, S. An evaluation of luting agent application technique effect on fibre post retention. J. Dent. 2008, 36, 235–240. [Google Scholar] [CrossRef]
- D’Arcangelo, C.; D’Amario, M.; Vadini, M.; De Angelis, F.; Caputi, S. Influence of surface treatments on the flexural properties of fiber posts. J. Endod. 2007, 33, 864–867. [Google Scholar] [CrossRef]
- Marigo, L.; Angelis, D.E.; Cordaro, M.; Vadini, M.; Lajolo, C. Evaluation of in vitro push-out bond strengths of different post-luting systems after artificial aging. Minerva Stomatol. 2017, 66, 20–27. [Google Scholar] [CrossRef]
- Maravic, T.; Vasiljevic, D.; Kantardzic, I.; Lainovic, T.; Luzanin, O.; Blazic, L. Influence of restorative procedures on endodontically treated premolars: Finite element analysis of a CT-scan based three-dimensional model. Dent. Mater. J. 2018, 37, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Assif, D.; Nissan, J.; Gafni, Y.; Gordon, M. Assessment of the resistance to fracture of endodontically treated molars restored with amalgam. J. Prosthet. Dent. 2003, 89, 462–465. [Google Scholar] [CrossRef]
- Navimipour, E.J.; Firouzmandi, M.; Mirhashemi, F.S. Finite Element Analysis of the Endodontically-treated Maxillary Premolars restored with Composite Resin along with Glass Fiber Insertion in Various Positions. J. Contemp. Dent. Pr. 2015, 16, 284–290. [Google Scholar] [CrossRef]
- Karteva, E.G.; Manchorova, N.A.; Vladimirov, S.B.; Keskinova, D.A. Clinical Assessment of Endodontically Treated Teeth, Restored with or without Radicular Posts. Folia Med. 2018, 60, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Frater, M.; Forster, A.; Jantyik, A.; Braunitzer, G.; Nagy, K.; Grandini, S. In vitro fracture resistance of premolar teeth restored with fibre-reinforced composite posts using a single or a multi-post technique. Aust. Endod. J. 2017, 43, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, M.A.; Lazari, P.C.; Gresnigt, M.; Del Bel Cury, A.A.; Magne, P. Current options concerning the endodontically-treated teeth restoration with the adhesive approach. Braz. Oral. Res. 2018, 32, e74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasimick, B.J.; Wan, J.; Musikant, B.L.; Deutsch, A.S. A review of failure modes in teeth restored with adhesively luted endodontic dowels. J. Prosthodont. 2010, 19, 639–646. [Google Scholar] [CrossRef]
- Abou Neel, E.A.; Bozec, L.; Perez, R.A.; Kim, H.W.; Knowles, J.C. Nanotechnology in dentistry: Prevention, diagnosis, and therapy. Int. J. Nanomed. 2015, 10, 6371–6394. [Google Scholar] [CrossRef] [Green Version]
- Pokrowiecki, R.; Palka, K.; Mielczarek, A. Nanomaterials in dentistry: A cornerstone or a black box? Nanomedicine 2018, 13, 639–667. [Google Scholar] [CrossRef]
- Abiodun-Solanke, I.; Ajayi, D.; Arigbede, A. Nanotechnology and its application in dentistry. Ann. Med. Health Sci. Res. 2014, 4, S171–S177. [Google Scholar] [CrossRef] [Green Version]
- Turssi, C.P.; De Moraes Purquerio, B.; Serra, M.C. Wear of dental resin composites: Insights into underlying processes and assessment methods--a review. J. Biomed. Mater. Res. B Appl. Biomater. 2003, 65, 280–285. [Google Scholar] [CrossRef]
- Turssi, C.P.; Ferracane, J.L.; Vogel, K. Filler features and their effects on wear and degree of conversion of particulate dental resin composites. Biomaterials 2005, 26, 4932–4937. [Google Scholar] [CrossRef]
- Cao, L.; Zhao, X.; Gong, X.; Zhao, S. An in vitro investigation of wear resistance and hardness of composite resins. Int. J. Clin. Exp. Med. 2013, 6, 423–430. [Google Scholar]
- Alzraikat, H.; Burrow, M.F.; Maghaireh, G.A.; Taha, N.A. Nanofilled Resin Composite Properties and Clinical Performance: A Review. Oper. Dent. 2018, 43, E173–E190. [Google Scholar] [CrossRef] [PubMed]
- Palaniappan, S.; Bharadwaj, D.; Mattar, D.L.; Peumans, M.; Van Meerbeek, B.; Lambrechts, P. Three-year randomized clinical trial to evaluate the clinical performance and wear of a nanocomposite versus a hybrid composite. Dent. Mater. 2009, 25, 1302–1314. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Lee, Y.K.; Oguri, M.; Powers, J.M. Properties of a dental resin composite with a spherical inorganic filler. Oper. Dent. 2006, 31, 734–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, S.B.; Wu, D.; Holmes, B.N. An application of nanotechnology in advanced dental materials. J. Am. Dent. Assoc. 2003, 134, 1382–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontes, L.F.; Alves, E.B.; Alves, B.P.; Ballester, R.Y.; Dias, C.G.; Silva, C.M. Mechanical properties of nanofilled and microhybrid composites cured by different light polymerization modes. Gen. Dent. 2013, 61, 30–33. [Google Scholar] [PubMed]
- McCabe, J.F.; Wang, Y.; Braem, M. Surface contact fatigue and flexural fatigue of dental restorative materials. J. Biomed. Mater. Res. 2000, 50, 375–380. [Google Scholar] [CrossRef]
- Akaliotan, T.T.; Bozkurt, F.O.; Tuncer, A.K.; Bag, H.G.; Ozcan, M. Clinical Performance of Nanofilled and Microhybrid Direct Composite Restorations on Endodontically Treated Teeth. Eur. J. Prosthodont. Restor. Dent. 2019, 27, 39–47. [Google Scholar] [CrossRef]
- Lovdahl, P.E.; Nicholls, J.I. Pin-retained amalgam cores vs. cast-gold dowel-cores. J. Prosthet. Dent. 1977, 38, 507–514. [Google Scholar] [CrossRef]
- Trabert, K.C.; Caput, A.A.; Abou-Rass, M. Tooth fracture--a comparison of endodontic and restorative treatments. J. Endod. 1978, 4, 341–345. [Google Scholar] [CrossRef]
- Al-Omiri, M.K.; Rayyan, M.R.; Abu-Hammad, O. Stress analysis of endodontically treated teeth restored with post-retained crowns: A finite element analysis study. J. Am. Dent. Assoc. 2011, 142, 289–300. [Google Scholar] [CrossRef]
- Fei, X.; Wang, Z.; Zhong, W.; Li, Y.; Miao, Y.; Zhang, L.; Jiang, Y. Fracture resistance and stress distribution of repairing endodontically treated maxillary first premolars with severe non-carious cervical lesions. Dent. Mater. J. 2018, 37, 789–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, M.; Cagidiaco, M.C.; Goracci, C.; Vichi, A.; Mason, P.N.; Radovic, I.; Tay, F. Long-term retrospective study of the clinical performance of fiber posts. Am. J. Dent. 2007, 20, 287–291. [Google Scholar] [PubMed]
- Fokkinga, W.A.; Le Bell, A.M.; Kreulen, C.M.; Lassila, L.V.; Vallittu, P.K.; Creugers, N.H. Ex vivo fracture resistance of direct resin composite complete crowns with and without posts on maxillary premolars. Int. Endod. J. 2005, 38, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Heydecke, G.; Butz, F.; Strub, J.R. Fracture strength and survival rate of endodontically treated maxillary incisors with approximal cavities after restoration with different post and core systems: An in-vitro study. J. Dent. 2001, 29, 427–433. [Google Scholar] [CrossRef]
- Zarow, M.; Ramirez-Sebastia, A.; Paolone, G.; de Ribot Porta, J.; Mora, J.; Espona, J.; Duran-Sindreu, F.; Roig, M. A new classification system for the restoration of root filled teeth. Int. Endod. J. 2018, 51, 318–334. [Google Scholar] [CrossRef] [Green Version]
- Kantardzic, I.; Vasiljevic, D.; Luzanin, O.; Maravic, T.; Blazic, L. Influence of the restorative procedure factors on stress values in premolar with MOD cavity: A finite element study. Med. Biol. Eng. Comput. 2018, 56, 1875–1886. [Google Scholar] [CrossRef]
- Santos, A.F.; Tanaka, C.B.; Lima, R.G.; Esposito, C.O.; Ballester, R.Y.; Braga, R.R.; Meira, J.B. Vertical root fracture in upper premolars with endodontic posts: Finite element analysis. J. Endod. 2009, 35, 117–120. [Google Scholar] [CrossRef]
- Ling, Z.; Liyuan, Y.; Cuiling, L.; Xu, G. Three-dimensional finite element analyses of the deep wedge-shaped defective premolars restored with different methods. Hua Xi Kou Qiang Yi Xue Za Zhi 2017, 35, 77–81. [Google Scholar] [CrossRef]
- Milewski, G.; Hille, A. Experimental strength analysis of orthodontic extrusion of human anterior teeth. Acta Bioeng. Biomech. 2012, 14, 15–21. [Google Scholar]
- Asmussen, E.; Peutzfeldt, A.; Sahafi, A. Finite element analysis of stresses in endodontically treated, dowel-restored teeth. J. Prosthet. Dent. 2005, 94, 321–329. [Google Scholar] [CrossRef]
- Pegoretti, A.; Fambri, L.; Zappini, G.; Bianchetti, M. Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials 2002, 23, 2667–2682. [Google Scholar] [CrossRef]
- Ho, M.H.; Lee, S.Y.; Chen, H.H.; Lee, M.C. Three-dimensional finite element analysis of the effects of posts on stress distribution in dentin. J. Prosthet Dent. 1994, 72, 367–372. [Google Scholar] [CrossRef]
- Craig, R.G.; Peyton, F.A. Elastic and mechanical properties of human dentin. J. Dent. Res. 1958, 37, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, D.C.; Schiffers, N.; Pandorf, T.; Radermacher, K.; Weichert, D.; Forst, R. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J. Biomech. 2000, 33, 1325–1330. [Google Scholar] [CrossRef]
- Milewski, G. Numerical and experimental analysis of effort of human tooth hard tissues in terms of proper occlusal loadings. Acta Bioeng. Biomech. 2005, 7, 47–59. [Google Scholar]
- Kerekes, K.; Tronstad, L. Long-term results of endodontic treatment performed with a standardized technique. J. Endod. 1979, 5, 83–90. [Google Scholar] [CrossRef]
- Lanza, A.; Aversa, R.; Rengo, S.; Apicella, D.; Apicella, A. 3D FEA of cemented steel, glass and carbon posts in a maxillary incisor. Dent. Mater. 2005, 21, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Abramovitz, L.; Lev, R.; Fuss, Z.; Metzger, Z. The unpredictability of seal after post space preparation: A fluid transport study. J. Endod. 2001, 27, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Gokturk, H.; Karaarslan, E.S.; Tekin, E.; Hologlu, B.; Sarikaya, I. The effect of the different restorations on fracture resistance of root-filled premolars. BMC Oral. Health 2018, 18, 196. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, R.S.; Robbins, J.W. Post placement and restoration of endodontically treated teeth: A literature review. J. Endod. 2004, 30, 289–301. [Google Scholar] [CrossRef]
- Edelhoff, D.; Sorensen, J.A. Tooth structure removal associated with various preparation designs for posterior teeth. Int. J. Periodontics Restor. Dent. 2002, 22, 241–249. [Google Scholar]
- Fennis, W.M.; Kuijs, R.H.; Kreulen, C.M.; Roeters, F.J.; Creugers, N.H.; Burgersdijk, R.C. A survey of cusp fractures in a population of general dental practices. Int. J. Prosthodont. 2002, 15, 559–563. [Google Scholar] [PubMed]
- Genovese, K.; Lamberti, L.; Pappalettere, C. Finite element analysis of a new customized composite post system for endodontically treated teeth. J. Biomech. 2005, 38, 2375–2389. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, N.; Kahnamoii, M.A.; Yeganeh, P.K.; Navimipour, E.J. Effect of fiber post and cusp coverage on fracture resistance of endodontically treated maxillary premolars directly restored with composite resin. J. Endod. 2009, 35, 1428–1432. [Google Scholar] [CrossRef] [PubMed]
- Emamieh, S.; Hojati, P.; Ghasemi, A.; Torabzadeh, H. Effect of cusp coverage and water storage on compressive strength of composite restorations of premolars. J. Clin. Exp. Dent. 2018, 10, e341–e345. [Google Scholar] [CrossRef]
- Mondelli, R.F.; Ishikiriama, S.K.; de Oliveira Filho, O.; Mondelli, J. Fracture resistance of weakened teeth restored with condensable resin with and without cusp coverage. J. Appl. Oral. Sci. 2009, 17, 161–165. [Google Scholar] [CrossRef]
- Mangal, S.; Mathew, S.; Sreenivasa Murthy, B.V.; Nagaraja, S.; Dinesh, K.; Ramesh, P. Cone-beam computed tomographic evaluation of remaining dentin thickness in bifurcated roots of maxillary first premolars after rotary instrumentation and post space preparation: An in vitro study. J. Conserv. Dent. 2018, 21, 63–67. [Google Scholar] [CrossRef]
- Chatvanitkul, C.; Lertchirakarn, V. Stress distribution with different restorations in teeth with curved roots: A finite element analysis study. J. Endod. 2010, 36, 115–118. [Google Scholar] [CrossRef]
- Chladek, W.; Lipski, T.; Karasiński, A. Experimental evaluation of occlusal forces. Acta Bioeng. Biomech. 2001, 3, 25–37. [Google Scholar]
- Lin, C.L.; Chang, Y.H.; Lin, Y.F. Combining structural-thermal coupled field FE analysis and the Taguchi method to evaluate the relative contributions of multi-factors in a premolar adhesive MOD restoration. J. Dent. 2008, 36, 626–636. [Google Scholar] [CrossRef]
- Fennis, W.M.; Kuijs, R.H.; Barink, M.; Kreulen, C.M.; Verdonschot, N.; Creugers, N.H. Can internal stresses explain the fracture resistance of cusp-replacing composite restorations? Eur. J. Oral. Sci. 2005, 113, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Rilo, B.; Fernandez, J.; Da Silva, L.; Martinez Insua, A.; Santana, U. Frontal-plane lateral border movements and chewing cycle characteristics. J. Oral. Rehabil. 2001, 28, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Y.; Xu, J.; Rong, Q.; Pan, S. Influence of occlusal contact and cusp inclination on the biomechanical character of a maxillary premolar: A finite element analysis. J. Prosthet. Dent. 2014, 112, 1238–1245. [Google Scholar] [CrossRef] [PubMed]
- Arola, D.; Galles, L.A.; Sarubin, M.F. A comparison of the mechanical behavior of posterior teeth with amalgam and composite MOD restorations. J. Dent. 2001, 29, 63–73. [Google Scholar] [CrossRef]
- Ausiello, P.; Apicella, A.; Davidson, C.L.; Rengo, S. 3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites. J. Biomech. 2001, 34, 1269–1277. [Google Scholar] [CrossRef]
- Lin, C.L.; Chang, C.H.; Ko, C.C. Multifactorial analysis of an MOD restored human premolar using auto-mesh finite element approach. J. Oral. Rehabil. 2001, 28, 576–585. [Google Scholar] [CrossRef]
Material | Modulus of Elasticity (MPa) | Poisson Ratio |
---|---|---|
Enamel | 84,100 | 0.33 |
Dentin | 18,600 | 0.31 |
Gingiva | 19.6 | 0.30 |
Periodontal ligament | 67 | 0.47 |
Bone | 14,000 | 0.30 |
Gutta-percha | 69 | 0.45 |
Pulp | 2 | 0.45 |
Enamel Plus BioFunction (nanocomposite resin) | 14,000 | 0.30 |
Filtek Z350 XT (nanocomposite resin) | 12,770 | 0.31 |
Grandio (nanocomposite resin) | 19,780 | 0.31 |
Modulus of Elasticity (MPa) | Shear Modulus (MPa) | Poisson’s Ratio | ||||||
---|---|---|---|---|---|---|---|---|
Ex | Ey | Ez | Gxy | Gxz | Gyz | υxy | υxz | υyz |
9500 | 37,000 | 9500 | 3100 | 3100 | 3500 | 0.27 | 0.27 | 0.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarow, M.; Vadini, M.; Chojnacka-Brozek, A.; Szczeklik, K.; Milewski, G.; Biferi, V.; D’Arcangelo, C.; De Angelis, F. Effect of Fiber Posts on Stress Distribution of Endodontically Treated Upper Premolars: Finite Element Analysis. Nanomaterials 2020, 10, 1708. https://doi.org/10.3390/nano10091708
Zarow M, Vadini M, Chojnacka-Brozek A, Szczeklik K, Milewski G, Biferi V, D’Arcangelo C, De Angelis F. Effect of Fiber Posts on Stress Distribution of Endodontically Treated Upper Premolars: Finite Element Analysis. Nanomaterials. 2020; 10(9):1708. https://doi.org/10.3390/nano10091708
Chicago/Turabian StyleZarow, Maciej, Mirco Vadini, Agnieszka Chojnacka-Brozek, Katarzyna Szczeklik, Grzegorz Milewski, Virginia Biferi, Camillo D’Arcangelo, and Francesco De Angelis. 2020. "Effect of Fiber Posts on Stress Distribution of Endodontically Treated Upper Premolars: Finite Element Analysis" Nanomaterials 10, no. 9: 1708. https://doi.org/10.3390/nano10091708
APA StyleZarow, M., Vadini, M., Chojnacka-Brozek, A., Szczeklik, K., Milewski, G., Biferi, V., D’Arcangelo, C., & De Angelis, F. (2020). Effect of Fiber Posts on Stress Distribution of Endodontically Treated Upper Premolars: Finite Element Analysis. Nanomaterials, 10(9), 1708. https://doi.org/10.3390/nano10091708