Emulation of Biological Synapse Characteristics from Cu/AlN/TiN Conductive Bridge Random Access Memory
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kuzum, D.; Yu, S.; Wong, H.-S.P. Synaptic electronics: Materials, devices and applications. Nanotechnol. 2013, 24, 382001. [Google Scholar] [CrossRef] [PubMed]
- Ielmini, D.; Wong, H.-S.P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343. [Google Scholar] [CrossRef]
- Emelyanov, A.V.; E Nikiruy, K.; Serenko, A.V.; Sitnikov, A.V.; Presnyakov, M.Y.; Rybka, R.B.; Sboev, A.G.; Rylkov, V.V.; Kashkarov, P.K.; Kovalchuk, M.V.; et al. Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights. Nanotechnology 2019, 31, 045201. [Google Scholar] [CrossRef]
- Mikhaylov, A.; Pimashkin, A.; Pigareva, Y.; Gerasimova, S.; Gryaznov, E.; Shchanikov, S.; Zuev, A.; Talanov, M.; Lavrov, I.; Demin, V.; et al. Neurohybrid Memristive CMOS-Integrated Systems for Biosensors and Neuroprosthetics. Front. Mol. Neurosci. 2020, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Tominov, R.; Vakulov, Z.E.; Avilov, V.I.; Khakhulin, D.; Fedotov, A.A.; Zamburg, E.; Smirnov, V.; Ageev, O. Synthesis and Memristor Effect of a Forming-Free ZnO Nanocrystalline Films. Nanomaterials 2020, 10, 1007. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Choi, S.; Lu, W.D. Oxide Heterostructure Resistive Memory. Nano Lett. 2013, 13, 2908–2915. [Google Scholar] [CrossRef]
- Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W.D. Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Lett. 2010, 10, 1297–1301. [Google Scholar] [CrossRef]
- Romero, F.J.; Toral-Lopez, A.; Ohata, A.; Morales, D.P.; Ruiz, F.G.; Godoy, A.; Rodriguez, N.; Toral-Lopez, A. Ruiz Laser-Fabricated Reduced Graphene Oxide Memristors. Nanomaterials 2019, 9, 897. [Google Scholar] [CrossRef] [Green Version]
- Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges. Adv. Mater. 2009, 21, 2632–2663. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.Z.; Yang, L.; Zhao, C. Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application. Nanomaterials 2020, 10, 1437. [Google Scholar] [CrossRef]
- Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R Rep. 2014, 83, 1–59. [Google Scholar] [CrossRef]
- Lanza, M.; Wong, H.-S.P.; Pop, E.; Ielmini, D.; Strukov, D.; Regan, B.C.; Larcher, L.; Villena, M.A.; Yang, J.J.; Goux, L.; et al. Recommended Methods to Study Resistive Switching Devices. Adv. Electron. Mater. 2018, 5, 1800143. [Google Scholar] [CrossRef] [Green Version]
- Bricalli, A.; Ambrosi, E.; Laudato, M.; Maestro, M.; Rodriguez, R.; Ielmini, D. Resistive Switching Device Technology Based on Silicon Oxide for Improved ON–OFF Ratio—Part II: Select Devices. IEEE Trans. Electron Devices 2017, 65, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Joshi, S.; Savel’Ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z.; et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2016, 16, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.H.; Hu, Q.; Park, M.R.; Abbas, Y.; Kang, C.J.; Kim, J.; Yoon, T.-S. Resistive switching characteristics of TiO2 thin films with different electrodes. J. Korean Phys. Soc. 2015, 67, 936–940. [Google Scholar] [CrossRef]
- Meng, X.; Quenneville, F.; Venne, F.; Mauro, E.D.; Isik, D.; Barbosa, M.; Drolet, M.; Natile, M.M.; Rochefort, D. Electrolyte-Gated WO3 Transistors: Electrochmistry, Structure, and Device Performance. J. Phys. Chem C 2015, 119, 21732–21738. [Google Scholar] [CrossRef]
- Kumar, D.; Aluguri, R.; Chand, U.; Tseng, T.Y. Enhancement of resistive switching properties in nitride based CBRAM device by inserting an Al2O3 thin layer. Appl. Phys. Lett. 2017, 110, 203102. [Google Scholar] [CrossRef]
- Cao, R.; Liu, S.; Liu, Q.; Zhao, X.; Wang, W.; Zhang, X.; Wu, F.; Wu, Q.; Wang, Y.; Lv, H.; et al. Improvement of Device Reliability by Introducing a BEOL-Compatible TiN Barrier Layer in CBRAM. IEEE Electron Device Lett. 2017, 38, 1. [Google Scholar] [CrossRef]
- Oku, T.; Kawakami, E.; Uekubo, M.; Takahiro, K.; Yamaguchi, S.; Murakami, M. Diffusion barrier property of TaN between Si and Cu. Appl. Surf. Sci. 1996, 99, 265–272. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Kwon, O.-K.; Min, J.-S.; Kang, S.-W. Plasma-Enhanced Atomic Layer Deposition of Ru–TiN Thin Films for Copper Diffusion Barrier Metals. J. Electrochem. Soc. 2006, 153, G578–G581. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Y.C.; Zeng, F.; Pan, F. Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device. Appl. Phys. Lett. 2010, 97, 083502. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Hwang, S.; Kim, M.-H.; Chang, Y.-F.; Park, B.-G. Analog Synaptic Behavior of a Silicon Nitride Memristor. ACS Appl. Mater. Interfaces 2017, 9, 40420–40427. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-D.; An, H.-M.; Kim, T.G. Ultrafast Resistive-Switching Phenomena Observed in NiN-Based ReRAM Cells. IEEE Trans. Electron Devices 2012, 59, 2302–2307. [Google Scholar] [CrossRef]
- Kim, H.-D.; An, H.-M.; Lee, E.B.; Kim, T.G. Stable Bipolar Resistive Switching Characteristics and Resistive Switching Mechanisms Observed in Aluminum Nitride-based ReRAM Devices. IEEE Trans. Electron Devices 2011, 58, 3566–3573. [Google Scholar] [CrossRef]
- Kim, S.; Jung, S.; Kim, M.-H.; Chen, Y.-C.; Chang, T.-C.; Ryoo, K.-C.; Cho, S.; Lee, J.-H.; Park, B.-G. Scaling Effect on Silicon Nitride Memristor with Highly Doped Si Substrate. Small 2018, 14. [Google Scholar] [CrossRef]
- Lin, C.-C.; Liou, H.-Y.; Chu, S.-Y.; Huang, C.-Y.; Hong, C.-S. Diverse resistive switching behaviors of AlN thin films with different orientations. CrystEngComm 2018, 20, 6230–6235. [Google Scholar] [CrossRef]
- Tikhov, S.V.; Gorshkov, O.N.; Antonov, I.N.; Tetelbaum, D.I.; Mikhaylov, A.N.; Belov, A.I.; Morozov, A.I.; Karakolis, P.; Dimitrakis, P. Behavioral Features of MIS Memristors with a Si3N4 Nanolayer Fabricated on a Conductive Si Substrate. Semiconductor 2018, 52, 1540–1546. [Google Scholar] [CrossRef]
- Rahmani, M.K.; Kim, M.-H.; Hussain, F.; Abbas, Y.; Ismail, M.; Hong, K.; Mahata, C.; Choi, C.; Park, B.-G.; Kim, S. Memristive and Synaptic Characteristics of Nitride-Based Heterostructures on Si Substrate. Nanomaterials 2020, 10, 994. [Google Scholar] [CrossRef]
- Huang, X.; Iizuka, T.; Jiang, P.; Ohki, Y.; Tanaka, T. Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AlN Composites. J. Phys. Chem. C 2012, 116, 13629–13639. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Luo, Z.; Lv, B.; Ding, Z. Tunable Electronic Properties of Graphene/g-AlN Heterostructure: The Effect of Vacancy and Strain Engineering. Nanomaterials 2019, 9, 1674. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.; Renzelli, M.; Khan, M.I.; Sebastiani, M.; Bemporad, E. Effects of Residual Stress Distribution on Interfacial Adhesion of Magnetron Sputtered AlN and AlN/Al Nanostructured Coatings on a (100) Silicon Substrate. Nanomaterials 2018, 8, 896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ene, V.L.; Dinescu, D.; Djourelov, N.; Zai, I.; Vasile, B.S.; Serban, A.B.; Leca, V.; Andronescu, E. Defect Structure Determination of GaN Films in GaN/AlN/Si Heterostructures by HR-TEM, XRD, and Slow Positrons Experiments. Nanomaterials 2020, 10, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Gao, B.; Fang, Z.; Wang, X.; Tang, Y.; Sohn, J.; Wong, H.-S.P.; Wong, S.S.; Lo, G.-Q. All-Metal-Nitride RRAM Devices. IEEE Electron Device Lett. 2014, 36, 29–31. [Google Scholar] [CrossRef]
- Chen, C.; Gao, S.; Tang, G.; Song, C.; Zeng, F.; Pan, F. Cu-Embedded AlN-Based Non-polar Nonvolatile Resistive Switching Memory. IEEE Electron. Dev. Lett. 2012, 33, 1711–1713. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Yang, H.; Wu, H.; Zhou, J.; Hu, L. Bipolar resistive switching properties of AlN films deposited by plasma-enhanced atomic layer deposition. Appl. Surf. Sci. 2014, 315, 110–115. [Google Scholar] [CrossRef]
- Chen, C.; Gao, S.; Tang, G.; Fu, H.; Wang, G.; Song, C.; Zeng, F.; Pan, F. Effect of Electrode Materials on AlN-Based Bipolar and Complementary Resistive Switching. ACS Appl. Mater. Interfaces 2013, 5, 1793–1799. [Google Scholar] [CrossRef]
- Lim, E.W.; Ismail, R. Conduction mehcanism of Valence Change Resistive Switching Memory: A Survey. Electronics 2015, 4, 586–613. [Google Scholar] [CrossRef]
- Çaldıran, Z.; Şinoforoğlu, M.; Metin, Ö.; Aydoğan, Ş.; Meral, K. Space charge limited current mechanism (SCLC) in the graphene oxide–Fe3O4 nanocomposites/n-Si heterojunctions. J. Alloy. Compd. 2015, 631, 261–265. [Google Scholar] [CrossRef]
- Ogawa, T.; Cho, D.-C.; Kaneko, K.; Mori, T.; Mizutani, T. Numerical analysis of the carrier behavior of organic light-emitting diode: Comparing a hopping conduction model with a SCLC model. Thin Solid Films 2003, 438, 171–176. [Google Scholar] [CrossRef]
- Houng, M.-P.; Wang, Y.H.; Chang, W.J. Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model. J. Appl. Phys. 1999, 86, 1488–1491. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Huang, C.-C.; Wang, J.-C. Nonlinear resistive switching features of rapid-thermal-annealed aluminum nitride dielectrics with modified charge trapping behaviors. Microelectron. Eng. 2019, 216, 111033. [Google Scholar] [CrossRef]
- Santschi, L.A.; Stanton, P.K. A paired-pulse facilitation analysis of long-term synaptic depression at excitatory synapses in rat hippocampal CA1 and CA3 regions. Brain Res. 2003, 962, 78–91. [Google Scholar] [CrossRef]
- Prakash, R.; Kaur, D. Bipolar resistive switching behavior in Cu/AlN/Pt structure for ReRAM application. Vacuum 2017, 143, 102–105. [Google Scholar] [CrossRef]
- Huang, P.H.; Li, C.Y.; Min, K.P.; Lin, C.C.; Chu, S.Y. Investigations of the effects and mechanisms of metal interconnection layer of AlN-based complementary resistvie switches. AIP. Adv. 2020, 10. [Google Scholar]
- Jeon, Y.-R.; Abbas, Y.; Sokolov, A.S.; Kim, S.; Ku, B.; Choi, C. Study of in Situ Silver Migration in Amorphous Boron Nitride CBRAM Device. ACS Appl. Mater. Interfaces 2019, 11, 23329–23336. [Google Scholar] [CrossRef]
Device Structure | Dielectric Deposition Method | Operation Voltage | Operation Current | Endurance Cycle | Retention | Applications |
---|---|---|---|---|---|---|
Cu/AlN/Pt [21] | DC sputtering | Set: ~3 V Reset: ~−2 V | >1 mA | ~1000 | 106 s at RT | Non-volatile memory |
Ag/AlN/Pt [26] | RF magnetron sputtering | Set: ~0.5 V Reset: ~−0.5 V | >100 μA | - | - | Non-volatile memory |
Cu/AlN/Pt [43] | DC reactive magnetron sputtering | Set: ~3 V Reset: ~−2 V | >10 mA | ~10,000 | 104 s at RT | Non-volatile memory |
Pt/AlN/Cu/AlN/Pt [44] | RF magnetron sputtering | ~±3 V | <100 μA | ~50 | 12,000 s at RT | Non-volatile memory |
Pt/AlN/Ag/AlN/Pt [44] | RF magnetron sputtering | ~±2 V | <100 μA | ~500 | 12,000 s at RT | Non-volatile memory |
Ag/a-BN/Pt [45] | RF magnetron sputtering | Set: ~1 V Reset: ~−1 V | <1 mA | ~1000 | 12,000 s at 85 °C | Non-volatile memory |
Cu/AlN/TiN [this work] | DC pulsed sputtering | Set: ~3.5 V Reset: ~−1.5 V | >1 mA | 100 | 10,000 s RT | Non-volatile memory, Selector device, Synaptic device |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, H.; Kim, S. Emulation of Biological Synapse Characteristics from Cu/AlN/TiN Conductive Bridge Random Access Memory. Nanomaterials 2020, 10, 1709. https://doi.org/10.3390/nano10091709
Cho H, Kim S. Emulation of Biological Synapse Characteristics from Cu/AlN/TiN Conductive Bridge Random Access Memory. Nanomaterials. 2020; 10(9):1709. https://doi.org/10.3390/nano10091709
Chicago/Turabian StyleCho, Hyojong, and Sungjun Kim. 2020. "Emulation of Biological Synapse Characteristics from Cu/AlN/TiN Conductive Bridge Random Access Memory" Nanomaterials 10, no. 9: 1709. https://doi.org/10.3390/nano10091709
APA StyleCho, H., & Kim, S. (2020). Emulation of Biological Synapse Characteristics from Cu/AlN/TiN Conductive Bridge Random Access Memory. Nanomaterials, 10(9), 1709. https://doi.org/10.3390/nano10091709