ZnWO4 Nanoparticle Scintillators for High Resolution X-ray Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication and Characterization of ZnWO4 Particles
2.3. Fabrication of ZnWO4 Scintillator
3. Results and Discussion
3.1. Analyses of Nanoparticles Synthesized by Anodization
3.2. Structure of ZnWO4 Scintillator
3.3. Evaluation of X-ray Iimaging Performance in High-resolution X-ray Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Svenonius, O.; Sahlholm, A.; Wiklund, P.; Linnros, J. Performance of an X-ray imaging detector based on a structured scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2009, 607, 138–140. [Google Scholar] [CrossRef]
- Smith, K.; Getzin, M.; Garfield, J.J.; Suvarnapathaki, S.; Camci-Unal, G.; Wang, G.; Gkikas, M. Nanophosphor-based contrast agents for spectral X-ray imaging. Nanomaterials 2019, 9, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.; Han, S.; Liang, L.; Yi, Z. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Lempicki, A.; Brecher, C.; Szupryczynski, P.; Lingertat, H.; Nagarkar, V.V.; Tipnis, S.V.; Miller, S.R. A new lutetia-based ceramic scintillator for X-ray imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2002, 488, 579–590. [Google Scholar] [CrossRef]
- Michail, C.; Valais, I.; Seferis, I.; Kalyvas, N.; David, S.; Fountos, G.; Kandarakis, I. Measurement of the luminescence properties of Gd2O2S: Pr, Ce, F powder scintillators under X-ray radiation. Radiat. Meas. 2014, 70, 59–64. [Google Scholar] [CrossRef]
- Rowlands, J. The physics of computed radiography. Phys. Med. Biol. 2002, 47, R123. [Google Scholar] [CrossRef]
- Michail, C.; David, S.; Liaparinos, P.; Valais, I.; Nikolopoulos, D.; Kalivas, N.; Toutountzis, A.; Cavouras, D.; Kandarakis, I.; Panayiotakis, G. Evaluation of the imaging performance of LSO powder scintillator for use in X-ray mammography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2007, 580, 558–561. [Google Scholar] [CrossRef]
- Adam, J.; Metzger, W.; Koch, M.; Rogin, P.; Coenen, T.; Atchison, J.S.; König, P. Light emission intensities of luminescent Y2O3: Eu and Gd2O3: Eu particles of various sizes. Nanomaterials 2017, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Nagarkar, V.V.; Millera, S.R.; Tipnis, S.V.; Lempicki, A.; Brecher, C.; Lingertat, H. A new large area scintillator screen for X-ray imaging. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004, 213, 250–254. [Google Scholar] [CrossRef]
- Tippkötter, R.; Eickhorst, T.; Taubner, H.; Gredner, B.; Rademaker, G. Detection of soil water in macropores of undisturbed soil using microfocus X-ray tube computerized tomography (μCT). Soil Tillage Res. 2009, 105, 12–20. [Google Scholar] [CrossRef]
- Martin, T.; Koch, A. Recent developments in X-ray imaging with micrometer spatial resolution. J. Synchrotron Radiat. 2006, 13, 180–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.N.; Jeong, H.Y.; Lee, J.H.; Cho, S.O. Development of a high resolution X-ray inspection system using a carbon nanotube based miniature X-ray tube. Rev. Sci. Instrum. 2020, 91, 043703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touš, J.; Blažek, K.; Pína, L.; Sopko, B. High-resolution X-ray imaging CCD camera based on a thin scintillator screen. Radiat. Meas. 2007, 42, 925–928. [Google Scholar] [CrossRef]
- Farman, T.T.; Vandre, R.H.; Pajak, J.C.; Miller, S.R.; Lempicki, A.; Farman, A.G. Effects of scintillator on the modulation transfer function (MTF) of a digital imaging system. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2005, 99, 608–613. [Google Scholar] [CrossRef]
- Trotta, C.; Massari, R.; Palermo, N.; Scopinaro, F.; Soluri, A. New high spatial resolution portable camera in medical imaging. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. SpectrometersDetect. Assoc. Equip. 2007, 577, 604–610. [Google Scholar] [CrossRef]
- Nagarkar, V.V.; Gupta, T.K.; Miller, S.R.; Klugerman, Y.; Squillante, M.R.; Entine, G. Structured CsI (Tl) scintillators for X-ray imaging applications. IEEE Trans. Nucl. Sci. 1998, 45, 492–496. [Google Scholar] [CrossRef] [Green Version]
- Fiserova, L.; Janda, J. Scintillation powders for the detection of neutrons. IEEE Trans. Nucl. Sci. 2018, 65, 2140–2146. [Google Scholar] [CrossRef]
- Liaparinos, P.F. Optical diffusion performance of nanophosphor-based materials for use in medical imaging. J. Biomed. Opt. 2012, 17, 126013. [Google Scholar] [CrossRef]
- Michail, C.; Kalyvas, N.; Valais, I.; Fudos, I.; Fountos, G.; Dimitropoulos, N.; Koulouras, G.; Kandris, D.; Samarakou, M.; Kandarakis, I. Image Quality Assessment of a CMOS/Gd2O2S: Pr, Ce, F X-ray Sensor. J. Sens. 2015, 2015, 874637:1–874637:6. [Google Scholar] [CrossRef] [Green Version]
- Poludniowski, G.G.; Evans, P.M. Optical photon transport in powdered-phosphor scintillators. Part 1. Multiple-scattering and validity of the Boltzmann transport equation. Med. Phys. 2013, 40, 041904. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Johnson, J.; Weber, R.; Nishikawa, R.; Schweizer, S.; Newman, P.; MacFarlane, D. Fluorozirconate-based nanophase glass ceramics for high-resolution medical X-ray imaging. J. Non-Cryst. Solids 2006, 352, 610–614. [Google Scholar] [CrossRef]
- Ohashi, Y.; Yasui, N.; Yokota, Y.; Yoshikawa, A.; Den, T. Submicron-diameter phase-separated scintillator fibers for high-resolution X-ray imaging. Appl. Phys. Lett. 2013, 102, 051907. [Google Scholar] [CrossRef]
- Cha, B.K.; Lee, S.J.; Muralidharan, P.; Kim, J.Y.; Kim, D.K.; Cho, G. Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. SpectrometersDetect. Assoc. Equip. 2011, 633, S294–S296. [Google Scholar]
- Kraus, H.; Mikhailik, V.; Ramachers, Y.; Day, D.; Hutton, K.; Telfer, J. Feasibility study of a ZnWO4 scintillator for exploiting materials signature in cryogenic WIMP dark matter searches. Phys. Lett. B 2005, 610, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Lin, J.; Zhang, L.; Zhu, Y. Photocatalytic activities of a novel ZnWO4 catalyst prepared by a hydrothermal process. Appl. Catal. A Gen. 2006, 306, 58–67. [Google Scholar] [CrossRef]
- Lou, Z.; Hao, J.; Cocivera, M. Luminescence of ZnWO4 and CdWO4 thin films prepared by spray pyrolysis. J. Lumin. 2002, 99, 349–354. [Google Scholar] [CrossRef]
- Wang, K.; Feng, W.; Feng, X.; Li, Y.; Mi, P.; Shi, S. Synthesis and photoluminescence of novel red-emitting ZnWO4: Pr3+, Li+ phosphors. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2016, 154, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Lim, C.S.; Auh, K.H. Synthesis of ZnWO4 nanocrystalline powders, by the polymerized complex method. Mater. Lett. 2003, 57, 1550–1554. [Google Scholar] [CrossRef]
- Wen, F.-S.; Zhao, X.; Huo, H.; Chen, J.-S.; Shu-Lin, E.; Zhang, J.-H. Hydrothermal synthesis and photoluminescent properties of ZnWO4 and Eu3+-doped ZnWO4. Mater. Lett. 2002, 55, 152–157. [Google Scholar] [CrossRef]
- Dkhilalli, F.; Borchani, S.M.; Rasheed, M.; Barille, R.; Guidara, K.; Megdiche, M. Structural, dielectric, and optical properties of the zinc tungstate ZnWO4 compound. J. Mater. Sci. Mater. Electron. 2018, 29, 6297–6307. [Google Scholar] [CrossRef]
- Holl, I.; Lorenz, E.; Mageras, G. A measurement of the light yield of common inorganic scintillators. IEEE Trans. Nucl. Sci. 1988, 35, 105–109. [Google Scholar] [CrossRef]
- Ali, G.; Park, Y.J.; Kim, J.W.; Cho, S.O. A Green, General, and Ultrafast Route for the Synthesis of Diverse Metal Oxide Nanoparticles with Controllable Sizes and Enhanced Catalytic Activity. ACS Appl. Nano Mater. 2018, 1, 6112–6122. [Google Scholar] [CrossRef]
- Yang, Y.; Scholz, R.; Fan, H.J.; Hesse, D.; Gosele, U.; Zacharias, M. Multitwinned spinel nanowires by assembly of nanobricks via oriented attachment: A case study of Zn2TiO4. ACS Nano 2009, 3, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Niederberger, M.; Cölfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, S.J.; Yu, S.H. Recent advances in oriented attachment growth and synthesis of functional materials: Concept, evidence, mechanism, and future. J. Mater. Chem. 2009, 19, 191–207. [Google Scholar] [CrossRef]
- Rossmann, K. Measurement of the modulation transfer function of radiographic systems containing fluorescent screens. Phys. Med. Biol. 1964, 9, 551. [Google Scholar] [CrossRef]
- Gambaccini, M.; Taibi, A.; Del Guerra, A.; Marziani, M.; Tuffanelli, A. MTF evaluation of a phosphor-coated CCD for X-ray imaging. Phys. Med. Biol. 1996, 41, 2799. [Google Scholar] [CrossRef] [Green Version]
- Kalivas, N.; Valais, I.; Salemis, G.; Karagiannis, C.; Konstantinidis, A.; Nikolopoulos, D.; Loudos, G.; Sakelios, N.; Karakatsanis, N.; Nikita, K. Imaging properties of cerium doped Yttrium Aluminum Oxide (YAP: Ce) powder scintillating screens under X-ray excitation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2006, 569, 210–214. [Google Scholar] [CrossRef]
- Yang, P.; Liou, K. An “exact” geometric-optics approach for computing the optical properties of large absorbing particles. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1162–1177. [Google Scholar] [CrossRef]
- Nousiainen, T.; Muinonen, K.; Räisänen, P. Scattering of light by large Saharan dust particles in a modified ray optics approximation. J. Geophys. Res. Atmos. 2003, 108, AAC 12-11–AAC 12-17. [Google Scholar] [CrossRef]
- Ye, Q.-L.; Yoshikawa, H.; Bandow, S.; Awaga, K. Green magnetite (Fe3O4): Unusual optical Mie scattering and magnetic isotropy of submicron-size hollow spheres. Appl. Phys. Lett. 2009, 94, 063114. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Moosmüller, H.; Sorensen, C. Small and large particle limits of single scattering albedo for homogeneous, spherical particles. J. Quant. Spectrosc. Radiat. Transf. 2018, 204, 250–255. [Google Scholar] [CrossRef]
- Melling, A. Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 1997, 8, 1406. [Google Scholar] [CrossRef]
- Chien, M.-H.; Brameshuber, M.; Rossboth, B.K.; Schütz, G.J.; Schmid, S. Single-molecule optical absorption imaging by nanomechanical photothermal sensing. Proc. Nat. Acad. Sci. USA 2018, 115, 11150–11155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.Y.; Lim, H.S.; Lee, J.H.; Heo, J.; Kim, H.N.; Cho, S.O. ZnWO4 Nanoparticle Scintillators for High Resolution X-ray Imaging. Nanomaterials 2020, 10, 1721. https://doi.org/10.3390/nano10091721
Jeong HY, Lim HS, Lee JH, Heo J, Kim HN, Cho SO. ZnWO4 Nanoparticle Scintillators for High Resolution X-ray Imaging. Nanomaterials. 2020; 10(9):1721. https://doi.org/10.3390/nano10091721
Chicago/Turabian StyleJeong, Heon Yong, Hyung San Lim, Ju Hyuk Lee, Jun Heo, Hyun Nam Kim, and Sung Oh Cho. 2020. "ZnWO4 Nanoparticle Scintillators for High Resolution X-ray Imaging" Nanomaterials 10, no. 9: 1721. https://doi.org/10.3390/nano10091721
APA StyleJeong, H. Y., Lim, H. S., Lee, J. H., Heo, J., Kim, H. N., & Cho, S. O. (2020). ZnWO4 Nanoparticle Scintillators for High Resolution X-ray Imaging. Nanomaterials, 10(9), 1721. https://doi.org/10.3390/nano10091721