Green Synthesis of Ni@PEDOT and Ni@PEDOT/Au (Core@Shell) Inverse Opals for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of Colloidal Crystals
2.2. Preparation of Ni Inverse Opals
2.3. Fabrication of Ni@PEDOT and Ni@PEDOT/Au Inverse Opals
2.4. Materials Characterization
2.5. Detection of AA, DA, and UA
3. Results
3.1. Fabrication of Colloidal Crystals and Their Inverse opals
3.2. Materials Characterization of Ni@PEDOT and Ni@PEDOT/Au Inverse Opals
3.3. Electrochemical Detection of AA, DA, and UA
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chew, B.P. Antioxidant vitamins affect food animal immunity and health. J. Nutr. 1995, 125, 1804S–1808S. [Google Scholar] [PubMed]
- Figueroa-Méndez, R.; Rivas-Arancibia, S. Vitamin C in health and disease: Its role in the metabolism of cells and redox state in the brain. Front Physiol. 2015, 6, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faure, H.; Preziosi, P.; Roussel, A.; Bertrais, S.; Galan, P.; Hercberg, S.; Favier, A. Factors influencing blood concentration of retinol, alpha-tocopherol, vitamin C, and beta-carotene in the French participants of the SU.VI.MAX trial. Eur. J. Clin. Nutr. 2006, 60, 706–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Jeon, M.; Paeng, K.J.; Paeng, I.R. Competitive enzyme-linked immunosorbent assay for the determination of catecholamine, dopamine in serum. Anal. Chim. Acta. 2008, 619, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, B.W.; Nemeroff, C.B. The role of dopamine in the pathophysiology of depression. Arch. Gen. Psych. 2007, 64, 327–337. [Google Scholar] [CrossRef]
- Wang, G.J.; Volkow, N.D.; Thanos, P.K.; Fowler, J.S. Similarity between obesity and drug addiction as assessed by neurofunctional imaging. J. Addict. Dis. 2004, 23, 39–53. [Google Scholar] [CrossRef]
- Lee, T.; Seeman, P.; Rajput, A.; Farley, I.J.; Hornykiewicz, O. Receptor basis for dopaminergic supersensitivity in Parkinson’s disease. Nature 1978, 273, 59–61. [Google Scholar] [CrossRef]
- Waring, W.S.; Corvery, A.; Mishra, V.; Shenkin, A.; Webb, D.J.; Maxwell, S.R.J. Uric acid reduces exercise-induced oxidative stress in healthy adults. Clin. Sci. (Lond.) 2003, 105, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Feig, D.I.; Kang, D.; Johnson, R.J.; Haig, A. Uric acid and cardiovascular risk. N. Engl. J. Med. 2008, 359, 1811–1821. [Google Scholar] [CrossRef]
- Siu, Y.P.; Leung, K.T.; Tong, M.K.H.; Kwan, T.H. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am. J. Kidney Dis. 2006, 47, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Rock, K.L.; Kataoka, H.; Lai, J.J. Uric acid as a danger signal in gout and its comorbidities. Nat. Rev. Rheumatol. 2013, 9, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeyalakshmi, S.R.; Kumar, S.S.; Mathiyarasu, J.; Phani, K.L.N.; Yegnaraman, V. Simultaneous determination of ascorbic acid, dopamine and uric acid using PEDOT polymer modified electrodes. Indian J. Chem. Sect. A Inorg. Phys. Theor. Anal. Chem. 2007, 46, 957–961. [Google Scholar]
- Zhang, W.; Yuan, R.; Chai, Y.Q.; Zhang, Y.; Chen, S.H. A simple strategy based on lanthanum-multiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Sens. Actuators B Chem. 2012, 166–167, 601–607. [Google Scholar] [CrossRef]
- Yasmin, S.; Ahmed, M.S.; Park, D.; Jeon, S. Nitrogen-doped graphene supported cobalt oxide for sensitive determination of dopamine in presence of high level ascorbic acid. J. Electrochem. Soc. 2016, 163, B491–B498. [Google Scholar] [CrossRef]
- Cai, Z.; Ye, Y.; Wan, X.; Liu, J.; Yang, S.; Xia, Y.; Li, G.; He, Q. Morphology–dependent electrochemical sensing properties of iron oxide–graphene oxide nanohybrids for dopamine and uric acid. Nanomaterials 2019, 9, 835. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Lopa, N.S.; Ju, M.J.; Lee, J.J. Highly sensitive and simultaneous detection of dopamine and uric acid at graphene nanoplatelet-modified fluorine-doped tin oxide electrode in the presence of ascorbic acid. J. Electroanal. Chem. 2017, 792, 54–60. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ahmed, A.; Lee, J.J. A conducting poly(N-(1-Naphthyl)ethylenediamine dihydrochloride) nanofibers for the sensitive and interference-free detection of dopamine. J. Electrochem. Soc. 2018, 165, B89–B95. [Google Scholar] [CrossRef]
- Vasantha, V.S.; Chen, S.M. Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes. J. Electroanal. Chem. 2006, 592, 77–87. [Google Scholar] [CrossRef]
- Xu, G.; Li, B.; Cui, X.T.; Ling, L.; Luo, X. Electrodeposited conducting polymer PEDOT doped with pure carbon nanotubes for the detection of dopamine in the presence of ascorbic acid. Sens. Actuators B Chem. 2013, 188, 405–410. [Google Scholar] [CrossRef]
- Kumar, S.S.; Mathiyarasu, J.; Phani, K.L.N.; Yegnaraman, V. Simultaneous determination of dopamine and ascorbic acid on poly (3,4-ethylenedioxythiophene) modified glassy carbon electrode. J. Solid State Electrochem. 2006, 10, 905–913. [Google Scholar] [CrossRef]
- Talib, N.A.A.; Salam, F.; Sulaiman, Y. Development of highly sensitive immunosensor for clenbuterol detection by using poly(3,4-ethylenedioxythiophene)/graphene oxide modified screen-printed carbon electrode. Sensors 2018, 18, 4324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.; Ju, F.; Li, G.; Ma, L. Smartphone-based electrochemical potentiostat detection system using PEDOT:PSS/chitosan/graphene modified screen-printed electrodes for dopamine detection. Sensors 2020, 20, 2781. [Google Scholar] [CrossRef] [PubMed]
- Varodi, C.; Pogacean, F.; Gheorghe, M.; Mirel, V.; Coros, M.; Barbu-Tudoran, L.; Stefan-van Staden, R.I.; Pruneanu, S. Stone paper as a new substrate to fabricate flexible screen-printed electrodes for the electrochemical detection of dopamine. Sensors 2020, 20, 3609. [Google Scholar] [CrossRef] [PubMed]
- Atta, N.F.; Galal, A.; El-Ads, E.H. Gold nanoparticles-coated poly(3,4-ethylene-dioxythiophene) for the selective determination of sub-nano concentrations of dopamine in presence of sodium dodecyl sulfate. Electrochim. Acta 2012, 69, 102–111. [Google Scholar] [CrossRef]
- Mathiyarasu, J.; Senthilkumar, S.; Phani, K.L.N.; Yegnaraman, V. PEDOT-Au nanocomposite film for electrochemical sensing. Mater. Lett. 2008, 62, 571–573. [Google Scholar] [CrossRef]
- Zhang, O.; Wen, Y.; Xu, J.; Lu, L.; Duan, X.; Yu, H. One-step synthesis of poly (3,4-ethylenedioxythiophene)—Au composites and their application for the detection of nitrite. Synth. Met. 2013, 164, 47–51. [Google Scholar] [CrossRef]
- Tsai, T.; Lin, K.; Chen, S. Electrochemical synthesis of poly (3,4-ethylenedioxythiophene) and gold nanocomposite and its application for hypochlorite sensor. Int. J. Electrochem. Sci. 2011, 6, 2672–2687. [Google Scholar]
- Chiappini, A.; Pasquardini, L.; Nodehi, S.; Armellini, C.; Bazzanella, N.; Lunelli, L.; Pelli, S.; Ferrari, M.; Pietralunga, S.M. Fluorescent aptamer immobilization on inverse colloidal crystals. Sensors 2018, 18, 4326. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.H.; Hsieh, Y.C.; Huang, B.H.; Pai, C.H.; Wu, P.W. Free-standing Au inverse opals for enhanced glucose sensing. J. Alloys Compd. 2016, 684, 453–460. [Google Scholar] [CrossRef]
- Luo, R.; Feng, Z.; Shen, G.; Xiu, Y.; Zhou, Y.; Niu, X. Acetylcholinesterase biosensor based on mesoporous hollow carbon spheres/core-shell magnetic nanoparticles-modified electrode for the detection of organophosphorus pesticides. Sensors 2018, 18, 4429. [Google Scholar] [CrossRef] [Green Version]
- Rick, J.; Tsai, M.C.; Hwang, B.J. Biosensors incorporating bimetallic nanoparticles. Nanomaterials 2016, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belaidi, F.S.; Civélas, A.; Castagnola, V.; Tsopela, A.; Mazenq, L.; Gros, P.; Launay, J.; Temple-Boyer, P. PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chemical 2015, 214, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sakmeche, N.; Aeiyach, S.; Aaron, J.J.; Jouini, M.; Lacroix, J.C.; Lacaze, P.C. Improvement of the electrosynthesis and physicochemical properties of poly(3,4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium. Langmuir 1999, 15, 2566–2574. [Google Scholar] [CrossRef]
- Shao, T.; Sun, L.; Yang, C.; Ye, X.; Chen, S.; Luo, X. Convenient and efficient fabrication of colloidal crystals based on solidification-induced colloidal assembly. Nanomaterials 2019, 9, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.; Huang, J.; Zeng, Y.; Sun, L.X.; Geng, F.; Liu, H.J.; Wang, F.R.; Jiang, X.D.; Wu, W.D.; Zheng, W.G. Monolayer colloidal crystals by modified air-water interface self-assembly approach. Nanomaterials 2017, 7, 291. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.H.; Wang, C.C.; Liao, C.H.; Wu, P.W.; Song, Y.F. Structural characterization of colloidal crystals and inverse opals using transmission X-ray microscopy. J. Colloid Interface Sci. 2014, 426, 199–205. [Google Scholar] [CrossRef]
- Hung, P.S.; Liao, C.H.; Chou, Y.S.; Wang, G.R.; Wang, C.J.; Chung, W.A.; Wu, P.W. High throughput fabrication of large-area colloidal crystals via a two-stage electrophoretic deposition method. Electrochim. Acta 2019, 317, 52–60. [Google Scholar] [CrossRef]
- Lai, C.H.; Huang, Y.J.; Wu, P.W.; Chen, L.Y. Rapid fabrication of cylindrical colloidal crystals and their inverse opals. J. Electrochem. Soc. 2010, 157, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.H.; Yang, Y.L.; Chen, L.Y.; Huang, Y.J.; Chen, J.Y.; Wu, P.W.; Cheng, Y.T.; Huang, Y.T. Effect of crystallinity on the optical reflectance of cylindrical colloidal crystals. J. Electrochem. Soc. 2011, 158, 37–40. [Google Scholar] [CrossRef]
- Hung, P.S.; Chou, Y.S.; Wang, G.R.; Chung, W.A.; Wu, P.W. Fabrication of TiO2-coated nanostructured Ni foams for improved mechanical properties. Ceram. Inter. 2020, 46, 3968–3975. [Google Scholar] [CrossRef]
- Chen, L.Y.; Lai, C.H.; Wu, P.W.; Fan, S.K. Electrowetting of superhydrophobic ZnO inverse opals. J. Electrochem. Soc. 2011, 158, P93–P99. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.H.; Hung, P.S.; Cheng, Y.; Wu, P.W. Combination of microspheres and sol-gel electrophoresis for the formation of large-area ordered macroporous SiO2. Electrochem. Commun. 2017, 85, 6–10. [Google Scholar] [CrossRef]
- Poverenov, E.; Li, M.; Bitler, A.; Bendikov, M. Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films. Chem. Mater. 2010, 22, 4019–4025. [Google Scholar] [CrossRef]
- Musumeci, C.; Hutchison, J.A.; Samori, P. Controlling the morphology of conductive PEDOT by in situ electropolymerization: From thin films to nanowires with variable electrical properties. Nanoscale 2013, 5, 7756–7761. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, O.; Xu, J.; Wen, Y.; Duan, X.; Yu, H. A facile one-step redox route for the synthesis of graphene/poly (3,4-ethylenedioxythiophene) nanocomposite and their applications in biosensing. Sens. Actuators B Chem. 2013, 181, 567–574. [Google Scholar] [CrossRef]
- King, Z.A.; Shaw, C.M.; Spanninga, S.A.; Martin, D.C. Structural, chemical and electrochemical characterization of poly (3,4-Ethylenedioxythiophene) (PEDOT) prepared with various counter-ions and heat treatments. Polymer 2011, 52, 1302–1308. [Google Scholar] [CrossRef] [Green Version]
- Selvaganesh, S.V.; Mathiyarasu, J.; Phani, K.L.N.; Vegnaraman, V. Chemical synthesis of PEDOT–Au nanocomposite. Nanoscale Res. Lett. 2007, 2, 546. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Yang, G.; Song, J.; Niu, L.; Ivaska, A. Morphology of electrodeposited poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate) films. J. Electroanal. Chem. 2007, 602, 24–28. [Google Scholar] [CrossRef]
- Stavytska-Barba, M.; Kelley, A.M. Surface-enhanced Raman study of the interaction of PEDOT:PSS with plasmonically active nanoparticles. J. Phy. Chem. C 2010, 114, 6822–6830. [Google Scholar] [CrossRef]
- Culebras, M.; Gómez, C.M.; Cantarero, A. Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction. J. Mater. Chem. A 2014, 2, 10109–10115. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Yue, R.; Yang, T.; Gao, L. Facile one-pot synthesis of Au–PEDOT/rGO nanocomposite for highly sensitive detection of caffeic acid in red wine sample. Electrochim. Acta 2016, 196, 1–12. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, D.; Yin, L.; Li, N.; Li, F.; Cheng, H. Oxygen bridges between NiO nanosheets and graphene for Improvement of lithium storage. ACS Nano 2012, 6, 3214–3223. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, S.; Crispin, X.; Uvdal, K.; Trzcinski, M.; Birgerson, J.; Groenendaal, L.; Louwet, F.; Salaneck, W.R. Light induced damage in poly(3,4-ethylenedioxythiophene) and its derivatives studied by photoelectron spectroscopy. Synth. Met. 2004, 141, 67–73. [Google Scholar] [CrossRef]
- Mitraka, E.; Jafari, M.J.; Vagin, M.; Liu, X.; Fahlman, M.; Ederth, T.; Berggren, M.; Jonsson, M.P.; Crispin, X. Oxygen-induced doping on reduced PEDOT. J. Mater. Chem. A 2017, 5, 4404–4412. [Google Scholar] [CrossRef] [Green Version]
- Grosvenor, A.P.; Biesinger, M.C.; Smart, R.S.C.; Mcintyre, N.S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779. [Google Scholar] [CrossRef]
- Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L. Biosensors and bioelectronics graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens. Bioelectron. 2010, 25, 1070–1074. [Google Scholar] [CrossRef]
- Selvam, S.P.; Chinnadayyala, S.R.; Cho, S.; Yun, K. Differential pulse voltammetric electrochemical sensor for the detection of etidronic acid in pharmaceutical samples by using rGO-Ag@SiO2/Au PCB. Nanomaterials 2020, 10, 1368. [Google Scholar] [CrossRef]
- Yu, S.; Luo, C.; Wang, L.; Peng, H.; Zhu, Z. Poly(3,4-ethylenedioxythiophene)-modified Ni/silicon microchannel plate electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Analyst 2018, 138, 1149–1155. [Google Scholar] [CrossRef]
- Fabregat, G.; Armelin, E.; Alemán, C. Selective detection of dopamine combining multilayers of conducting polymers with gold nanoparticles. J. Phys. Chem. B 2014, 118, 4669–4682. [Google Scholar] [CrossRef]
- Scavetta, E.; Mazzoni, R.; Mariani, F.; Margutta, R.G.; Bonfiglio, A.; Demelas, M.; Fiorilli, S.; Marzocchi, M.; Fraboni, B. Dopamine amperometric detection at a ferrocene clicked PEDOT:PSS coated electrode. J. Mater. Chem. B 2014, 2, 2861–2867. [Google Scholar] [CrossRef]
- Prathish, K.P.; Carvalho, R.C.; Brett, C.M.A. Electrochemical characterisation of poly(3,4-ethylenedioxythiophene) film modified glassy carbon electrodes prepared in deep eutectic solvents for simultaneous sensing of biomarkers. Electrochim. Acta 2016, 187, 704–713. [Google Scholar] [CrossRef]
Wavenumbers (cm−1) | Assignation |
---|---|
990 | Oxyethylene ring deformation |
1104 | C–O–C deformation |
1134 | 2LO phonon mode of NiO |
1256 | Cα-Cα (inter-ring) stretching |
1367 | Cα–Cβ stretching |
1427 | Symmetrical Cα=Cβ stretching |
1513–1563 | Asymmetrical Cα=Cβ stretching |
Rs (Ω) | Rct (Ω cm2) | Cdl (10−3 F cm2) | RD (Ω cm2) | |
---|---|---|---|---|
Planar Ni@PEDOT film | 33.9 | 5.9 | 5.4 | 222.5 |
Ni@PEDOT inverse opals | 32.5 | 7.6 | 0.5 | 94.7 |
Ni@PEDOT/Au inverse opals | 32.7 | 5.8 | 0.9 | 105.1 |
Planar Ni@PEDOT Film | Ni@PEDOT Inverse Opals | Ni@PEDOT/Au Inverse Opals | |||||||
---|---|---|---|---|---|---|---|---|---|
AA | DA | UA | AA | DA | UA | AA | DA | UA | |
a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
b | 20.30 | 20.30 | 14.67 | 10.88 | 10.88 | 4.93 | 5.98 | 5.98 | 2.98 |
c | 29.22 | 29.22 | 23.89 | 20.30 | 20.30 | 14.67 | 10.88 | 10.88 | 4.93 |
d | 43.45 | 43.45 | 36.90 | 29.22 | 29.22 | 23.89 | 20.30 | 20.30 | 14.67 |
e | 56.50 | 56.50 | 48.82 | 43.45 | 43.45 | 36.90 | 29.22 | 29.22 | 23.89 |
f | 68.46 | 68.46 | 59.75 | 56.50 | 56.50 | 48.82 | 43.45 | 43.45 | 36.90 |
g | 79.42 | 79.42 | 69.77 | 68.46 | 68.46 | 59.75 | 56.50 | 56.50 | 48.82 |
h | 89.47 | 89.47 | 78.96 | 79.42 | 79.42 | 69.77 | 89.47 | 89.47 | 78.96 |
i | 102.42 | 102.42 | 96.85 | 89.47 | 89.47 | 78.96 | 102.42 | 102.42 | 96.85 |
j | 113.38 | 113.38 | 112.00 | 113.38 | 113.38 | 112.00 | 113.38 | 113.38 | 112.00 |
k | 140.70 | 140.70 | 119.60 | 140.70 | 140.70 | 119.60 | 140.70 | 140.70 | 119.60 |
l | 162.56 | 162.56 | 125.68 | 162.56 | 162.56 | 125.68 | 162.56 | 162.56 | 125.68 |
m | 180.05 | 180.05 | 130.55 | 180.05 | 180.05 | 130.55 | 180.05 | 180.05 | 130.55 |
n | 194.04 | 194.04 | 134.44 | 194.04 | 194.04 | 134.44 | 194.04 | 194.04 | 134.44 |
Electrode | Oxidation Potential (V) | Resolution (V) | Sensitivity (μA cm−2 μM−1) | Detection Limit (μM) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AA | DA | UA | DA–AA | UA–DA | UA–AA | AA | DA | UA | AA | DA | UA | |
Planar Ni@PEDOT film | 0.05 | 0.21 | 0.33 | 0.16 | 0.12 | 0.28 | 0.13 | 0.40 | 0.71 | 29.22 | 20.3 | 14.67 |
Ni@PEDOT inverse opals | 0.01 | 0.21 | 0.33 | 0.20 | 0.13 | 0.32 | 0.15 | 0.58 | 1.23 | 10.88 | 10.88 | 4.93 |
Ni@PEDOT/Au inverse opals | −0.01 | 0.19 | 0.30 | 0.19 | 0.12 | 0.31 | 0.26 | 1.04 | 1.13 | 5.98 | 5.98 | 2.98 |
Electrode | Method | Solvent a | Linear Range (μM) | Sensitivity (μA2 μM−1 cm−1) | [Ref] | ||||
---|---|---|---|---|---|---|---|---|---|
AA | DA | UA | AA | DA | UA | ||||
Ferrocene clicked PEDOT:PSS coated electrode | DC b | H2O | N/A | 10–900 | N/A | N/A | 0.196 | N/A | [60] |
PEDOT-modified Ni/Si MCP electrode | DPV | acetonitrile | 20–1400 | 12–48 | 36–216 | 0.539 | 5.4 | 2.2 | [58] |
PEDOT/PNMPy/PEDOT/Au | CV | acetonitrile | N/A | 1–100 | N/A | 0.194 | 0.182 | 1.162 | [59] |
PEDOT-modified GC | DPV | acetonitrile | 500–3500 | 20–80 | 20-130 | 0.057 | 1.365 | 1.924 | [12] |
PEDOT-modified GC | DPV | deep eutectic solvent | 50–1600 | 5–180 | 5–180 | 0.086 | 1.46 | 0.54 | [61] |
PEDOT-modified GC | DPV | H2O | 300–1500 | 100–500 | N/A | 0.042 | 0.078 | N/A | [25] |
Ni@PEDOT/Au inverse opals | CV | H2O | 6–194 | 6–194 | 3–134.4 | 0.266 | 1.04 | 1.13 | this work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, P.-S.; Wang, G.-R.; Chung, W.-A.; Chiang, T.-T.; Wu, P.-W. Green Synthesis of Ni@PEDOT and Ni@PEDOT/Au (Core@Shell) Inverse Opals for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. Nanomaterials 2020, 10, 1722. https://doi.org/10.3390/nano10091722
Hung P-S, Wang G-R, Chung W-A, Chiang T-T, Wu P-W. Green Synthesis of Ni@PEDOT and Ni@PEDOT/Au (Core@Shell) Inverse Opals for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. Nanomaterials. 2020; 10(9):1722. https://doi.org/10.3390/nano10091722
Chicago/Turabian StyleHung, Pei-Sung, Guang-Ren Wang, Wei-An Chung, Tze-Ting Chiang, and Pu-Wei Wu. 2020. "Green Synthesis of Ni@PEDOT and Ni@PEDOT/Au (Core@Shell) Inverse Opals for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid" Nanomaterials 10, no. 9: 1722. https://doi.org/10.3390/nano10091722
APA StyleHung, P. -S., Wang, G. -R., Chung, W. -A., Chiang, T. -T., & Wu, P. -W. (2020). Green Synthesis of Ni@PEDOT and Ni@PEDOT/Au (Core@Shell) Inverse Opals for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid. Nanomaterials, 10(9), 1722. https://doi.org/10.3390/nano10091722